Metamath Proof Explorer


Theorem znleval

Description: The ordering of the Z/nZ structure. (Contributed by Mario Carneiro, 15-Jun-2015) (Revised by AV, 13-Jun-2019)

Ref Expression
Hypotheses znle2.y Y=/N
znle2.f F=ℤRHomYW
znle2.w W=ifN=00..^N
znle2.l ˙=Y
znleval.x X=BaseY
Assertion znleval N0A˙BAXBXF-1AF-1B

Proof

Step Hyp Ref Expression
1 znle2.y Y=/N
2 znle2.f F=ℤRHomYW
3 znle2.w W=ifN=00..^N
4 znle2.l ˙=Y
5 znleval.x X=BaseY
6 1 2 3 4 znle2 N0˙=FF-1
7 relco RelFF-1
8 relssdmrn RelFF-1FF-1domFF-1×ranFF-1
9 7 8 ax-mp FF-1domFF-1×ranFF-1
10 dmcoss domFF-1domF-1
11 df-rn ranF=domF-1
12 1 5 2 3 znf1o N0F:W1-1 ontoX
13 f1ofo F:W1-1 ontoXF:WontoX
14 forn F:WontoXranF=X
15 12 13 14 3syl N0ranF=X
16 11 15 eqtr3id N0domF-1=X
17 10 16 sseqtrid N0domFF-1X
18 rncoss ranFF-1ranF
19 rncoss ranFranF
20 19 15 sseqtrid N0ranFX
21 18 20 sstrid N0ranFF-1X
22 xpss12 domFF-1XranFF-1XdomFF-1×ranFF-1X×X
23 17 21 22 syl2anc N0domFF-1×ranFF-1X×X
24 9 23 sstrid N0FF-1X×X
25 6 24 eqsstrd N0˙X×X
26 25 ssbrd N0A˙BAX×XB
27 brxp AX×XBAXBX
28 26 27 imbitrdi N0A˙BAXBX
29 28 pm4.71rd N0A˙BAXBXA˙B
30 6 adantr N0AXBX˙=FF-1
31 30 breqd N0AXBXA˙BAFF-1B
32 brcog AXBXAFF-1BxAF-1xxFB
33 32 adantl N0AXBXAFF-1BxAF-1xxFB
34 eqcom x=F-1AF-1A=x
35 12 adantr N0AXBXF:W1-1 ontoX
36 f1ocnv F:W1-1 ontoXF-1:X1-1 ontoW
37 f1ofn F-1:X1-1 ontoWF-1FnX
38 35 36 37 3syl N0AXBXF-1FnX
39 simprl N0AXBXAX
40 fnbrfvb F-1FnXAXF-1A=xAF-1x
41 38 39 40 syl2anc N0AXBXF-1A=xAF-1x
42 34 41 bitr2id N0AXBXAF-1xx=F-1A
43 42 anbi1d N0AXBXAF-1xxFBx=F-1AxFB
44 43 exbidv N0AXBXxAF-1xxFBxx=F-1AxFB
45 33 44 bitrd N0AXBXAFF-1Bxx=F-1AxFB
46 fvex F-1AV
47 breq1 x=F-1AxFBF-1AFB
48 46 47 ceqsexv xx=F-1AxFBF-1AFB
49 simprr N0AXBXBX
50 brcog F-1AVBXF-1AFBxF-1AxxFB
51 46 49 50 sylancr N0AXBXF-1AFBxF-1AxxFB
52 fvex F-1BV
53 breq2 x=F-1BF-1AxF-1AF-1B
54 52 53 ceqsexv xx=F-1BF-1AxF-1AF-1B
55 eqcom x=F-1BF-1B=x
56 fnbrfvb F-1FnXBXF-1B=xBF-1x
57 38 49 56 syl2anc N0AXBXF-1B=xBF-1x
58 55 57 bitrid N0AXBXx=F-1BBF-1x
59 vex xV
60 brcnvg BXxVBF-1xxFB
61 49 59 60 sylancl N0AXBXBF-1xxFB
62 58 61 bitrd N0AXBXx=F-1BxFB
63 62 anbi1d N0AXBXx=F-1BF-1AxxFBF-1Ax
64 63 biancomd N0AXBXx=F-1BF-1AxF-1AxxFB
65 64 exbidv N0AXBXxx=F-1BF-1AxxF-1AxxFB
66 54 65 bitr3id N0AXBXF-1AF-1BxF-1AxxFB
67 51 66 bitr4d N0AXBXF-1AFBF-1AF-1B
68 48 67 bitrid N0AXBXxx=F-1AxFBF-1AF-1B
69 31 45 68 3bitrd N0AXBXA˙BF-1AF-1B
70 69 pm5.32da N0AXBXA˙BAXBXF-1AF-1B
71 df-3an AXBXF-1AF-1BAXBXF-1AF-1B
72 70 71 bitr4di N0AXBXA˙BAXBXF-1AF-1B
73 29 72 bitrd N0A˙BAXBXF-1AF-1B