| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dirkertrigeqlem3.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 2 |
|
dirkertrigeqlem3.k |
⊢ ( 𝜑 → 𝐾 ∈ ℤ ) |
| 3 |
|
dirkertrigeqlem3.a |
⊢ 𝐴 = ( ( ( 2 · 𝐾 ) + 1 ) · π ) |
| 4 |
3
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → 𝐴 = ( ( ( 2 · 𝐾 ) + 1 ) · π ) ) |
| 5 |
4
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑛 · 𝐴 ) = ( 𝑛 · ( ( ( 2 · 𝐾 ) + 1 ) · π ) ) ) |
| 6 |
|
elfzelz |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → 𝑛 ∈ ℤ ) |
| 7 |
6
|
zcnd |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → 𝑛 ∈ ℂ ) |
| 8 |
7
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → 𝑛 ∈ ℂ ) |
| 9 |
|
2cnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → 2 ∈ ℂ ) |
| 10 |
2
|
zcnd |
⊢ ( 𝜑 → 𝐾 ∈ ℂ ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → 𝐾 ∈ ℂ ) |
| 12 |
9 11
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 2 · 𝐾 ) ∈ ℂ ) |
| 13 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → 1 ∈ ℂ ) |
| 14 |
12 13
|
addcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 2 · 𝐾 ) + 1 ) ∈ ℂ ) |
| 15 |
|
picn |
⊢ π ∈ ℂ |
| 16 |
15
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → π ∈ ℂ ) |
| 17 |
14 16
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 2 · 𝐾 ) + 1 ) · π ) ∈ ℂ ) |
| 18 |
8 17
|
mulcomd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑛 · ( ( ( 2 · 𝐾 ) + 1 ) · π ) ) = ( ( ( ( 2 · 𝐾 ) + 1 ) · π ) · 𝑛 ) ) |
| 19 |
14 16 8
|
mulassd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( 2 · 𝐾 ) + 1 ) · π ) · 𝑛 ) = ( ( ( 2 · 𝐾 ) + 1 ) · ( π · 𝑛 ) ) ) |
| 20 |
16 8
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( π · 𝑛 ) ∈ ℂ ) |
| 21 |
12 13 20
|
adddird |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 2 · 𝐾 ) + 1 ) · ( π · 𝑛 ) ) = ( ( ( 2 · 𝐾 ) · ( π · 𝑛 ) ) + ( 1 · ( π · 𝑛 ) ) ) ) |
| 22 |
12 20
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 2 · 𝐾 ) · ( π · 𝑛 ) ) ∈ ℂ ) |
| 23 |
13 20
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 1 · ( π · 𝑛 ) ) ∈ ℂ ) |
| 24 |
22 23
|
addcomd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 2 · 𝐾 ) · ( π · 𝑛 ) ) + ( 1 · ( π · 𝑛 ) ) ) = ( ( 1 · ( π · 𝑛 ) ) + ( ( 2 · 𝐾 ) · ( π · 𝑛 ) ) ) ) |
| 25 |
15
|
a1i |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → π ∈ ℂ ) |
| 26 |
25 7
|
mulcld |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( π · 𝑛 ) ∈ ℂ ) |
| 27 |
26
|
mullidd |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( 1 · ( π · 𝑛 ) ) = ( π · 𝑛 ) ) |
| 28 |
27
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 1 · ( π · 𝑛 ) ) = ( π · 𝑛 ) ) |
| 29 |
9 11 16 8
|
mul4d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 2 · 𝐾 ) · ( π · 𝑛 ) ) = ( ( 2 · π ) · ( 𝐾 · 𝑛 ) ) ) |
| 30 |
9 16
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 2 · π ) ∈ ℂ ) |
| 31 |
11 8
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝐾 · 𝑛 ) ∈ ℂ ) |
| 32 |
30 31
|
mulcomd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 2 · π ) · ( 𝐾 · 𝑛 ) ) = ( ( 𝐾 · 𝑛 ) · ( 2 · π ) ) ) |
| 33 |
29 32
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 2 · 𝐾 ) · ( π · 𝑛 ) ) = ( ( 𝐾 · 𝑛 ) · ( 2 · π ) ) ) |
| 34 |
28 33
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 1 · ( π · 𝑛 ) ) + ( ( 2 · 𝐾 ) · ( π · 𝑛 ) ) ) = ( ( π · 𝑛 ) + ( ( 𝐾 · 𝑛 ) · ( 2 · π ) ) ) ) |
| 35 |
24 34
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 2 · 𝐾 ) · ( π · 𝑛 ) ) + ( 1 · ( π · 𝑛 ) ) ) = ( ( π · 𝑛 ) + ( ( 𝐾 · 𝑛 ) · ( 2 · π ) ) ) ) |
| 36 |
19 21 35
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( 2 · 𝐾 ) + 1 ) · π ) · 𝑛 ) = ( ( π · 𝑛 ) + ( ( 𝐾 · 𝑛 ) · ( 2 · π ) ) ) ) |
| 37 |
5 18 36
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑛 · 𝐴 ) = ( ( π · 𝑛 ) + ( ( 𝐾 · 𝑛 ) · ( 2 · π ) ) ) ) |
| 38 |
37
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( cos ‘ ( 𝑛 · 𝐴 ) ) = ( cos ‘ ( ( π · 𝑛 ) + ( ( 𝐾 · 𝑛 ) · ( 2 · π ) ) ) ) ) |
| 39 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → 𝐾 ∈ ℤ ) |
| 40 |
6
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → 𝑛 ∈ ℤ ) |
| 41 |
39 40
|
zmulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝐾 · 𝑛 ) ∈ ℤ ) |
| 42 |
|
cosper |
⊢ ( ( ( π · 𝑛 ) ∈ ℂ ∧ ( 𝐾 · 𝑛 ) ∈ ℤ ) → ( cos ‘ ( ( π · 𝑛 ) + ( ( 𝐾 · 𝑛 ) · ( 2 · π ) ) ) ) = ( cos ‘ ( π · 𝑛 ) ) ) |
| 43 |
20 41 42
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( cos ‘ ( ( π · 𝑛 ) + ( ( 𝐾 · 𝑛 ) · ( 2 · π ) ) ) ) = ( cos ‘ ( π · 𝑛 ) ) ) |
| 44 |
38 43
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( cos ‘ ( 𝑛 · 𝐴 ) ) = ( cos ‘ ( π · 𝑛 ) ) ) |
| 45 |
44
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( 𝑛 · 𝐴 ) ) = Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( π · 𝑛 ) ) ) |
| 46 |
45
|
oveq2d |
⊢ ( 𝜑 → ( ( 1 / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( 𝑛 · 𝐴 ) ) ) = ( ( 1 / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( π · 𝑛 ) ) ) ) |
| 47 |
46
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 1 / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( 𝑛 · 𝐴 ) ) ) / π ) = ( ( ( 1 / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( π · 𝑛 ) ) ) / π ) ) |
| 48 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → ( ( ( 1 / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( 𝑛 · 𝐴 ) ) ) / π ) = ( ( ( 1 / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( π · 𝑛 ) ) ) / π ) ) |
| 49 |
1
|
nncnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 50 |
|
2cnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
| 51 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 52 |
51
|
a1i |
⊢ ( 𝜑 → 2 ≠ 0 ) |
| 53 |
49 50 52
|
divcan2d |
⊢ ( 𝜑 → ( 2 · ( 𝑁 / 2 ) ) = 𝑁 ) |
| 54 |
53
|
eqcomd |
⊢ ( 𝜑 → 𝑁 = ( 2 · ( 𝑁 / 2 ) ) ) |
| 55 |
54
|
oveq2d |
⊢ ( 𝜑 → ( 1 ... 𝑁 ) = ( 1 ... ( 2 · ( 𝑁 / 2 ) ) ) ) |
| 56 |
55
|
sumeq1d |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( π · 𝑛 ) ) = Σ 𝑛 ∈ ( 1 ... ( 2 · ( 𝑁 / 2 ) ) ) ( cos ‘ ( π · 𝑛 ) ) ) |
| 57 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( π · 𝑛 ) ) = Σ 𝑛 ∈ ( 1 ... ( 2 · ( 𝑁 / 2 ) ) ) ( cos ‘ ( π · 𝑛 ) ) ) |
| 58 |
15
|
a1i |
⊢ ( 𝑛 ∈ ( 1 ... ( 2 · ( 𝑁 / 2 ) ) ) → π ∈ ℂ ) |
| 59 |
|
elfzelz |
⊢ ( 𝑛 ∈ ( 1 ... ( 2 · ( 𝑁 / 2 ) ) ) → 𝑛 ∈ ℤ ) |
| 60 |
59
|
zcnd |
⊢ ( 𝑛 ∈ ( 1 ... ( 2 · ( 𝑁 / 2 ) ) ) → 𝑛 ∈ ℂ ) |
| 61 |
58 60
|
mulcomd |
⊢ ( 𝑛 ∈ ( 1 ... ( 2 · ( 𝑁 / 2 ) ) ) → ( π · 𝑛 ) = ( 𝑛 · π ) ) |
| 62 |
61
|
fveq2d |
⊢ ( 𝑛 ∈ ( 1 ... ( 2 · ( 𝑁 / 2 ) ) ) → ( cos ‘ ( π · 𝑛 ) ) = ( cos ‘ ( 𝑛 · π ) ) ) |
| 63 |
62
|
rgen |
⊢ ∀ 𝑛 ∈ ( 1 ... ( 2 · ( 𝑁 / 2 ) ) ) ( cos ‘ ( π · 𝑛 ) ) = ( cos ‘ ( 𝑛 · π ) ) |
| 64 |
63
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → ∀ 𝑛 ∈ ( 1 ... ( 2 · ( 𝑁 / 2 ) ) ) ( cos ‘ ( π · 𝑛 ) ) = ( cos ‘ ( 𝑛 · π ) ) ) |
| 65 |
64
|
sumeq2d |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → Σ 𝑛 ∈ ( 1 ... ( 2 · ( 𝑁 / 2 ) ) ) ( cos ‘ ( π · 𝑛 ) ) = Σ 𝑛 ∈ ( 1 ... ( 2 · ( 𝑁 / 2 ) ) ) ( cos ‘ ( 𝑛 · π ) ) ) |
| 66 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → ( 𝑁 mod 2 ) = 0 ) |
| 67 |
1
|
nnred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 68 |
67
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → 𝑁 ∈ ℝ ) |
| 69 |
|
2rp |
⊢ 2 ∈ ℝ+ |
| 70 |
|
mod0 |
⊢ ( ( 𝑁 ∈ ℝ ∧ 2 ∈ ℝ+ ) → ( ( 𝑁 mod 2 ) = 0 ↔ ( 𝑁 / 2 ) ∈ ℤ ) ) |
| 71 |
68 69 70
|
sylancl |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → ( ( 𝑁 mod 2 ) = 0 ↔ ( 𝑁 / 2 ) ∈ ℤ ) ) |
| 72 |
66 71
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → ( 𝑁 / 2 ) ∈ ℤ ) |
| 73 |
|
2re |
⊢ 2 ∈ ℝ |
| 74 |
73
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
| 75 |
1
|
nngt0d |
⊢ ( 𝜑 → 0 < 𝑁 ) |
| 76 |
|
2pos |
⊢ 0 < 2 |
| 77 |
76
|
a1i |
⊢ ( 𝜑 → 0 < 2 ) |
| 78 |
67 74 75 77
|
divgt0d |
⊢ ( 𝜑 → 0 < ( 𝑁 / 2 ) ) |
| 79 |
78
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → 0 < ( 𝑁 / 2 ) ) |
| 80 |
|
elnnz |
⊢ ( ( 𝑁 / 2 ) ∈ ℕ ↔ ( ( 𝑁 / 2 ) ∈ ℤ ∧ 0 < ( 𝑁 / 2 ) ) ) |
| 81 |
72 79 80
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → ( 𝑁 / 2 ) ∈ ℕ ) |
| 82 |
|
dirkertrigeqlem1 |
⊢ ( ( 𝑁 / 2 ) ∈ ℕ → Σ 𝑛 ∈ ( 1 ... ( 2 · ( 𝑁 / 2 ) ) ) ( cos ‘ ( 𝑛 · π ) ) = 0 ) |
| 83 |
81 82
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → Σ 𝑛 ∈ ( 1 ... ( 2 · ( 𝑁 / 2 ) ) ) ( cos ‘ ( 𝑛 · π ) ) = 0 ) |
| 84 |
57 65 83
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( π · 𝑛 ) ) = 0 ) |
| 85 |
84
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → ( ( 1 / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( π · 𝑛 ) ) ) = ( ( 1 / 2 ) + 0 ) ) |
| 86 |
|
halfcn |
⊢ ( 1 / 2 ) ∈ ℂ |
| 87 |
86
|
addridi |
⊢ ( ( 1 / 2 ) + 0 ) = ( 1 / 2 ) |
| 88 |
85 87
|
eqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → ( ( 1 / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( π · 𝑛 ) ) ) = ( 1 / 2 ) ) |
| 89 |
88
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → ( ( ( 1 / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( π · 𝑛 ) ) ) / π ) = ( ( 1 / 2 ) / π ) ) |
| 90 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 91 |
|
2cnne0 |
⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) |
| 92 |
|
pire |
⊢ π ∈ ℝ |
| 93 |
|
pipos |
⊢ 0 < π |
| 94 |
92 93
|
gt0ne0ii |
⊢ π ≠ 0 |
| 95 |
15 94
|
pm3.2i |
⊢ ( π ∈ ℂ ∧ π ≠ 0 ) |
| 96 |
|
divdiv1 |
⊢ ( ( 1 ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ∧ ( π ∈ ℂ ∧ π ≠ 0 ) ) → ( ( 1 / 2 ) / π ) = ( 1 / ( 2 · π ) ) ) |
| 97 |
90 91 95 96
|
mp3an |
⊢ ( ( 1 / 2 ) / π ) = ( 1 / ( 2 · π ) ) |
| 98 |
97
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → ( ( 1 / 2 ) / π ) = ( 1 / ( 2 · π ) ) ) |
| 99 |
48 89 98
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → ( ( ( 1 / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( 𝑛 · 𝐴 ) ) ) / π ) = ( 1 / ( 2 · π ) ) ) |
| 100 |
3
|
oveq2i |
⊢ ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) = ( ( 𝑁 + ( 1 / 2 ) ) · ( ( ( 2 · 𝐾 ) + 1 ) · π ) ) |
| 101 |
100
|
a1i |
⊢ ( 𝜑 → ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) = ( ( 𝑁 + ( 1 / 2 ) ) · ( ( ( 2 · 𝐾 ) + 1 ) · π ) ) ) |
| 102 |
86
|
a1i |
⊢ ( 𝜑 → ( 1 / 2 ) ∈ ℂ ) |
| 103 |
49 102
|
addcld |
⊢ ( 𝜑 → ( 𝑁 + ( 1 / 2 ) ) ∈ ℂ ) |
| 104 |
50 10
|
mulcld |
⊢ ( 𝜑 → ( 2 · 𝐾 ) ∈ ℂ ) |
| 105 |
|
peano2cn |
⊢ ( ( 2 · 𝐾 ) ∈ ℂ → ( ( 2 · 𝐾 ) + 1 ) ∈ ℂ ) |
| 106 |
104 105
|
syl |
⊢ ( 𝜑 → ( ( 2 · 𝐾 ) + 1 ) ∈ ℂ ) |
| 107 |
15
|
a1i |
⊢ ( 𝜑 → π ∈ ℂ ) |
| 108 |
103 106 107
|
mulassd |
⊢ ( 𝜑 → ( ( ( 𝑁 + ( 1 / 2 ) ) · ( ( 2 · 𝐾 ) + 1 ) ) · π ) = ( ( 𝑁 + ( 1 / 2 ) ) · ( ( ( 2 · 𝐾 ) + 1 ) · π ) ) ) |
| 109 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 110 |
49 102 104 109
|
muladdd |
⊢ ( 𝜑 → ( ( 𝑁 + ( 1 / 2 ) ) · ( ( 2 · 𝐾 ) + 1 ) ) = ( ( ( 𝑁 · ( 2 · 𝐾 ) ) + ( 1 · ( 1 / 2 ) ) ) + ( ( 𝑁 · 1 ) + ( ( 2 · 𝐾 ) · ( 1 / 2 ) ) ) ) ) |
| 111 |
49 50 10
|
mul12d |
⊢ ( 𝜑 → ( 𝑁 · ( 2 · 𝐾 ) ) = ( 2 · ( 𝑁 · 𝐾 ) ) ) |
| 112 |
102
|
mullidd |
⊢ ( 𝜑 → ( 1 · ( 1 / 2 ) ) = ( 1 / 2 ) ) |
| 113 |
111 112
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝑁 · ( 2 · 𝐾 ) ) + ( 1 · ( 1 / 2 ) ) ) = ( ( 2 · ( 𝑁 · 𝐾 ) ) + ( 1 / 2 ) ) ) |
| 114 |
49
|
mulridd |
⊢ ( 𝜑 → ( 𝑁 · 1 ) = 𝑁 ) |
| 115 |
50 10
|
mulcomd |
⊢ ( 𝜑 → ( 2 · 𝐾 ) = ( 𝐾 · 2 ) ) |
| 116 |
115
|
oveq1d |
⊢ ( 𝜑 → ( ( 2 · 𝐾 ) · ( 1 / 2 ) ) = ( ( 𝐾 · 2 ) · ( 1 / 2 ) ) ) |
| 117 |
10 50 102
|
mulassd |
⊢ ( 𝜑 → ( ( 𝐾 · 2 ) · ( 1 / 2 ) ) = ( 𝐾 · ( 2 · ( 1 / 2 ) ) ) ) |
| 118 |
|
2cn |
⊢ 2 ∈ ℂ |
| 119 |
118 51
|
recidi |
⊢ ( 2 · ( 1 / 2 ) ) = 1 |
| 120 |
119
|
oveq2i |
⊢ ( 𝐾 · ( 2 · ( 1 / 2 ) ) ) = ( 𝐾 · 1 ) |
| 121 |
10
|
mulridd |
⊢ ( 𝜑 → ( 𝐾 · 1 ) = 𝐾 ) |
| 122 |
120 121
|
eqtrid |
⊢ ( 𝜑 → ( 𝐾 · ( 2 · ( 1 / 2 ) ) ) = 𝐾 ) |
| 123 |
116 117 122
|
3eqtrd |
⊢ ( 𝜑 → ( ( 2 · 𝐾 ) · ( 1 / 2 ) ) = 𝐾 ) |
| 124 |
114 123
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝑁 · 1 ) + ( ( 2 · 𝐾 ) · ( 1 / 2 ) ) ) = ( 𝑁 + 𝐾 ) ) |
| 125 |
113 124
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝑁 · ( 2 · 𝐾 ) ) + ( 1 · ( 1 / 2 ) ) ) + ( ( 𝑁 · 1 ) + ( ( 2 · 𝐾 ) · ( 1 / 2 ) ) ) ) = ( ( ( 2 · ( 𝑁 · 𝐾 ) ) + ( 1 / 2 ) ) + ( 𝑁 + 𝐾 ) ) ) |
| 126 |
49 10
|
mulcld |
⊢ ( 𝜑 → ( 𝑁 · 𝐾 ) ∈ ℂ ) |
| 127 |
50 126
|
mulcld |
⊢ ( 𝜑 → ( 2 · ( 𝑁 · 𝐾 ) ) ∈ ℂ ) |
| 128 |
49 10
|
addcld |
⊢ ( 𝜑 → ( 𝑁 + 𝐾 ) ∈ ℂ ) |
| 129 |
127 102 128
|
addassd |
⊢ ( 𝜑 → ( ( ( 2 · ( 𝑁 · 𝐾 ) ) + ( 1 / 2 ) ) + ( 𝑁 + 𝐾 ) ) = ( ( 2 · ( 𝑁 · 𝐾 ) ) + ( ( 1 / 2 ) + ( 𝑁 + 𝐾 ) ) ) ) |
| 130 |
110 125 129
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑁 + ( 1 / 2 ) ) · ( ( 2 · 𝐾 ) + 1 ) ) = ( ( 2 · ( 𝑁 · 𝐾 ) ) + ( ( 1 / 2 ) + ( 𝑁 + 𝐾 ) ) ) ) |
| 131 |
102 128
|
addcld |
⊢ ( 𝜑 → ( ( 1 / 2 ) + ( 𝑁 + 𝐾 ) ) ∈ ℂ ) |
| 132 |
127 131
|
addcomd |
⊢ ( 𝜑 → ( ( 2 · ( 𝑁 · 𝐾 ) ) + ( ( 1 / 2 ) + ( 𝑁 + 𝐾 ) ) ) = ( ( ( 1 / 2 ) + ( 𝑁 + 𝐾 ) ) + ( 2 · ( 𝑁 · 𝐾 ) ) ) ) |
| 133 |
50 126
|
mulcomd |
⊢ ( 𝜑 → ( 2 · ( 𝑁 · 𝐾 ) ) = ( ( 𝑁 · 𝐾 ) · 2 ) ) |
| 134 |
133
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 1 / 2 ) + ( 𝑁 + 𝐾 ) ) + ( 2 · ( 𝑁 · 𝐾 ) ) ) = ( ( ( 1 / 2 ) + ( 𝑁 + 𝐾 ) ) + ( ( 𝑁 · 𝐾 ) · 2 ) ) ) |
| 135 |
130 132 134
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑁 + ( 1 / 2 ) ) · ( ( 2 · 𝐾 ) + 1 ) ) = ( ( ( 1 / 2 ) + ( 𝑁 + 𝐾 ) ) + ( ( 𝑁 · 𝐾 ) · 2 ) ) ) |
| 136 |
135
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑁 + ( 1 / 2 ) ) · ( ( 2 · 𝐾 ) + 1 ) ) · π ) = ( ( ( ( 1 / 2 ) + ( 𝑁 + 𝐾 ) ) + ( ( 𝑁 · 𝐾 ) · 2 ) ) · π ) ) |
| 137 |
126 50
|
mulcld |
⊢ ( 𝜑 → ( ( 𝑁 · 𝐾 ) · 2 ) ∈ ℂ ) |
| 138 |
131 137 107
|
adddird |
⊢ ( 𝜑 → ( ( ( ( 1 / 2 ) + ( 𝑁 + 𝐾 ) ) + ( ( 𝑁 · 𝐾 ) · 2 ) ) · π ) = ( ( ( ( 1 / 2 ) + ( 𝑁 + 𝐾 ) ) · π ) + ( ( ( 𝑁 · 𝐾 ) · 2 ) · π ) ) ) |
| 139 |
126 50 107
|
mulassd |
⊢ ( 𝜑 → ( ( ( 𝑁 · 𝐾 ) · 2 ) · π ) = ( ( 𝑁 · 𝐾 ) · ( 2 · π ) ) ) |
| 140 |
139
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ( 1 / 2 ) + ( 𝑁 + 𝐾 ) ) · π ) + ( ( ( 𝑁 · 𝐾 ) · 2 ) · π ) ) = ( ( ( ( 1 / 2 ) + ( 𝑁 + 𝐾 ) ) · π ) + ( ( 𝑁 · 𝐾 ) · ( 2 · π ) ) ) ) |
| 141 |
136 138 140
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( 𝑁 + ( 1 / 2 ) ) · ( ( 2 · 𝐾 ) + 1 ) ) · π ) = ( ( ( ( 1 / 2 ) + ( 𝑁 + 𝐾 ) ) · π ) + ( ( 𝑁 · 𝐾 ) · ( 2 · π ) ) ) ) |
| 142 |
101 108 141
|
3eqtr2d |
⊢ ( 𝜑 → ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) = ( ( ( ( 1 / 2 ) + ( 𝑁 + 𝐾 ) ) · π ) + ( ( 𝑁 · 𝐾 ) · ( 2 · π ) ) ) ) |
| 143 |
142
|
fveq2d |
⊢ ( 𝜑 → ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) ) = ( sin ‘ ( ( ( ( 1 / 2 ) + ( 𝑁 + 𝐾 ) ) · π ) + ( ( 𝑁 · 𝐾 ) · ( 2 · π ) ) ) ) ) |
| 144 |
131 107
|
mulcld |
⊢ ( 𝜑 → ( ( ( 1 / 2 ) + ( 𝑁 + 𝐾 ) ) · π ) ∈ ℂ ) |
| 145 |
1
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 146 |
145 2
|
zmulcld |
⊢ ( 𝜑 → ( 𝑁 · 𝐾 ) ∈ ℤ ) |
| 147 |
|
sinper |
⊢ ( ( ( ( ( 1 / 2 ) + ( 𝑁 + 𝐾 ) ) · π ) ∈ ℂ ∧ ( 𝑁 · 𝐾 ) ∈ ℤ ) → ( sin ‘ ( ( ( ( 1 / 2 ) + ( 𝑁 + 𝐾 ) ) · π ) + ( ( 𝑁 · 𝐾 ) · ( 2 · π ) ) ) ) = ( sin ‘ ( ( ( 1 / 2 ) + ( 𝑁 + 𝐾 ) ) · π ) ) ) |
| 148 |
144 146 147
|
syl2anc |
⊢ ( 𝜑 → ( sin ‘ ( ( ( ( 1 / 2 ) + ( 𝑁 + 𝐾 ) ) · π ) + ( ( 𝑁 · 𝐾 ) · ( 2 · π ) ) ) ) = ( sin ‘ ( ( ( 1 / 2 ) + ( 𝑁 + 𝐾 ) ) · π ) ) ) |
| 149 |
102 128
|
addcomd |
⊢ ( 𝜑 → ( ( 1 / 2 ) + ( 𝑁 + 𝐾 ) ) = ( ( 𝑁 + 𝐾 ) + ( 1 / 2 ) ) ) |
| 150 |
49 10 102
|
addassd |
⊢ ( 𝜑 → ( ( 𝑁 + 𝐾 ) + ( 1 / 2 ) ) = ( 𝑁 + ( 𝐾 + ( 1 / 2 ) ) ) ) |
| 151 |
10 102
|
addcld |
⊢ ( 𝜑 → ( 𝐾 + ( 1 / 2 ) ) ∈ ℂ ) |
| 152 |
49 151
|
addcomd |
⊢ ( 𝜑 → ( 𝑁 + ( 𝐾 + ( 1 / 2 ) ) ) = ( ( 𝐾 + ( 1 / 2 ) ) + 𝑁 ) ) |
| 153 |
149 150 152
|
3eqtrd |
⊢ ( 𝜑 → ( ( 1 / 2 ) + ( 𝑁 + 𝐾 ) ) = ( ( 𝐾 + ( 1 / 2 ) ) + 𝑁 ) ) |
| 154 |
153
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 1 / 2 ) + ( 𝑁 + 𝐾 ) ) · π ) = ( ( ( 𝐾 + ( 1 / 2 ) ) + 𝑁 ) · π ) ) |
| 155 |
154
|
fveq2d |
⊢ ( 𝜑 → ( sin ‘ ( ( ( 1 / 2 ) + ( 𝑁 + 𝐾 ) ) · π ) ) = ( sin ‘ ( ( ( 𝐾 + ( 1 / 2 ) ) + 𝑁 ) · π ) ) ) |
| 156 |
143 148 155
|
3eqtrd |
⊢ ( 𝜑 → ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) ) = ( sin ‘ ( ( ( 𝐾 + ( 1 / 2 ) ) + 𝑁 ) · π ) ) ) |
| 157 |
3
|
a1i |
⊢ ( 𝜑 → 𝐴 = ( ( ( 2 · 𝐾 ) + 1 ) · π ) ) |
| 158 |
157
|
oveq1d |
⊢ ( 𝜑 → ( 𝐴 / 2 ) = ( ( ( ( 2 · 𝐾 ) + 1 ) · π ) / 2 ) ) |
| 159 |
106 107 50 52
|
div23d |
⊢ ( 𝜑 → ( ( ( ( 2 · 𝐾 ) + 1 ) · π ) / 2 ) = ( ( ( ( 2 · 𝐾 ) + 1 ) / 2 ) · π ) ) |
| 160 |
104 109 50 52
|
divdird |
⊢ ( 𝜑 → ( ( ( 2 · 𝐾 ) + 1 ) / 2 ) = ( ( ( 2 · 𝐾 ) / 2 ) + ( 1 / 2 ) ) ) |
| 161 |
10 50 52
|
divcan3d |
⊢ ( 𝜑 → ( ( 2 · 𝐾 ) / 2 ) = 𝐾 ) |
| 162 |
161
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 2 · 𝐾 ) / 2 ) + ( 1 / 2 ) ) = ( 𝐾 + ( 1 / 2 ) ) ) |
| 163 |
160 162
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 2 · 𝐾 ) + 1 ) / 2 ) = ( 𝐾 + ( 1 / 2 ) ) ) |
| 164 |
163
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 2 · 𝐾 ) + 1 ) / 2 ) · π ) = ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) |
| 165 |
158 159 164
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐴 / 2 ) = ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) |
| 166 |
165
|
fveq2d |
⊢ ( 𝜑 → ( sin ‘ ( 𝐴 / 2 ) ) = ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) |
| 167 |
166
|
oveq2d |
⊢ ( 𝜑 → ( ( 2 · π ) · ( sin ‘ ( 𝐴 / 2 ) ) ) = ( ( 2 · π ) · ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) ) |
| 168 |
156 167
|
oveq12d |
⊢ ( 𝜑 → ( ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝐴 / 2 ) ) ) ) = ( ( sin ‘ ( ( ( 𝐾 + ( 1 / 2 ) ) + 𝑁 ) · π ) ) / ( ( 2 · π ) · ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) ) ) |
| 169 |
168
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → ( ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝐴 / 2 ) ) ) ) = ( ( sin ‘ ( ( ( 𝐾 + ( 1 / 2 ) ) + 𝑁 ) · π ) ) / ( ( 2 · π ) · ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) ) ) |
| 170 |
151 49 107
|
adddird |
⊢ ( 𝜑 → ( ( ( 𝐾 + ( 1 / 2 ) ) + 𝑁 ) · π ) = ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + ( 𝑁 · π ) ) ) |
| 171 |
170
|
fveq2d |
⊢ ( 𝜑 → ( sin ‘ ( ( ( 𝐾 + ( 1 / 2 ) ) + 𝑁 ) · π ) ) = ( sin ‘ ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + ( 𝑁 · π ) ) ) ) |
| 172 |
171
|
oveq1d |
⊢ ( 𝜑 → ( ( sin ‘ ( ( ( 𝐾 + ( 1 / 2 ) ) + 𝑁 ) · π ) ) / ( ( 2 · π ) · ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) ) = ( ( sin ‘ ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + ( 𝑁 · π ) ) ) / ( ( 2 · π ) · ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) ) ) |
| 173 |
172
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → ( ( sin ‘ ( ( ( 𝐾 + ( 1 / 2 ) ) + 𝑁 ) · π ) ) / ( ( 2 · π ) · ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) ) = ( ( sin ‘ ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + ( 𝑁 · π ) ) ) / ( ( 2 · π ) · ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) ) ) |
| 174 |
49
|
halfcld |
⊢ ( 𝜑 → ( 𝑁 / 2 ) ∈ ℂ ) |
| 175 |
50 174
|
mulcomd |
⊢ ( 𝜑 → ( 2 · ( 𝑁 / 2 ) ) = ( ( 𝑁 / 2 ) · 2 ) ) |
| 176 |
53 175
|
eqtr3d |
⊢ ( 𝜑 → 𝑁 = ( ( 𝑁 / 2 ) · 2 ) ) |
| 177 |
176
|
oveq1d |
⊢ ( 𝜑 → ( 𝑁 · π ) = ( ( ( 𝑁 / 2 ) · 2 ) · π ) ) |
| 178 |
174 50 107
|
mulassd |
⊢ ( 𝜑 → ( ( ( 𝑁 / 2 ) · 2 ) · π ) = ( ( 𝑁 / 2 ) · ( 2 · π ) ) ) |
| 179 |
177 178
|
eqtrd |
⊢ ( 𝜑 → ( 𝑁 · π ) = ( ( 𝑁 / 2 ) · ( 2 · π ) ) ) |
| 180 |
179
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + ( 𝑁 · π ) ) = ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + ( ( 𝑁 / 2 ) · ( 2 · π ) ) ) ) |
| 181 |
180
|
fveq2d |
⊢ ( 𝜑 → ( sin ‘ ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + ( 𝑁 · π ) ) ) = ( sin ‘ ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + ( ( 𝑁 / 2 ) · ( 2 · π ) ) ) ) ) |
| 182 |
181
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → ( sin ‘ ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + ( 𝑁 · π ) ) ) = ( sin ‘ ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + ( ( 𝑁 / 2 ) · ( 2 · π ) ) ) ) ) |
| 183 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → 𝐾 ∈ ℂ ) |
| 184 |
|
1cnd |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → 1 ∈ ℂ ) |
| 185 |
184
|
halfcld |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → ( 1 / 2 ) ∈ ℂ ) |
| 186 |
183 185
|
addcld |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → ( 𝐾 + ( 1 / 2 ) ) ∈ ℂ ) |
| 187 |
15
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → π ∈ ℂ ) |
| 188 |
186 187
|
mulcld |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → ( ( 𝐾 + ( 1 / 2 ) ) · π ) ∈ ℂ ) |
| 189 |
|
sinper |
⊢ ( ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) ∈ ℂ ∧ ( 𝑁 / 2 ) ∈ ℤ ) → ( sin ‘ ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + ( ( 𝑁 / 2 ) · ( 2 · π ) ) ) ) = ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) |
| 190 |
188 72 189
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → ( sin ‘ ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + ( ( 𝑁 / 2 ) · ( 2 · π ) ) ) ) = ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) |
| 191 |
182 190
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → ( sin ‘ ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + ( 𝑁 · π ) ) ) = ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) |
| 192 |
50 107
|
mulcld |
⊢ ( 𝜑 → ( 2 · π ) ∈ ℂ ) |
| 193 |
151 107
|
mulcld |
⊢ ( 𝜑 → ( ( 𝐾 + ( 1 / 2 ) ) · π ) ∈ ℂ ) |
| 194 |
193
|
sincld |
⊢ ( 𝜑 → ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ∈ ℂ ) |
| 195 |
192 194
|
mulcomd |
⊢ ( 𝜑 → ( ( 2 · π ) · ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) = ( ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) · ( 2 · π ) ) ) |
| 196 |
195
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → ( ( 2 · π ) · ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) = ( ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) · ( 2 · π ) ) ) |
| 197 |
191 196
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → ( ( sin ‘ ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + ( 𝑁 · π ) ) ) / ( ( 2 · π ) · ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) ) = ( ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) / ( ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) · ( 2 · π ) ) ) ) |
| 198 |
94
|
a1i |
⊢ ( 𝜑 → π ≠ 0 ) |
| 199 |
151 107 198
|
divcan4d |
⊢ ( 𝜑 → ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) / π ) = ( 𝐾 + ( 1 / 2 ) ) ) |
| 200 |
2
|
zred |
⊢ ( 𝜑 → 𝐾 ∈ ℝ ) |
| 201 |
69
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ+ ) |
| 202 |
201
|
rpreccld |
⊢ ( 𝜑 → ( 1 / 2 ) ∈ ℝ+ ) |
| 203 |
200 202
|
ltaddrpd |
⊢ ( 𝜑 → 𝐾 < ( 𝐾 + ( 1 / 2 ) ) ) |
| 204 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 205 |
204
|
rehalfcld |
⊢ ( 𝜑 → ( 1 / 2 ) ∈ ℝ ) |
| 206 |
|
halflt1 |
⊢ ( 1 / 2 ) < 1 |
| 207 |
206
|
a1i |
⊢ ( 𝜑 → ( 1 / 2 ) < 1 ) |
| 208 |
205 204 200 207
|
ltadd2dd |
⊢ ( 𝜑 → ( 𝐾 + ( 1 / 2 ) ) < ( 𝐾 + 1 ) ) |
| 209 |
|
btwnnz |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝐾 < ( 𝐾 + ( 1 / 2 ) ) ∧ ( 𝐾 + ( 1 / 2 ) ) < ( 𝐾 + 1 ) ) → ¬ ( 𝐾 + ( 1 / 2 ) ) ∈ ℤ ) |
| 210 |
2 203 208 209
|
syl3anc |
⊢ ( 𝜑 → ¬ ( 𝐾 + ( 1 / 2 ) ) ∈ ℤ ) |
| 211 |
199 210
|
eqneltrd |
⊢ ( 𝜑 → ¬ ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) / π ) ∈ ℤ ) |
| 212 |
|
sineq0 |
⊢ ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) ∈ ℂ → ( ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) = 0 ↔ ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) / π ) ∈ ℤ ) ) |
| 213 |
193 212
|
syl |
⊢ ( 𝜑 → ( ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) = 0 ↔ ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) / π ) ∈ ℤ ) ) |
| 214 |
211 213
|
mtbird |
⊢ ( 𝜑 → ¬ ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) = 0 ) |
| 215 |
214
|
neqned |
⊢ ( 𝜑 → ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ≠ 0 ) |
| 216 |
50 107 52 198
|
mulne0d |
⊢ ( 𝜑 → ( 2 · π ) ≠ 0 ) |
| 217 |
194 194 192 215 216
|
divdiv1d |
⊢ ( 𝜑 → ( ( ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) / ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) / ( 2 · π ) ) = ( ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) / ( ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) · ( 2 · π ) ) ) ) |
| 218 |
194 215
|
dividd |
⊢ ( 𝜑 → ( ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) / ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) = 1 ) |
| 219 |
218
|
oveq1d |
⊢ ( 𝜑 → ( ( ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) / ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) / ( 2 · π ) ) = ( 1 / ( 2 · π ) ) ) |
| 220 |
217 219
|
eqtr3d |
⊢ ( 𝜑 → ( ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) / ( ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) · ( 2 · π ) ) ) = ( 1 / ( 2 · π ) ) ) |
| 221 |
220
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → ( ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) / ( ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) · ( 2 · π ) ) ) = ( 1 / ( 2 · π ) ) ) |
| 222 |
197 221
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → ( ( sin ‘ ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + ( 𝑁 · π ) ) ) / ( ( 2 · π ) · ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) ) = ( 1 / ( 2 · π ) ) ) |
| 223 |
169 173 222
|
3eqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → ( 1 / ( 2 · π ) ) = ( ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝐴 / 2 ) ) ) ) ) |
| 224 |
99 223
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → ( ( ( 1 / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( 𝑛 · 𝐴 ) ) ) / π ) = ( ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝐴 / 2 ) ) ) ) ) |
| 225 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 mod 2 ) = 0 ) → ( ( ( 1 / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( 𝑛 · 𝐴 ) ) ) / π ) = ( ( ( 1 / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( π · 𝑛 ) ) ) / π ) ) |
| 226 |
145
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 mod 2 ) = 0 ) → 𝑁 ∈ ℤ ) |
| 227 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 mod 2 ) = 0 ) → ¬ ( 𝑁 mod 2 ) = 0 ) |
| 228 |
227
|
neqned |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 mod 2 ) = 0 ) → ( 𝑁 mod 2 ) ≠ 0 ) |
| 229 |
|
oddfl |
⊢ ( ( 𝑁 ∈ ℤ ∧ ( 𝑁 mod 2 ) ≠ 0 ) → 𝑁 = ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) ) |
| 230 |
226 228 229
|
syl2anc |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 mod 2 ) = 0 ) → 𝑁 = ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) ) |
| 231 |
230
|
oveq2d |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 mod 2 ) = 0 ) → ( 1 ... 𝑁 ) = ( 1 ... ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) ) ) |
| 232 |
231
|
sumeq1d |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 mod 2 ) = 0 ) → Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( π · 𝑛 ) ) = Σ 𝑛 ∈ ( 1 ... ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) ) ( cos ‘ ( π · 𝑛 ) ) ) |
| 233 |
|
fvoveq1 |
⊢ ( 𝑁 = 1 → ( ⌊ ‘ ( 𝑁 / 2 ) ) = ( ⌊ ‘ ( 1 / 2 ) ) ) |
| 234 |
|
halffl |
⊢ ( ⌊ ‘ ( 1 / 2 ) ) = 0 |
| 235 |
233 234
|
eqtrdi |
⊢ ( 𝑁 = 1 → ( ⌊ ‘ ( 𝑁 / 2 ) ) = 0 ) |
| 236 |
235
|
oveq2d |
⊢ ( 𝑁 = 1 → ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) = ( 2 · 0 ) ) |
| 237 |
|
2t0e0 |
⊢ ( 2 · 0 ) = 0 |
| 238 |
236 237
|
eqtrdi |
⊢ ( 𝑁 = 1 → ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) = 0 ) |
| 239 |
238
|
oveq1d |
⊢ ( 𝑁 = 1 → ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) = ( 0 + 1 ) ) |
| 240 |
90
|
addlidi |
⊢ ( 0 + 1 ) = 1 |
| 241 |
239 240
|
eqtrdi |
⊢ ( 𝑁 = 1 → ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) = 1 ) |
| 242 |
241
|
oveq2d |
⊢ ( 𝑁 = 1 → ( 1 ... ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) ) = ( 1 ... 1 ) ) |
| 243 |
242
|
sumeq1d |
⊢ ( 𝑁 = 1 → Σ 𝑛 ∈ ( 1 ... ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) ) ( cos ‘ ( π · 𝑛 ) ) = Σ 𝑛 ∈ ( 1 ... 1 ) ( cos ‘ ( π · 𝑛 ) ) ) |
| 244 |
|
1z |
⊢ 1 ∈ ℤ |
| 245 |
|
coscl |
⊢ ( π ∈ ℂ → ( cos ‘ π ) ∈ ℂ ) |
| 246 |
15 245
|
ax-mp |
⊢ ( cos ‘ π ) ∈ ℂ |
| 247 |
|
oveq2 |
⊢ ( 𝑛 = 1 → ( π · 𝑛 ) = ( π · 1 ) ) |
| 248 |
15
|
mulridi |
⊢ ( π · 1 ) = π |
| 249 |
247 248
|
eqtrdi |
⊢ ( 𝑛 = 1 → ( π · 𝑛 ) = π ) |
| 250 |
249
|
fveq2d |
⊢ ( 𝑛 = 1 → ( cos ‘ ( π · 𝑛 ) ) = ( cos ‘ π ) ) |
| 251 |
250
|
fsum1 |
⊢ ( ( 1 ∈ ℤ ∧ ( cos ‘ π ) ∈ ℂ ) → Σ 𝑛 ∈ ( 1 ... 1 ) ( cos ‘ ( π · 𝑛 ) ) = ( cos ‘ π ) ) |
| 252 |
244 246 251
|
mp2an |
⊢ Σ 𝑛 ∈ ( 1 ... 1 ) ( cos ‘ ( π · 𝑛 ) ) = ( cos ‘ π ) |
| 253 |
252
|
a1i |
⊢ ( 𝑁 = 1 → Σ 𝑛 ∈ ( 1 ... 1 ) ( cos ‘ ( π · 𝑛 ) ) = ( cos ‘ π ) ) |
| 254 |
|
cospi |
⊢ ( cos ‘ π ) = - 1 |
| 255 |
254
|
a1i |
⊢ ( 𝑁 = 1 → ( cos ‘ π ) = - 1 ) |
| 256 |
243 253 255
|
3eqtrd |
⊢ ( 𝑁 = 1 → Σ 𝑛 ∈ ( 1 ... ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) ) ( cos ‘ ( π · 𝑛 ) ) = - 1 ) |
| 257 |
256
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑁 = 1 ) → Σ 𝑛 ∈ ( 1 ... ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) ) ( cos ‘ ( π · 𝑛 ) ) = - 1 ) |
| 258 |
|
2nn |
⊢ 2 ∈ ℕ |
| 259 |
258
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 = 1 ) → 2 ∈ ℕ ) |
| 260 |
67
|
rehalfcld |
⊢ ( 𝜑 → ( 𝑁 / 2 ) ∈ ℝ ) |
| 261 |
260
|
flcld |
⊢ ( 𝜑 → ( ⌊ ‘ ( 𝑁 / 2 ) ) ∈ ℤ ) |
| 262 |
261
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 = 1 ) → ( ⌊ ‘ ( 𝑁 / 2 ) ) ∈ ℤ ) |
| 263 |
|
2div2e1 |
⊢ ( 2 / 2 ) = 1 |
| 264 |
73
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 = 1 ) → 2 ∈ ℝ ) |
| 265 |
67
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 = 1 ) → 𝑁 ∈ ℝ ) |
| 266 |
69
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 = 1 ) → 2 ∈ ℝ+ ) |
| 267 |
|
neqne |
⊢ ( ¬ 𝑁 = 1 → 𝑁 ≠ 1 ) |
| 268 |
|
nnne1ge2 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑁 ≠ 1 ) → 2 ≤ 𝑁 ) |
| 269 |
1 267 268
|
syl2an |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 = 1 ) → 2 ≤ 𝑁 ) |
| 270 |
264 265 266 269
|
lediv1dd |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 = 1 ) → ( 2 / 2 ) ≤ ( 𝑁 / 2 ) ) |
| 271 |
263 270
|
eqbrtrrid |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 = 1 ) → 1 ≤ ( 𝑁 / 2 ) ) |
| 272 |
260
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 = 1 ) → ( 𝑁 / 2 ) ∈ ℝ ) |
| 273 |
|
flge |
⊢ ( ( ( 𝑁 / 2 ) ∈ ℝ ∧ 1 ∈ ℤ ) → ( 1 ≤ ( 𝑁 / 2 ) ↔ 1 ≤ ( ⌊ ‘ ( 𝑁 / 2 ) ) ) ) |
| 274 |
272 244 273
|
sylancl |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 = 1 ) → ( 1 ≤ ( 𝑁 / 2 ) ↔ 1 ≤ ( ⌊ ‘ ( 𝑁 / 2 ) ) ) ) |
| 275 |
271 274
|
mpbid |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 = 1 ) → 1 ≤ ( ⌊ ‘ ( 𝑁 / 2 ) ) ) |
| 276 |
|
elnnz1 |
⊢ ( ( ⌊ ‘ ( 𝑁 / 2 ) ) ∈ ℕ ↔ ( ( ⌊ ‘ ( 𝑁 / 2 ) ) ∈ ℤ ∧ 1 ≤ ( ⌊ ‘ ( 𝑁 / 2 ) ) ) ) |
| 277 |
262 275 276
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 = 1 ) → ( ⌊ ‘ ( 𝑁 / 2 ) ) ∈ ℕ ) |
| 278 |
259 277
|
nnmulcld |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 = 1 ) → ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) ∈ ℕ ) |
| 279 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 280 |
278 279
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 = 1 ) → ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 281 |
15
|
a1i |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑁 = 1 ) ∧ 𝑛 ∈ ( 1 ... ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) ) ) → π ∈ ℂ ) |
| 282 |
|
elfzelz |
⊢ ( 𝑛 ∈ ( 1 ... ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) ) → 𝑛 ∈ ℤ ) |
| 283 |
282
|
zcnd |
⊢ ( 𝑛 ∈ ( 1 ... ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) ) → 𝑛 ∈ ℂ ) |
| 284 |
283
|
adantl |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑁 = 1 ) ∧ 𝑛 ∈ ( 1 ... ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) ) ) → 𝑛 ∈ ℂ ) |
| 285 |
281 284
|
mulcld |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑁 = 1 ) ∧ 𝑛 ∈ ( 1 ... ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) ) ) → ( π · 𝑛 ) ∈ ℂ ) |
| 286 |
285
|
coscld |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑁 = 1 ) ∧ 𝑛 ∈ ( 1 ... ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) ) ) → ( cos ‘ ( π · 𝑛 ) ) ∈ ℂ ) |
| 287 |
|
oveq2 |
⊢ ( 𝑛 = ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) → ( π · 𝑛 ) = ( π · ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) ) ) |
| 288 |
287
|
fveq2d |
⊢ ( 𝑛 = ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) → ( cos ‘ ( π · 𝑛 ) ) = ( cos ‘ ( π · ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) ) ) ) |
| 289 |
280 286 288
|
fsump1 |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 = 1 ) → Σ 𝑛 ∈ ( 1 ... ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) ) ( cos ‘ ( π · 𝑛 ) ) = ( Σ 𝑛 ∈ ( 1 ... ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) ) ( cos ‘ ( π · 𝑛 ) ) + ( cos ‘ ( π · ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) ) ) ) ) |
| 290 |
15
|
a1i |
⊢ ( 𝑛 ∈ ( 1 ... ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) ) → π ∈ ℂ ) |
| 291 |
|
elfzelz |
⊢ ( 𝑛 ∈ ( 1 ... ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) ) → 𝑛 ∈ ℤ ) |
| 292 |
291
|
zcnd |
⊢ ( 𝑛 ∈ ( 1 ... ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) ) → 𝑛 ∈ ℂ ) |
| 293 |
290 292
|
mulcomd |
⊢ ( 𝑛 ∈ ( 1 ... ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) ) → ( π · 𝑛 ) = ( 𝑛 · π ) ) |
| 294 |
293
|
fveq2d |
⊢ ( 𝑛 ∈ ( 1 ... ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) ) → ( cos ‘ ( π · 𝑛 ) ) = ( cos ‘ ( 𝑛 · π ) ) ) |
| 295 |
294
|
sumeq2i |
⊢ Σ 𝑛 ∈ ( 1 ... ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) ) ( cos ‘ ( π · 𝑛 ) ) = Σ 𝑛 ∈ ( 1 ... ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) ) ( cos ‘ ( 𝑛 · π ) ) |
| 296 |
|
dirkertrigeqlem1 |
⊢ ( ( ⌊ ‘ ( 𝑁 / 2 ) ) ∈ ℕ → Σ 𝑛 ∈ ( 1 ... ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) ) ( cos ‘ ( 𝑛 · π ) ) = 0 ) |
| 297 |
277 296
|
syl |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 = 1 ) → Σ 𝑛 ∈ ( 1 ... ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) ) ( cos ‘ ( 𝑛 · π ) ) = 0 ) |
| 298 |
295 297
|
eqtrid |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 = 1 ) → Σ 𝑛 ∈ ( 1 ... ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) ) ( cos ‘ ( π · 𝑛 ) ) = 0 ) |
| 299 |
261
|
zcnd |
⊢ ( 𝜑 → ( ⌊ ‘ ( 𝑁 / 2 ) ) ∈ ℂ ) |
| 300 |
50 299
|
mulcld |
⊢ ( 𝜑 → ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) ∈ ℂ ) |
| 301 |
107 300 109
|
adddid |
⊢ ( 𝜑 → ( π · ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) ) = ( ( π · ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) ) + ( π · 1 ) ) ) |
| 302 |
107 50 299
|
mul13d |
⊢ ( 𝜑 → ( π · ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) ) = ( ( ⌊ ‘ ( 𝑁 / 2 ) ) · ( 2 · π ) ) ) |
| 303 |
248
|
a1i |
⊢ ( 𝜑 → ( π · 1 ) = π ) |
| 304 |
302 303
|
oveq12d |
⊢ ( 𝜑 → ( ( π · ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) ) + ( π · 1 ) ) = ( ( ( ⌊ ‘ ( 𝑁 / 2 ) ) · ( 2 · π ) ) + π ) ) |
| 305 |
299 192
|
mulcld |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( 𝑁 / 2 ) ) · ( 2 · π ) ) ∈ ℂ ) |
| 306 |
305 107
|
addcomd |
⊢ ( 𝜑 → ( ( ( ⌊ ‘ ( 𝑁 / 2 ) ) · ( 2 · π ) ) + π ) = ( π + ( ( ⌊ ‘ ( 𝑁 / 2 ) ) · ( 2 · π ) ) ) ) |
| 307 |
301 304 306
|
3eqtrd |
⊢ ( 𝜑 → ( π · ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) ) = ( π + ( ( ⌊ ‘ ( 𝑁 / 2 ) ) · ( 2 · π ) ) ) ) |
| 308 |
307
|
fveq2d |
⊢ ( 𝜑 → ( cos ‘ ( π · ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) ) ) = ( cos ‘ ( π + ( ( ⌊ ‘ ( 𝑁 / 2 ) ) · ( 2 · π ) ) ) ) ) |
| 309 |
|
cosper |
⊢ ( ( π ∈ ℂ ∧ ( ⌊ ‘ ( 𝑁 / 2 ) ) ∈ ℤ ) → ( cos ‘ ( π + ( ( ⌊ ‘ ( 𝑁 / 2 ) ) · ( 2 · π ) ) ) ) = ( cos ‘ π ) ) |
| 310 |
107 261 309
|
syl2anc |
⊢ ( 𝜑 → ( cos ‘ ( π + ( ( ⌊ ‘ ( 𝑁 / 2 ) ) · ( 2 · π ) ) ) ) = ( cos ‘ π ) ) |
| 311 |
254
|
a1i |
⊢ ( 𝜑 → ( cos ‘ π ) = - 1 ) |
| 312 |
308 310 311
|
3eqtrd |
⊢ ( 𝜑 → ( cos ‘ ( π · ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) ) ) = - 1 ) |
| 313 |
312
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 = 1 ) → ( cos ‘ ( π · ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) ) ) = - 1 ) |
| 314 |
298 313
|
oveq12d |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 = 1 ) → ( Σ 𝑛 ∈ ( 1 ... ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) ) ( cos ‘ ( π · 𝑛 ) ) + ( cos ‘ ( π · ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) ) ) ) = ( 0 + - 1 ) ) |
| 315 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
| 316 |
315
|
addlidi |
⊢ ( 0 + - 1 ) = - 1 |
| 317 |
316
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 = 1 ) → ( 0 + - 1 ) = - 1 ) |
| 318 |
289 314 317
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 = 1 ) → Σ 𝑛 ∈ ( 1 ... ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) ) ( cos ‘ ( π · 𝑛 ) ) = - 1 ) |
| 319 |
257 318
|
pm2.61dan |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) ) ( cos ‘ ( π · 𝑛 ) ) = - 1 ) |
| 320 |
319
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 mod 2 ) = 0 ) → Σ 𝑛 ∈ ( 1 ... ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) ) ( cos ‘ ( π · 𝑛 ) ) = - 1 ) |
| 321 |
232 320
|
eqtrd |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 mod 2 ) = 0 ) → Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( π · 𝑛 ) ) = - 1 ) |
| 322 |
321
|
oveq2d |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 mod 2 ) = 0 ) → ( ( 1 / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( π · 𝑛 ) ) ) = ( ( 1 / 2 ) + - 1 ) ) |
| 323 |
322
|
oveq1d |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 mod 2 ) = 0 ) → ( ( ( 1 / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( π · 𝑛 ) ) ) / π ) = ( ( ( 1 / 2 ) + - 1 ) / π ) ) |
| 324 |
168 172
|
eqtrd |
⊢ ( 𝜑 → ( ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝐴 / 2 ) ) ) ) = ( ( sin ‘ ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + ( 𝑁 · π ) ) ) / ( ( 2 · π ) · ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) ) ) |
| 325 |
324
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 mod 2 ) = 0 ) → ( ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝐴 / 2 ) ) ) ) = ( ( sin ‘ ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + ( 𝑁 · π ) ) ) / ( ( 2 · π ) · ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) ) ) |
| 326 |
230
|
oveq1d |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 mod 2 ) = 0 ) → ( 𝑁 · π ) = ( ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) · π ) ) |
| 327 |
300 109 107
|
adddird |
⊢ ( 𝜑 → ( ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) · π ) = ( ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) · π ) + ( 1 · π ) ) ) |
| 328 |
107
|
mullidd |
⊢ ( 𝜑 → ( 1 · π ) = π ) |
| 329 |
328
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) · π ) + ( 1 · π ) ) = ( ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) · π ) + π ) ) |
| 330 |
300 107
|
mulcld |
⊢ ( 𝜑 → ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) · π ) ∈ ℂ ) |
| 331 |
330 107
|
addcomd |
⊢ ( 𝜑 → ( ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) · π ) + π ) = ( π + ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) · π ) ) ) |
| 332 |
327 329 331
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) · π ) = ( π + ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) · π ) ) ) |
| 333 |
332
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 mod 2 ) = 0 ) → ( ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) · π ) = ( π + ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) · π ) ) ) |
| 334 |
50 299
|
mulcomd |
⊢ ( 𝜑 → ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) = ( ( ⌊ ‘ ( 𝑁 / 2 ) ) · 2 ) ) |
| 335 |
334
|
oveq1d |
⊢ ( 𝜑 → ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) · π ) = ( ( ( ⌊ ‘ ( 𝑁 / 2 ) ) · 2 ) · π ) ) |
| 336 |
299 50 107
|
mulassd |
⊢ ( 𝜑 → ( ( ( ⌊ ‘ ( 𝑁 / 2 ) ) · 2 ) · π ) = ( ( ⌊ ‘ ( 𝑁 / 2 ) ) · ( 2 · π ) ) ) |
| 337 |
335 336
|
eqtrd |
⊢ ( 𝜑 → ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) · π ) = ( ( ⌊ ‘ ( 𝑁 / 2 ) ) · ( 2 · π ) ) ) |
| 338 |
337
|
oveq2d |
⊢ ( 𝜑 → ( π + ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) · π ) ) = ( π + ( ( ⌊ ‘ ( 𝑁 / 2 ) ) · ( 2 · π ) ) ) ) |
| 339 |
338
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 mod 2 ) = 0 ) → ( π + ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) · π ) ) = ( π + ( ( ⌊ ‘ ( 𝑁 / 2 ) ) · ( 2 · π ) ) ) ) |
| 340 |
326 333 339
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 mod 2 ) = 0 ) → ( 𝑁 · π ) = ( π + ( ( ⌊ ‘ ( 𝑁 / 2 ) ) · ( 2 · π ) ) ) ) |
| 341 |
340
|
oveq2d |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 mod 2 ) = 0 ) → ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + ( 𝑁 · π ) ) = ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + ( π + ( ( ⌊ ‘ ( 𝑁 / 2 ) ) · ( 2 · π ) ) ) ) ) |
| 342 |
193
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 mod 2 ) = 0 ) → ( ( 𝐾 + ( 1 / 2 ) ) · π ) ∈ ℂ ) |
| 343 |
15
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 mod 2 ) = 0 ) → π ∈ ℂ ) |
| 344 |
305
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 mod 2 ) = 0 ) → ( ( ⌊ ‘ ( 𝑁 / 2 ) ) · ( 2 · π ) ) ∈ ℂ ) |
| 345 |
342 343 344
|
addassd |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 mod 2 ) = 0 ) → ( ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + π ) + ( ( ⌊ ‘ ( 𝑁 / 2 ) ) · ( 2 · π ) ) ) = ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + ( π + ( ( ⌊ ‘ ( 𝑁 / 2 ) ) · ( 2 · π ) ) ) ) ) |
| 346 |
341 345
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 mod 2 ) = 0 ) → ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + ( 𝑁 · π ) ) = ( ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + π ) + ( ( ⌊ ‘ ( 𝑁 / 2 ) ) · ( 2 · π ) ) ) ) |
| 347 |
346
|
fveq2d |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 mod 2 ) = 0 ) → ( sin ‘ ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + ( 𝑁 · π ) ) ) = ( sin ‘ ( ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + π ) + ( ( ⌊ ‘ ( 𝑁 / 2 ) ) · ( 2 · π ) ) ) ) ) |
| 348 |
347
|
oveq1d |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 mod 2 ) = 0 ) → ( ( sin ‘ ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + ( 𝑁 · π ) ) ) / ( ( 2 · π ) · ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) ) = ( ( sin ‘ ( ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + π ) + ( ( ⌊ ‘ ( 𝑁 / 2 ) ) · ( 2 · π ) ) ) ) / ( ( 2 · π ) · ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) ) ) |
| 349 |
193 107
|
addcld |
⊢ ( 𝜑 → ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + π ) ∈ ℂ ) |
| 350 |
|
sinper |
⊢ ( ( ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + π ) ∈ ℂ ∧ ( ⌊ ‘ ( 𝑁 / 2 ) ) ∈ ℤ ) → ( sin ‘ ( ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + π ) + ( ( ⌊ ‘ ( 𝑁 / 2 ) ) · ( 2 · π ) ) ) ) = ( sin ‘ ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + π ) ) ) |
| 351 |
349 261 350
|
syl2anc |
⊢ ( 𝜑 → ( sin ‘ ( ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + π ) + ( ( ⌊ ‘ ( 𝑁 / 2 ) ) · ( 2 · π ) ) ) ) = ( sin ‘ ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + π ) ) ) |
| 352 |
|
sinppi |
⊢ ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) ∈ ℂ → ( sin ‘ ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + π ) ) = - ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) |
| 353 |
193 352
|
syl |
⊢ ( 𝜑 → ( sin ‘ ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + π ) ) = - ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) |
| 354 |
351 353
|
eqtrd |
⊢ ( 𝜑 → ( sin ‘ ( ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + π ) + ( ( ⌊ ‘ ( 𝑁 / 2 ) ) · ( 2 · π ) ) ) ) = - ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) |
| 355 |
354
|
oveq1d |
⊢ ( 𝜑 → ( ( sin ‘ ( ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + π ) + ( ( ⌊ ‘ ( 𝑁 / 2 ) ) · ( 2 · π ) ) ) ) / ( ( 2 · π ) · ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) ) = ( - ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) / ( ( 2 · π ) · ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) ) ) |
| 356 |
195
|
oveq2d |
⊢ ( 𝜑 → ( - ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) / ( ( 2 · π ) · ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) ) = ( - ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) / ( ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) · ( 2 · π ) ) ) ) |
| 357 |
194 194 215
|
divnegd |
⊢ ( 𝜑 → - ( ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) / ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) = ( - ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) / ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) ) |
| 358 |
218
|
negeqd |
⊢ ( 𝜑 → - ( ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) / ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) = - 1 ) |
| 359 |
357 358
|
eqtr3d |
⊢ ( 𝜑 → ( - ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) / ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) = - 1 ) |
| 360 |
359
|
oveq1d |
⊢ ( 𝜑 → ( ( - ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) / ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) / ( 2 · π ) ) = ( - 1 / ( 2 · π ) ) ) |
| 361 |
194
|
negcld |
⊢ ( 𝜑 → - ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ∈ ℂ ) |
| 362 |
361 194 192 215 216
|
divdiv1d |
⊢ ( 𝜑 → ( ( - ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) / ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) / ( 2 · π ) ) = ( - ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) / ( ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) · ( 2 · π ) ) ) ) |
| 363 |
86 90
|
negsubi |
⊢ ( ( 1 / 2 ) + - 1 ) = ( ( 1 / 2 ) − 1 ) |
| 364 |
90 86
|
negsubdi2i |
⊢ - ( 1 − ( 1 / 2 ) ) = ( ( 1 / 2 ) − 1 ) |
| 365 |
|
1mhlfehlf |
⊢ ( 1 − ( 1 / 2 ) ) = ( 1 / 2 ) |
| 366 |
365
|
negeqi |
⊢ - ( 1 − ( 1 / 2 ) ) = - ( 1 / 2 ) |
| 367 |
|
divneg |
⊢ ( ( 1 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → - ( 1 / 2 ) = ( - 1 / 2 ) ) |
| 368 |
90 118 51 367
|
mp3an |
⊢ - ( 1 / 2 ) = ( - 1 / 2 ) |
| 369 |
366 368
|
eqtri |
⊢ - ( 1 − ( 1 / 2 ) ) = ( - 1 / 2 ) |
| 370 |
363 364 369
|
3eqtr2i |
⊢ ( ( 1 / 2 ) + - 1 ) = ( - 1 / 2 ) |
| 371 |
370
|
oveq1i |
⊢ ( ( ( 1 / 2 ) + - 1 ) / π ) = ( ( - 1 / 2 ) / π ) |
| 372 |
|
divdiv1 |
⊢ ( ( - 1 ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ∧ ( π ∈ ℂ ∧ π ≠ 0 ) ) → ( ( - 1 / 2 ) / π ) = ( - 1 / ( 2 · π ) ) ) |
| 373 |
315 91 95 372
|
mp3an |
⊢ ( ( - 1 / 2 ) / π ) = ( - 1 / ( 2 · π ) ) |
| 374 |
371 373
|
eqtr2i |
⊢ ( - 1 / ( 2 · π ) ) = ( ( ( 1 / 2 ) + - 1 ) / π ) |
| 375 |
374
|
a1i |
⊢ ( 𝜑 → ( - 1 / ( 2 · π ) ) = ( ( ( 1 / 2 ) + - 1 ) / π ) ) |
| 376 |
360 362 375
|
3eqtr3d |
⊢ ( 𝜑 → ( - ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) / ( ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) · ( 2 · π ) ) ) = ( ( ( 1 / 2 ) + - 1 ) / π ) ) |
| 377 |
355 356 376
|
3eqtrd |
⊢ ( 𝜑 → ( ( sin ‘ ( ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + π ) + ( ( ⌊ ‘ ( 𝑁 / 2 ) ) · ( 2 · π ) ) ) ) / ( ( 2 · π ) · ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) ) = ( ( ( 1 / 2 ) + - 1 ) / π ) ) |
| 378 |
377
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 mod 2 ) = 0 ) → ( ( sin ‘ ( ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + π ) + ( ( ⌊ ‘ ( 𝑁 / 2 ) ) · ( 2 · π ) ) ) ) / ( ( 2 · π ) · ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) ) = ( ( ( 1 / 2 ) + - 1 ) / π ) ) |
| 379 |
325 348 378
|
3eqtrrd |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 mod 2 ) = 0 ) → ( ( ( 1 / 2 ) + - 1 ) / π ) = ( ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝐴 / 2 ) ) ) ) ) |
| 380 |
225 323 379
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 mod 2 ) = 0 ) → ( ( ( 1 / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( 𝑛 · 𝐴 ) ) ) / π ) = ( ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝐴 / 2 ) ) ) ) ) |
| 381 |
224 380
|
pm2.61dan |
⊢ ( 𝜑 → ( ( ( 1 / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( 𝑛 · 𝐴 ) ) ) / π ) = ( ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝐴 / 2 ) ) ) ) ) |