Step |
Hyp |
Ref |
Expression |
1 |
|
wemapso.t |
|
2 |
|
wemapso2.u |
|
3 |
2
|
ssrab3 |
|
4 |
|
simpl2 |
|
5 |
|
simpl3 |
|
6 |
|
simprll |
|
7 |
|
breq1 |
|
8 |
7 2
|
elrab2 |
|
9 |
8
|
simprbi |
|
10 |
6 9
|
syl |
|
11 |
|
simprlr |
|
12 |
|
breq1 |
|
13 |
12 2
|
elrab2 |
|
14 |
13
|
simprbi |
|
15 |
11 14
|
syl |
|
16 |
10 15
|
fsuppunfi |
|
17 |
3 6
|
sselid |
|
18 |
|
elmapi |
|
19 |
17 18
|
syl |
|
20 |
19
|
ffnd |
|
21 |
3 11
|
sselid |
|
22 |
|
elmapi |
|
23 |
21 22
|
syl |
|
24 |
23
|
ffnd |
|
25 |
|
fndmdif |
|
26 |
20 24 25
|
syl2anc |
|
27 |
|
neneor |
|
28 |
|
elun |
|
29 |
|
simpr |
|
30 |
20
|
adantr |
|
31 |
|
elex |
|
32 |
31
|
3ad2ant1 |
|
33 |
32
|
adantr |
|
34 |
33
|
ad2antrr |
|
35 |
|
simpr |
|
36 |
35
|
ad2antrr |
|
37 |
|
elsuppfn |
|
38 |
30 34 36 37
|
syl3anc |
|
39 |
29 38
|
mpbirand |
|
40 |
24
|
adantr |
|
41 |
|
simpll1 |
|
42 |
41
|
adantr |
|
43 |
|
elsuppfn |
|
44 |
40 42 36 43
|
syl3anc |
|
45 |
29 44
|
mpbirand |
|
46 |
39 45
|
orbi12d |
|
47 |
28 46
|
bitrid |
|
48 |
27 47
|
syl5ibr |
|
49 |
48
|
ralrimiva |
|
50 |
|
rabss |
|
51 |
49 50
|
sylibr |
|
52 |
26 51
|
eqsstrd |
|
53 |
16 52
|
ssfid |
|
54 |
|
suppssdm |
|
55 |
54 19
|
fssdm |
|
56 |
|
suppssdm |
|
57 |
56 23
|
fssdm |
|
58 |
55 57
|
unssd |
|
59 |
4
|
adantr |
|
60 |
|
soss |
|
61 |
58 59 60
|
sylc |
|
62 |
|
wofi |
|
63 |
61 16 62
|
syl2anc |
|
64 |
|
wefr |
|
65 |
63 64
|
syl |
|
66 |
|
simprr |
|
67 |
|
fndmdifeq0 |
|
68 |
20 24 67
|
syl2anc |
|
69 |
68
|
necon3bid |
|
70 |
66 69
|
mpbird |
|
71 |
|
fri |
|
72 |
53 65 52 70 71
|
syl22anc |
|
73 |
1 3 4 5 72
|
wemapsolem |
|