| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clwlkclwwlklem2.f |
⊢ 𝐹 = ( 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ↦ if ( 𝑥 < ( ( ♯ ‘ 𝑃 ) − 2 ) , ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ) , ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ 0 ) } ) ) ) |
| 2 |
|
fveq2 |
⊢ ( 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) → ( 𝐹 ‘ 𝐼 ) = ( 𝐹 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) |
| 3 |
|
lencl |
⊢ ( 𝑃 ∈ Word 𝑉 → ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) |
| 4 |
1
|
clwlkclwwlklem2fv2 |
⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( 𝐹 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) = ( ◡ 𝐸 ‘ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ) ) |
| 5 |
3 4
|
sylan |
⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( 𝐹 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) = ( ◡ 𝐸 ‘ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ) ) |
| 6 |
2 5
|
sylan9eqr |
⊢ ( ( ( 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) → ( 𝐹 ‘ 𝐼 ) = ( ◡ 𝐸 ‘ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ) ) |
| 7 |
6
|
ex |
⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) → ( 𝐹 ‘ 𝐼 ) = ( ◡ 𝐸 ‘ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ) ) ) |
| 8 |
7
|
3adant1 |
⊢ ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) → ( 𝐹 ‘ 𝐼 ) = ( ◡ 𝐸 ‘ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ) ) ) |
| 9 |
8
|
ad2antrr |
⊢ ( ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) ∧ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ∈ ran 𝐸 ) → ( 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) → ( 𝐹 ‘ 𝐼 ) = ( ◡ 𝐸 ‘ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ) ) ) |
| 10 |
9
|
impcom |
⊢ ( ( 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ∧ ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) ∧ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ∈ ran 𝐸 ) ) → ( 𝐹 ‘ 𝐼 ) = ( ◡ 𝐸 ‘ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ) ) |
| 11 |
10
|
fveq2d |
⊢ ( ( 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ∧ ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) ∧ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ∈ ran 𝐸 ) ) → ( 𝐸 ‘ ( 𝐹 ‘ 𝐼 ) ) = ( 𝐸 ‘ ( ◡ 𝐸 ‘ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ) ) ) |
| 12 |
|
f1f1orn |
⊢ ( 𝐸 : dom 𝐸 –1-1→ 𝑅 → 𝐸 : dom 𝐸 –1-1-onto→ ran 𝐸 ) |
| 13 |
12
|
3ad2ant1 |
⊢ ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → 𝐸 : dom 𝐸 –1-1-onto→ ran 𝐸 ) |
| 14 |
13
|
ad2antrr |
⊢ ( ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) ∧ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ∈ ran 𝐸 ) → 𝐸 : dom 𝐸 –1-1-onto→ ran 𝐸 ) |
| 15 |
|
lsw |
⊢ ( 𝑃 ∈ Word 𝑉 → ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) |
| 16 |
15
|
eqeq1d |
⊢ ( 𝑃 ∈ Word 𝑉 → ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ↔ ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 1 ) ) = ( 𝑃 ‘ 0 ) ) ) |
| 17 |
|
nn0cn |
⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( ♯ ‘ 𝑃 ) ∈ ℂ ) |
| 18 |
|
id |
⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℂ → ( ♯ ‘ 𝑃 ) ∈ ℂ ) |
| 19 |
|
2cnd |
⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℂ → 2 ∈ ℂ ) |
| 20 |
|
1cnd |
⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℂ → 1 ∈ ℂ ) |
| 21 |
18 19 20
|
subsubd |
⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℂ → ( ( ♯ ‘ 𝑃 ) − ( 2 − 1 ) ) = ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) |
| 22 |
|
2m1e1 |
⊢ ( 2 − 1 ) = 1 |
| 23 |
22
|
a1i |
⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℂ → ( 2 − 1 ) = 1 ) |
| 24 |
23
|
oveq2d |
⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℂ → ( ( ♯ ‘ 𝑃 ) − ( 2 − 1 ) ) = ( ( ♯ ‘ 𝑃 ) − 1 ) ) |
| 25 |
21 24
|
eqtr3d |
⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℂ → ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) = ( ( ♯ ‘ 𝑃 ) − 1 ) ) |
| 26 |
3 17 25
|
3syl |
⊢ ( 𝑃 ∈ Word 𝑉 → ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) = ( ( ♯ ‘ 𝑃 ) − 1 ) ) |
| 27 |
26
|
adantr |
⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 1 ) ) = ( 𝑃 ‘ 0 ) ) → ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) = ( ( ♯ ‘ 𝑃 ) − 1 ) ) |
| 28 |
27
|
fveq2d |
⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 1 ) ) = ( 𝑃 ‘ 0 ) ) → ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) = ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) |
| 29 |
|
eqeq2 |
⊢ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 1 ) ) → ( ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) = ( 𝑃 ‘ 0 ) ↔ ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) = ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) |
| 30 |
29
|
eqcoms |
⊢ ( ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 1 ) ) = ( 𝑃 ‘ 0 ) → ( ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) = ( 𝑃 ‘ 0 ) ↔ ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) = ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) |
| 31 |
30
|
adantl |
⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 1 ) ) = ( 𝑃 ‘ 0 ) ) → ( ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) = ( 𝑃 ‘ 0 ) ↔ ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) = ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) |
| 32 |
28 31
|
mpbird |
⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 1 ) ) = ( 𝑃 ‘ 0 ) ) → ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) = ( 𝑃 ‘ 0 ) ) |
| 33 |
32
|
ex |
⊢ ( 𝑃 ∈ Word 𝑉 → ( ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 1 ) ) = ( 𝑃 ‘ 0 ) → ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) = ( 𝑃 ‘ 0 ) ) ) |
| 34 |
16 33
|
sylbid |
⊢ ( 𝑃 ∈ Word 𝑉 → ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) → ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) = ( 𝑃 ‘ 0 ) ) ) |
| 35 |
34
|
3ad2ant2 |
⊢ ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) → ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) = ( 𝑃 ‘ 0 ) ) ) |
| 36 |
35
|
com12 |
⊢ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) → ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) = ( 𝑃 ‘ 0 ) ) ) |
| 37 |
36
|
adantr |
⊢ ( ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) → ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) = ( 𝑃 ‘ 0 ) ) ) |
| 38 |
37
|
impcom |
⊢ ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) → ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) = ( 𝑃 ‘ 0 ) ) |
| 39 |
38
|
adantr |
⊢ ( ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) ∧ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) → ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) = ( 𝑃 ‘ 0 ) ) |
| 40 |
39
|
preq2d |
⊢ ( ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) ∧ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) → { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) } = { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ) |
| 41 |
|
fveq2 |
⊢ ( 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) → ( 𝑃 ‘ 𝐼 ) = ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) |
| 42 |
|
fvoveq1 |
⊢ ( 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) → ( 𝑃 ‘ ( 𝐼 + 1 ) ) = ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) ) |
| 43 |
41 42
|
preq12d |
⊢ ( 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) → { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } = { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) } ) |
| 44 |
43
|
eqeq1d |
⊢ ( 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) → ( { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } = { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ↔ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) } = { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ) ) |
| 45 |
44
|
adantl |
⊢ ( ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) ∧ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) → ( { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } = { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ↔ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) } = { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ) ) |
| 46 |
40 45
|
mpbird |
⊢ ( ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) ∧ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) → { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } = { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ) |
| 47 |
46
|
eleq1d |
⊢ ( ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) ∧ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) → ( { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ∈ ran 𝐸 ↔ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) |
| 48 |
47
|
biimpd |
⊢ ( ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) ∧ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) → ( { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ∈ ran 𝐸 → { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) |
| 49 |
48
|
impancom |
⊢ ( ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) ∧ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ∈ ran 𝐸 ) → ( 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) → { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) |
| 50 |
49
|
impcom |
⊢ ( ( 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ∧ ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) ∧ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ∈ ran 𝐸 ) ) → { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) |
| 51 |
|
f1ocnvfv2 |
⊢ ( ( 𝐸 : dom 𝐸 –1-1-onto→ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) → ( 𝐸 ‘ ( ◡ 𝐸 ‘ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ) ) = { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ) |
| 52 |
14 50 51
|
syl2an2 |
⊢ ( ( 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ∧ ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) ∧ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ∈ ran 𝐸 ) ) → ( 𝐸 ‘ ( ◡ 𝐸 ‘ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ) ) = { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ) |
| 53 |
|
eqcom |
⊢ ( ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 1 ) ) = ( 𝑃 ‘ 0 ) ↔ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) |
| 54 |
53
|
biimpi |
⊢ ( ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 1 ) ) = ( 𝑃 ‘ 0 ) → ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) |
| 55 |
|
1e2m1 |
⊢ 1 = ( 2 − 1 ) |
| 56 |
55
|
a1i |
⊢ ( 𝑃 ∈ Word 𝑉 → 1 = ( 2 − 1 ) ) |
| 57 |
56
|
oveq2d |
⊢ ( 𝑃 ∈ Word 𝑉 → ( ( ♯ ‘ 𝑃 ) − 1 ) = ( ( ♯ ‘ 𝑃 ) − ( 2 − 1 ) ) ) |
| 58 |
3 17
|
syl |
⊢ ( 𝑃 ∈ Word 𝑉 → ( ♯ ‘ 𝑃 ) ∈ ℂ ) |
| 59 |
|
2cnd |
⊢ ( 𝑃 ∈ Word 𝑉 → 2 ∈ ℂ ) |
| 60 |
|
1cnd |
⊢ ( 𝑃 ∈ Word 𝑉 → 1 ∈ ℂ ) |
| 61 |
58 59 60
|
subsubd |
⊢ ( 𝑃 ∈ Word 𝑉 → ( ( ♯ ‘ 𝑃 ) − ( 2 − 1 ) ) = ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) |
| 62 |
57 61
|
eqtrd |
⊢ ( 𝑃 ∈ Word 𝑉 → ( ( ♯ ‘ 𝑃 ) − 1 ) = ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) |
| 63 |
62
|
fveq2d |
⊢ ( 𝑃 ∈ Word 𝑉 → ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 1 ) ) = ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) ) |
| 64 |
54 63
|
sylan9eqr |
⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 1 ) ) = ( 𝑃 ‘ 0 ) ) → ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) ) |
| 65 |
64
|
ex |
⊢ ( 𝑃 ∈ Word 𝑉 → ( ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 1 ) ) = ( 𝑃 ‘ 0 ) → ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) ) ) |
| 66 |
16 65
|
sylbid |
⊢ ( 𝑃 ∈ Word 𝑉 → ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) → ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) ) ) |
| 67 |
66
|
imp |
⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ) → ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) ) |
| 68 |
67
|
preq2d |
⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ) → { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } = { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) } ) |
| 69 |
68
|
adantr |
⊢ ( ( ( 𝑃 ∈ Word 𝑉 ∧ ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ) ∧ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) → { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } = { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) } ) |
| 70 |
43
|
adantl |
⊢ ( ( ( 𝑃 ∈ Word 𝑉 ∧ ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ) ∧ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) → { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } = { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) } ) |
| 71 |
69 70
|
eqtr4d |
⊢ ( ( ( 𝑃 ∈ Word 𝑉 ∧ ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ) ∧ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) → { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } = { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ) |
| 72 |
71
|
exp31 |
⊢ ( 𝑃 ∈ Word 𝑉 → ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) → ( 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) → { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } = { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ) ) ) |
| 73 |
72
|
3ad2ant2 |
⊢ ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) → ( 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) → { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } = { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ) ) ) |
| 74 |
73
|
com12 |
⊢ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) → ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) → { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } = { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ) ) ) |
| 75 |
74
|
adantr |
⊢ ( ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) → ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) → { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } = { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ) ) ) |
| 76 |
75
|
impcom |
⊢ ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) → ( 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) → { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } = { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ) ) |
| 77 |
76
|
adantr |
⊢ ( ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) ∧ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ∈ ran 𝐸 ) → ( 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) → { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } = { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ) ) |
| 78 |
77
|
impcom |
⊢ ( ( 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ∧ ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) ∧ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ∈ ran 𝐸 ) ) → { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } = { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ) |
| 79 |
11 52 78
|
3eqtrd |
⊢ ( ( 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ∧ ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) ∧ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ∈ ran 𝐸 ) ) → ( 𝐸 ‘ ( 𝐹 ‘ 𝐼 ) ) = { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ) |
| 80 |
|
simpll |
⊢ ( ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ∧ ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) → ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) |
| 81 |
|
oveq1 |
⊢ ( ( ♯ ‘ 𝑃 ) = 2 → ( ( ♯ ‘ 𝑃 ) − 1 ) = ( 2 − 1 ) ) |
| 82 |
81 22
|
eqtrdi |
⊢ ( ( ♯ ‘ 𝑃 ) = 2 → ( ( ♯ ‘ 𝑃 ) − 1 ) = 1 ) |
| 83 |
82
|
oveq2d |
⊢ ( ( ♯ ‘ 𝑃 ) = 2 → ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) = ( 0 ..^ 1 ) ) |
| 84 |
83
|
eleq2d |
⊢ ( ( ♯ ‘ 𝑃 ) = 2 → ( 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ↔ 𝐼 ∈ ( 0 ..^ 1 ) ) ) |
| 85 |
|
oveq1 |
⊢ ( ( ♯ ‘ 𝑃 ) = 2 → ( ( ♯ ‘ 𝑃 ) − 2 ) = ( 2 − 2 ) ) |
| 86 |
|
2cn |
⊢ 2 ∈ ℂ |
| 87 |
86
|
subidi |
⊢ ( 2 − 2 ) = 0 |
| 88 |
85 87
|
eqtrdi |
⊢ ( ( ♯ ‘ 𝑃 ) = 2 → ( ( ♯ ‘ 𝑃 ) − 2 ) = 0 ) |
| 89 |
88
|
eqeq2d |
⊢ ( ( ♯ ‘ 𝑃 ) = 2 → ( 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ↔ 𝐼 = 0 ) ) |
| 90 |
89
|
notbid |
⊢ ( ( ♯ ‘ 𝑃 ) = 2 → ( ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ↔ ¬ 𝐼 = 0 ) ) |
| 91 |
84 90
|
anbi12d |
⊢ ( ( ♯ ‘ 𝑃 ) = 2 → ( ( 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ∧ ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) ↔ ( 𝐼 ∈ ( 0 ..^ 1 ) ∧ ¬ 𝐼 = 0 ) ) ) |
| 92 |
|
elsni |
⊢ ( 𝐼 ∈ { 0 } → 𝐼 = 0 ) |
| 93 |
92
|
pm2.24d |
⊢ ( 𝐼 ∈ { 0 } → ( ¬ 𝐼 = 0 → ( 𝐼 ∈ ℕ0 ∧ ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℕ ∧ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) |
| 94 |
|
fzo01 |
⊢ ( 0 ..^ 1 ) = { 0 } |
| 95 |
93 94
|
eleq2s |
⊢ ( 𝐼 ∈ ( 0 ..^ 1 ) → ( ¬ 𝐼 = 0 → ( 𝐼 ∈ ℕ0 ∧ ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℕ ∧ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) |
| 96 |
95
|
imp |
⊢ ( ( 𝐼 ∈ ( 0 ..^ 1 ) ∧ ¬ 𝐼 = 0 ) → ( 𝐼 ∈ ℕ0 ∧ ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℕ ∧ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) |
| 97 |
91 96
|
biimtrdi |
⊢ ( ( ♯ ‘ 𝑃 ) = 2 → ( ( 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ∧ ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) → ( 𝐼 ∈ ℕ0 ∧ ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℕ ∧ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) |
| 98 |
97
|
adantld |
⊢ ( ( ♯ ‘ 𝑃 ) = 2 → ( ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ∧ ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) → ( 𝐼 ∈ ℕ0 ∧ ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℕ ∧ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) |
| 99 |
|
df-ne |
⊢ ( ( ♯ ‘ 𝑃 ) ≠ 2 ↔ ¬ ( ♯ ‘ 𝑃 ) = 2 ) |
| 100 |
|
2re |
⊢ 2 ∈ ℝ |
| 101 |
100
|
a1i |
⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → 2 ∈ ℝ ) |
| 102 |
|
nn0re |
⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( ♯ ‘ 𝑃 ) ∈ ℝ ) |
| 103 |
102
|
adantr |
⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ♯ ‘ 𝑃 ) ∈ ℝ ) |
| 104 |
|
simpr |
⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → 2 ≤ ( ♯ ‘ 𝑃 ) ) |
| 105 |
101 103 104
|
leltned |
⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( 2 < ( ♯ ‘ 𝑃 ) ↔ ( ♯ ‘ 𝑃 ) ≠ 2 ) ) |
| 106 |
|
elfzo0 |
⊢ ( 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ↔ ( 𝐼 ∈ ℕ0 ∧ ( ( ♯ ‘ 𝑃 ) − 1 ) ∈ ℕ ∧ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) |
| 107 |
|
simp-4l |
⊢ ( ( ( ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) ∧ ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) ∧ 2 < ( ♯ ‘ 𝑃 ) ) ∧ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 1 ) ) → 𝐼 ∈ ℕ0 ) |
| 108 |
|
nn0z |
⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( ♯ ‘ 𝑃 ) ∈ ℤ ) |
| 109 |
|
2z |
⊢ 2 ∈ ℤ |
| 110 |
109
|
a1i |
⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → 2 ∈ ℤ ) |
| 111 |
108 110
|
zsubcld |
⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℤ ) |
| 112 |
111
|
adantr |
⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 < ( ♯ ‘ 𝑃 ) ) → ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℤ ) |
| 113 |
100
|
a1i |
⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → 2 ∈ ℝ ) |
| 114 |
113 102
|
posdifd |
⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( 2 < ( ♯ ‘ 𝑃 ) ↔ 0 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) |
| 115 |
114
|
biimpa |
⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 < ( ♯ ‘ 𝑃 ) ) → 0 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) |
| 116 |
|
elnnz |
⊢ ( ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℕ ↔ ( ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℤ ∧ 0 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) |
| 117 |
112 115 116
|
sylanbrc |
⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 < ( ♯ ‘ 𝑃 ) ) → ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℕ ) |
| 118 |
117
|
ad5ant24 |
⊢ ( ( ( ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) ∧ ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) ∧ 2 < ( ♯ ‘ 𝑃 ) ) ∧ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 1 ) ) → ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℕ ) |
| 119 |
|
nn0z |
⊢ ( 𝐼 ∈ ℕ0 → 𝐼 ∈ ℤ ) |
| 120 |
|
peano2zm |
⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℤ → ( ( ♯ ‘ 𝑃 ) − 1 ) ∈ ℤ ) |
| 121 |
108 120
|
syl |
⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑃 ) − 1 ) ∈ ℤ ) |
| 122 |
|
zltlem1 |
⊢ ( ( 𝐼 ∈ ℤ ∧ ( ( ♯ ‘ 𝑃 ) − 1 ) ∈ ℤ ) → ( 𝐼 < ( ( ♯ ‘ 𝑃 ) − 1 ) ↔ 𝐼 ≤ ( ( ( ♯ ‘ 𝑃 ) − 1 ) − 1 ) ) ) |
| 123 |
119 121 122
|
syl2an |
⊢ ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) → ( 𝐼 < ( ( ♯ ‘ 𝑃 ) − 1 ) ↔ 𝐼 ≤ ( ( ( ♯ ‘ 𝑃 ) − 1 ) − 1 ) ) ) |
| 124 |
17
|
adantl |
⊢ ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) → ( ♯ ‘ 𝑃 ) ∈ ℂ ) |
| 125 |
|
1cnd |
⊢ ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) → 1 ∈ ℂ ) |
| 126 |
124 125 125
|
subsub4d |
⊢ ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) → ( ( ( ♯ ‘ 𝑃 ) − 1 ) − 1 ) = ( ( ♯ ‘ 𝑃 ) − ( 1 + 1 ) ) ) |
| 127 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
| 128 |
127
|
a1i |
⊢ ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) → ( 1 + 1 ) = 2 ) |
| 129 |
128
|
oveq2d |
⊢ ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) → ( ( ♯ ‘ 𝑃 ) − ( 1 + 1 ) ) = ( ( ♯ ‘ 𝑃 ) − 2 ) ) |
| 130 |
126 129
|
eqtrd |
⊢ ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) → ( ( ( ♯ ‘ 𝑃 ) − 1 ) − 1 ) = ( ( ♯ ‘ 𝑃 ) − 2 ) ) |
| 131 |
130
|
breq2d |
⊢ ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) → ( 𝐼 ≤ ( ( ( ♯ ‘ 𝑃 ) − 1 ) − 1 ) ↔ 𝐼 ≤ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) |
| 132 |
123 131
|
bitrd |
⊢ ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) → ( 𝐼 < ( ( ♯ ‘ 𝑃 ) − 1 ) ↔ 𝐼 ≤ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) |
| 133 |
|
necom |
⊢ ( ( ( ♯ ‘ 𝑃 ) − 2 ) ≠ 𝐼 ↔ 𝐼 ≠ ( ( ♯ ‘ 𝑃 ) − 2 ) ) |
| 134 |
|
df-ne |
⊢ ( 𝐼 ≠ ( ( ♯ ‘ 𝑃 ) − 2 ) ↔ ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) |
| 135 |
133 134
|
bitr2i |
⊢ ( ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ↔ ( ( ♯ ‘ 𝑃 ) − 2 ) ≠ 𝐼 ) |
| 136 |
|
nn0re |
⊢ ( 𝐼 ∈ ℕ0 → 𝐼 ∈ ℝ ) |
| 137 |
136
|
ad2antrr |
⊢ ( ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) ∧ 𝐼 ≤ ( ( ♯ ‘ 𝑃 ) − 2 ) ) → 𝐼 ∈ ℝ ) |
| 138 |
102 113
|
resubcld |
⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℝ ) |
| 139 |
138
|
ad2antlr |
⊢ ( ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) ∧ 𝐼 ≤ ( ( ♯ ‘ 𝑃 ) − 2 ) ) → ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℝ ) |
| 140 |
|
simpr |
⊢ ( ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) ∧ 𝐼 ≤ ( ( ♯ ‘ 𝑃 ) − 2 ) ) → 𝐼 ≤ ( ( ♯ ‘ 𝑃 ) − 2 ) ) |
| 141 |
|
leltne |
⊢ ( ( 𝐼 ∈ ℝ ∧ ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℝ ∧ 𝐼 ≤ ( ( ♯ ‘ 𝑃 ) − 2 ) ) → ( 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ↔ ( ( ♯ ‘ 𝑃 ) − 2 ) ≠ 𝐼 ) ) |
| 142 |
141
|
bicomd |
⊢ ( ( 𝐼 ∈ ℝ ∧ ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℝ ∧ 𝐼 ≤ ( ( ♯ ‘ 𝑃 ) − 2 ) ) → ( ( ( ♯ ‘ 𝑃 ) − 2 ) ≠ 𝐼 ↔ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) |
| 143 |
137 139 140 142
|
syl3anc |
⊢ ( ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) ∧ 𝐼 ≤ ( ( ♯ ‘ 𝑃 ) − 2 ) ) → ( ( ( ♯ ‘ 𝑃 ) − 2 ) ≠ 𝐼 ↔ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) |
| 144 |
143
|
biimpd |
⊢ ( ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) ∧ 𝐼 ≤ ( ( ♯ ‘ 𝑃 ) − 2 ) ) → ( ( ( ♯ ‘ 𝑃 ) − 2 ) ≠ 𝐼 → 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) |
| 145 |
135 144
|
biimtrid |
⊢ ( ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) ∧ 𝐼 ≤ ( ( ♯ ‘ 𝑃 ) − 2 ) ) → ( ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) → 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) |
| 146 |
145
|
ex |
⊢ ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) → ( 𝐼 ≤ ( ( ♯ ‘ 𝑃 ) − 2 ) → ( ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) → 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) |
| 147 |
132 146
|
sylbid |
⊢ ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) → ( 𝐼 < ( ( ♯ ‘ 𝑃 ) − 1 ) → ( ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) → 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) |
| 148 |
147
|
com23 |
⊢ ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) → ( ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) → ( 𝐼 < ( ( ♯ ‘ 𝑃 ) − 1 ) → 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) |
| 149 |
148
|
imp |
⊢ ( ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) ∧ ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) → ( 𝐼 < ( ( ♯ ‘ 𝑃 ) − 1 ) → 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) |
| 150 |
149
|
adantr |
⊢ ( ( ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) ∧ ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) ∧ 2 < ( ♯ ‘ 𝑃 ) ) → ( 𝐼 < ( ( ♯ ‘ 𝑃 ) − 1 ) → 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) |
| 151 |
150
|
imp |
⊢ ( ( ( ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) ∧ ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) ∧ 2 < ( ♯ ‘ 𝑃 ) ) ∧ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 1 ) ) → 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) |
| 152 |
107 118 151
|
3jca |
⊢ ( ( ( ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) ∧ ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) ∧ 2 < ( ♯ ‘ 𝑃 ) ) ∧ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 1 ) ) → ( 𝐼 ∈ ℕ0 ∧ ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℕ ∧ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) |
| 153 |
152
|
ex |
⊢ ( ( ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) ∧ ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) ∧ 2 < ( ♯ ‘ 𝑃 ) ) → ( 𝐼 < ( ( ♯ ‘ 𝑃 ) − 1 ) → ( 𝐼 ∈ ℕ0 ∧ ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℕ ∧ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) |
| 154 |
153
|
exp41 |
⊢ ( 𝐼 ∈ ℕ0 → ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) → ( 2 < ( ♯ ‘ 𝑃 ) → ( 𝐼 < ( ( ♯ ‘ 𝑃 ) − 1 ) → ( 𝐼 ∈ ℕ0 ∧ ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℕ ∧ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) ) ) ) |
| 155 |
154
|
com25 |
⊢ ( 𝐼 ∈ ℕ0 → ( 𝐼 < ( ( ♯ ‘ 𝑃 ) − 1 ) → ( ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) → ( 2 < ( ♯ ‘ 𝑃 ) → ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( 𝐼 ∈ ℕ0 ∧ ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℕ ∧ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) ) ) ) |
| 156 |
155
|
imp |
⊢ ( ( 𝐼 ∈ ℕ0 ∧ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 1 ) ) → ( ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) → ( 2 < ( ♯ ‘ 𝑃 ) → ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( 𝐼 ∈ ℕ0 ∧ ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℕ ∧ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) ) ) |
| 157 |
156
|
3adant2 |
⊢ ( ( 𝐼 ∈ ℕ0 ∧ ( ( ♯ ‘ 𝑃 ) − 1 ) ∈ ℕ ∧ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 1 ) ) → ( ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) → ( 2 < ( ♯ ‘ 𝑃 ) → ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( 𝐼 ∈ ℕ0 ∧ ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℕ ∧ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) ) ) |
| 158 |
106 157
|
sylbi |
⊢ ( 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) → ( ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) → ( 2 < ( ♯ ‘ 𝑃 ) → ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( 𝐼 ∈ ℕ0 ∧ ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℕ ∧ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) ) ) |
| 159 |
158
|
imp |
⊢ ( ( 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ∧ ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) → ( 2 < ( ♯ ‘ 𝑃 ) → ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( 𝐼 ∈ ℕ0 ∧ ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℕ ∧ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) ) |
| 160 |
159
|
com13 |
⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( 2 < ( ♯ ‘ 𝑃 ) → ( ( 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ∧ ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) → ( 𝐼 ∈ ℕ0 ∧ ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℕ ∧ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) ) |
| 161 |
160
|
adantr |
⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( 2 < ( ♯ ‘ 𝑃 ) → ( ( 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ∧ ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) → ( 𝐼 ∈ ℕ0 ∧ ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℕ ∧ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) ) |
| 162 |
105 161
|
sylbird |
⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ( ♯ ‘ 𝑃 ) ≠ 2 → ( ( 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ∧ ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) → ( 𝐼 ∈ ℕ0 ∧ ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℕ ∧ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) ) |
| 163 |
99 162
|
biimtrrid |
⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ¬ ( ♯ ‘ 𝑃 ) = 2 → ( ( 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ∧ ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) → ( 𝐼 ∈ ℕ0 ∧ ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℕ ∧ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) ) |
| 164 |
163
|
com23 |
⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ( 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ∧ ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) → ( ¬ ( ♯ ‘ 𝑃 ) = 2 → ( 𝐼 ∈ ℕ0 ∧ ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℕ ∧ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) ) |
| 165 |
164
|
imp |
⊢ ( ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ∧ ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) → ( ¬ ( ♯ ‘ 𝑃 ) = 2 → ( 𝐼 ∈ ℕ0 ∧ ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℕ ∧ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) |
| 166 |
165
|
com12 |
⊢ ( ¬ ( ♯ ‘ 𝑃 ) = 2 → ( ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ∧ ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) → ( 𝐼 ∈ ℕ0 ∧ ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℕ ∧ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) |
| 167 |
98 166
|
pm2.61i |
⊢ ( ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ∧ ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) → ( 𝐼 ∈ ℕ0 ∧ ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℕ ∧ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) |
| 168 |
|
elfzo0 |
⊢ ( 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ↔ ( 𝐼 ∈ ℕ0 ∧ ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℕ ∧ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) |
| 169 |
167 168
|
sylibr |
⊢ ( ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ∧ ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) → 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) |
| 170 |
80 169
|
jca |
⊢ ( ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ∧ ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) → ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) |
| 171 |
170
|
exp31 |
⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( 2 ≤ ( ♯ ‘ 𝑃 ) → ( ( 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ∧ ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) → ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) ) ) |
| 172 |
3 171
|
syl |
⊢ ( 𝑃 ∈ Word 𝑉 → ( 2 ≤ ( ♯ ‘ 𝑃 ) → ( ( 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ∧ ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) → ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) ) ) |
| 173 |
172
|
imp |
⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ( 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ∧ ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) → ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) ) |
| 174 |
173
|
3adant1 |
⊢ ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ( 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ∧ ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) → ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) ) |
| 175 |
174
|
expd |
⊢ ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) → ( ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) → ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) ) ) |
| 176 |
175
|
com12 |
⊢ ( 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) → ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) → ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) ) ) |
| 177 |
176
|
adantl |
⊢ ( ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) → ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) → ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) ) ) |
| 178 |
177
|
impcom |
⊢ ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) → ( ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) → ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) ) |
| 179 |
178
|
adantr |
⊢ ( ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) ∧ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ∈ ran 𝐸 ) → ( ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) → ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) ) |
| 180 |
179
|
impcom |
⊢ ( ( ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ∧ ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) ∧ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ∈ ran 𝐸 ) ) → ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) |
| 181 |
1
|
clwlkclwwlklem2fv1 |
⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) → ( 𝐹 ‘ 𝐼 ) = ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ) ) |
| 182 |
180 181
|
syl |
⊢ ( ( ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ∧ ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) ∧ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ∈ ran 𝐸 ) ) → ( 𝐹 ‘ 𝐼 ) = ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ) ) |
| 183 |
182
|
fveq2d |
⊢ ( ( ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ∧ ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) ∧ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ∈ ran 𝐸 ) ) → ( 𝐸 ‘ ( 𝐹 ‘ 𝐼 ) ) = ( 𝐸 ‘ ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ) ) ) |
| 184 |
|
simprr |
⊢ ( ( ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ∧ ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) ∧ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ∈ ran 𝐸 ) ) → { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ∈ ran 𝐸 ) |
| 185 |
|
f1ocnvfv2 |
⊢ ( ( 𝐸 : dom 𝐸 –1-1-onto→ ran 𝐸 ∧ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ∈ ran 𝐸 ) → ( 𝐸 ‘ ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ) ) = { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ) |
| 186 |
14 184 185
|
syl2an2 |
⊢ ( ( ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ∧ ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) ∧ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ∈ ran 𝐸 ) ) → ( 𝐸 ‘ ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ) ) = { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ) |
| 187 |
183 186
|
eqtrd |
⊢ ( ( ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ∧ ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) ∧ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ∈ ran 𝐸 ) ) → ( 𝐸 ‘ ( 𝐹 ‘ 𝐼 ) ) = { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ) |
| 188 |
79 187
|
pm2.61ian |
⊢ ( ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) ∧ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ∈ ran 𝐸 ) → ( 𝐸 ‘ ( 𝐹 ‘ 𝐼 ) ) = { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ) |
| 189 |
188
|
exp31 |
⊢ ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) → ( { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ∈ ran 𝐸 → ( 𝐸 ‘ ( 𝐹 ‘ 𝐼 ) ) = { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ) ) ) |