Metamath Proof Explorer


Theorem eulerpartlemn

Description: Lemma for eulerpart . (Contributed by Thierry Arnoux, 30-Aug-2018)

Ref Expression
Hypotheses eulerpart.p 𝑃 = { 𝑓 ∈ ( ℕ0m ℕ ) ∣ ( ( 𝑓 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑓𝑘 ) · 𝑘 ) = 𝑁 ) }
eulerpart.o 𝑂 = { 𝑔𝑃 ∣ ∀ 𝑛 ∈ ( 𝑔 “ ℕ ) ¬ 2 ∥ 𝑛 }
eulerpart.d 𝐷 = { 𝑔𝑃 ∣ ∀ 𝑛 ∈ ℕ ( 𝑔𝑛 ) ≤ 1 }
eulerpart.j 𝐽 = { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 }
eulerpart.f 𝐹 = ( 𝑥𝐽 , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) )
eulerpart.h 𝐻 = { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∣ ( 𝑟 supp ∅ ) ∈ Fin }
eulerpart.m 𝑀 = ( 𝑟𝐻 ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐽𝑦 ∈ ( 𝑟𝑥 ) ) } )
eulerpart.r 𝑅 = { 𝑓 ∣ ( 𝑓 “ ℕ ) ∈ Fin }
eulerpart.t 𝑇 = { 𝑓 ∈ ( ℕ0m ℕ ) ∣ ( 𝑓 “ ℕ ) ⊆ 𝐽 }
eulerpart.g 𝐺 = ( 𝑜 ∈ ( 𝑇𝑅 ) ↦ ( ( 𝟭 ‘ ℕ ) ‘ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜𝐽 ) ) ) ) ) )
eulerpart.s 𝑆 = ( 𝑓 ∈ ( ( ℕ0m ℕ ) ∩ 𝑅 ) ↦ Σ 𝑘 ∈ ℕ ( ( 𝑓𝑘 ) · 𝑘 ) )
Assertion eulerpartlemn ( 𝐺𝑂 ) : 𝑂1-1-onto𝐷

Proof

Step Hyp Ref Expression
1 eulerpart.p 𝑃 = { 𝑓 ∈ ( ℕ0m ℕ ) ∣ ( ( 𝑓 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑓𝑘 ) · 𝑘 ) = 𝑁 ) }
2 eulerpart.o 𝑂 = { 𝑔𝑃 ∣ ∀ 𝑛 ∈ ( 𝑔 “ ℕ ) ¬ 2 ∥ 𝑛 }
3 eulerpart.d 𝐷 = { 𝑔𝑃 ∣ ∀ 𝑛 ∈ ℕ ( 𝑔𝑛 ) ≤ 1 }
4 eulerpart.j 𝐽 = { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 }
5 eulerpart.f 𝐹 = ( 𝑥𝐽 , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) )
6 eulerpart.h 𝐻 = { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∣ ( 𝑟 supp ∅ ) ∈ Fin }
7 eulerpart.m 𝑀 = ( 𝑟𝐻 ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐽𝑦 ∈ ( 𝑟𝑥 ) ) } )
8 eulerpart.r 𝑅 = { 𝑓 ∣ ( 𝑓 “ ℕ ) ∈ Fin }
9 eulerpart.t 𝑇 = { 𝑓 ∈ ( ℕ0m ℕ ) ∣ ( 𝑓 “ ℕ ) ⊆ 𝐽 }
10 eulerpart.g 𝐺 = ( 𝑜 ∈ ( 𝑇𝑅 ) ↦ ( ( 𝟭 ‘ ℕ ) ‘ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜𝐽 ) ) ) ) ) )
11 eulerpart.s 𝑆 = ( 𝑓 ∈ ( ( ℕ0m ℕ ) ∩ 𝑅 ) ↦ Σ 𝑘 ∈ ℕ ( ( 𝑓𝑘 ) · 𝑘 ) )
12 simpl ( ( 𝑜 = 𝑞𝑘 ∈ ℕ ) → 𝑜 = 𝑞 )
13 12 fveq1d ( ( 𝑜 = 𝑞𝑘 ∈ ℕ ) → ( 𝑜𝑘 ) = ( 𝑞𝑘 ) )
14 13 oveq1d ( ( 𝑜 = 𝑞𝑘 ∈ ℕ ) → ( ( 𝑜𝑘 ) · 𝑘 ) = ( ( 𝑞𝑘 ) · 𝑘 ) )
15 14 sumeq2dv ( 𝑜 = 𝑞 → Σ 𝑘 ∈ ℕ ( ( 𝑜𝑘 ) · 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝑞𝑘 ) · 𝑘 ) )
16 15 eqeq1d ( 𝑜 = 𝑞 → ( Σ 𝑘 ∈ ℕ ( ( 𝑜𝑘 ) · 𝑘 ) = 𝑁 ↔ Σ 𝑘 ∈ ℕ ( ( 𝑞𝑘 ) · 𝑘 ) = 𝑁 ) )
17 16 cbvrabv { 𝑜 ∈ ( 𝑇𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑜𝑘 ) · 𝑘 ) = 𝑁 } = { 𝑞 ∈ ( 𝑇𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑞𝑘 ) · 𝑘 ) = 𝑁 }
18 17 a1i ( 𝑜 = 𝑞 → { 𝑜 ∈ ( 𝑇𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑜𝑘 ) · 𝑘 ) = 𝑁 } = { 𝑞 ∈ ( 𝑇𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑞𝑘 ) · 𝑘 ) = 𝑁 } )
19 18 reseq2d ( 𝑜 = 𝑞 → ( 𝐺 ↾ { 𝑜 ∈ ( 𝑇𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑜𝑘 ) · 𝑘 ) = 𝑁 } ) = ( 𝐺 ↾ { 𝑞 ∈ ( 𝑇𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑞𝑘 ) · 𝑘 ) = 𝑁 } ) )
20 eqidd ( 𝑜 = 𝑞 → { 𝑑 ∈ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑑𝑘 ) · 𝑘 ) = 𝑁 } = { 𝑑 ∈ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑑𝑘 ) · 𝑘 ) = 𝑁 } )
21 19 18 20 f1oeq123d ( 𝑜 = 𝑞 → ( ( 𝐺 ↾ { 𝑜 ∈ ( 𝑇𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑜𝑘 ) · 𝑘 ) = 𝑁 } ) : { 𝑜 ∈ ( 𝑇𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑜𝑘 ) · 𝑘 ) = 𝑁 } –1-1-onto→ { 𝑑 ∈ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑑𝑘 ) · 𝑘 ) = 𝑁 } ↔ ( 𝐺 ↾ { 𝑞 ∈ ( 𝑇𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑞𝑘 ) · 𝑘 ) = 𝑁 } ) : { 𝑞 ∈ ( 𝑇𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑞𝑘 ) · 𝑘 ) = 𝑁 } –1-1-onto→ { 𝑑 ∈ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑑𝑘 ) · 𝑘 ) = 𝑁 } ) )
22 21 imbi2d ( 𝑜 = 𝑞 → ( ( ⊤ → ( 𝐺 ↾ { 𝑜 ∈ ( 𝑇𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑜𝑘 ) · 𝑘 ) = 𝑁 } ) : { 𝑜 ∈ ( 𝑇𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑜𝑘 ) · 𝑘 ) = 𝑁 } –1-1-onto→ { 𝑑 ∈ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑑𝑘 ) · 𝑘 ) = 𝑁 } ) ↔ ( ⊤ → ( 𝐺 ↾ { 𝑞 ∈ ( 𝑇𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑞𝑘 ) · 𝑘 ) = 𝑁 } ) : { 𝑞 ∈ ( 𝑇𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑞𝑘 ) · 𝑘 ) = 𝑁 } –1-1-onto→ { 𝑑 ∈ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑑𝑘 ) · 𝑘 ) = 𝑁 } ) ) )
23 1 2 3 4 5 6 7 8 9 10 eulerpartgbij 𝐺 : ( 𝑇𝑅 ) –1-1-onto→ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 )
24 23 a1i ( ⊤ → 𝐺 : ( 𝑇𝑅 ) –1-1-onto→ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) )
25 fveq2 ( 𝑞 = 𝑜 → ( 𝐺𝑞 ) = ( 𝐺𝑜 ) )
26 reseq1 ( 𝑞 = 𝑜 → ( 𝑞𝐽 ) = ( 𝑜𝐽 ) )
27 26 coeq2d ( 𝑞 = 𝑜 → ( bits ∘ ( 𝑞𝐽 ) ) = ( bits ∘ ( 𝑜𝐽 ) ) )
28 27 fveq2d ( 𝑞 = 𝑜 → ( 𝑀 ‘ ( bits ∘ ( 𝑞𝐽 ) ) ) = ( 𝑀 ‘ ( bits ∘ ( 𝑜𝐽 ) ) ) )
29 28 imaeq2d ( 𝑞 = 𝑜 → ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑞𝐽 ) ) ) ) = ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜𝐽 ) ) ) ) )
30 29 fveq2d ( 𝑞 = 𝑜 → ( ( 𝟭 ‘ ℕ ) ‘ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑞𝐽 ) ) ) ) ) = ( ( 𝟭 ‘ ℕ ) ‘ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜𝐽 ) ) ) ) ) )
31 25 30 eqeq12d ( 𝑞 = 𝑜 → ( ( 𝐺𝑞 ) = ( ( 𝟭 ‘ ℕ ) ‘ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑞𝐽 ) ) ) ) ) ↔ ( 𝐺𝑜 ) = ( ( 𝟭 ‘ ℕ ) ‘ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜𝐽 ) ) ) ) ) ) )
32 1 2 3 4 5 6 7 8 9 10 eulerpartlemgv ( 𝑞 ∈ ( 𝑇𝑅 ) → ( 𝐺𝑞 ) = ( ( 𝟭 ‘ ℕ ) ‘ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑞𝐽 ) ) ) ) ) )
33 31 32 vtoclga ( 𝑜 ∈ ( 𝑇𝑅 ) → ( 𝐺𝑜 ) = ( ( 𝟭 ‘ ℕ ) ‘ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜𝐽 ) ) ) ) ) )
34 33 3ad2ant2 ( ( ⊤ ∧ 𝑜 ∈ ( 𝑇𝑅 ) ∧ 𝑑 = ( ( 𝟭 ‘ ℕ ) ‘ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜𝐽 ) ) ) ) ) ) → ( 𝐺𝑜 ) = ( ( 𝟭 ‘ ℕ ) ‘ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜𝐽 ) ) ) ) ) )
35 simp3 ( ( ⊤ ∧ 𝑜 ∈ ( 𝑇𝑅 ) ∧ 𝑑 = ( ( 𝟭 ‘ ℕ ) ‘ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜𝐽 ) ) ) ) ) ) → 𝑑 = ( ( 𝟭 ‘ ℕ ) ‘ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜𝐽 ) ) ) ) ) )
36 34 35 eqtr4d ( ( ⊤ ∧ 𝑜 ∈ ( 𝑇𝑅 ) ∧ 𝑑 = ( ( 𝟭 ‘ ℕ ) ‘ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜𝐽 ) ) ) ) ) ) → ( 𝐺𝑜 ) = 𝑑 )
37 36 fveq1d ( ( ⊤ ∧ 𝑜 ∈ ( 𝑇𝑅 ) ∧ 𝑑 = ( ( 𝟭 ‘ ℕ ) ‘ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜𝐽 ) ) ) ) ) ) → ( ( 𝐺𝑜 ) ‘ 𝑘 ) = ( 𝑑𝑘 ) )
38 37 oveq1d ( ( ⊤ ∧ 𝑜 ∈ ( 𝑇𝑅 ) ∧ 𝑑 = ( ( 𝟭 ‘ ℕ ) ‘ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜𝐽 ) ) ) ) ) ) → ( ( ( 𝐺𝑜 ) ‘ 𝑘 ) · 𝑘 ) = ( ( 𝑑𝑘 ) · 𝑘 ) )
39 38 sumeq2sdv ( ( ⊤ ∧ 𝑜 ∈ ( 𝑇𝑅 ) ∧ 𝑑 = ( ( 𝟭 ‘ ℕ ) ‘ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜𝐽 ) ) ) ) ) ) → Σ 𝑘 ∈ ℕ ( ( ( 𝐺𝑜 ) ‘ 𝑘 ) · 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝑑𝑘 ) · 𝑘 ) )
40 25 fveq2d ( 𝑞 = 𝑜 → ( 𝑆 ‘ ( 𝐺𝑞 ) ) = ( 𝑆 ‘ ( 𝐺𝑜 ) ) )
41 fveq2 ( 𝑞 = 𝑜 → ( 𝑆𝑞 ) = ( 𝑆𝑜 ) )
42 40 41 eqeq12d ( 𝑞 = 𝑜 → ( ( 𝑆 ‘ ( 𝐺𝑞 ) ) = ( 𝑆𝑞 ) ↔ ( 𝑆 ‘ ( 𝐺𝑜 ) ) = ( 𝑆𝑜 ) ) )
43 1 2 3 4 5 6 7 8 9 10 11 eulerpartlemgs2 ( 𝑞 ∈ ( 𝑇𝑅 ) → ( 𝑆 ‘ ( 𝐺𝑞 ) ) = ( 𝑆𝑞 ) )
44 42 43 vtoclga ( 𝑜 ∈ ( 𝑇𝑅 ) → ( 𝑆 ‘ ( 𝐺𝑜 ) ) = ( 𝑆𝑜 ) )
45 nn0ex 0 ∈ V
46 0nn0 0 ∈ ℕ0
47 1nn0 1 ∈ ℕ0
48 prssi ( ( 0 ∈ ℕ0 ∧ 1 ∈ ℕ0 ) → { 0 , 1 } ⊆ ℕ0 )
49 46 47 48 mp2an { 0 , 1 } ⊆ ℕ0
50 mapss ( ( ℕ0 ∈ V ∧ { 0 , 1 } ⊆ ℕ0 ) → ( { 0 , 1 } ↑m ℕ ) ⊆ ( ℕ0m ℕ ) )
51 45 49 50 mp2an ( { 0 , 1 } ↑m ℕ ) ⊆ ( ℕ0m ℕ )
52 ssrin ( ( { 0 , 1 } ↑m ℕ ) ⊆ ( ℕ0m ℕ ) → ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) ⊆ ( ( ℕ0m ℕ ) ∩ 𝑅 ) )
53 51 52 ax-mp ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) ⊆ ( ( ℕ0m ℕ ) ∩ 𝑅 )
54 f1of ( 𝐺 : ( 𝑇𝑅 ) –1-1-onto→ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) → 𝐺 : ( 𝑇𝑅 ) ⟶ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) )
55 23 54 ax-mp 𝐺 : ( 𝑇𝑅 ) ⟶ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 )
56 55 ffvelrni ( 𝑜 ∈ ( 𝑇𝑅 ) → ( 𝐺𝑜 ) ∈ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) )
57 53 56 sseldi ( 𝑜 ∈ ( 𝑇𝑅 ) → ( 𝐺𝑜 ) ∈ ( ( ℕ0m ℕ ) ∩ 𝑅 ) )
58 8 11 eulerpartlemsv1 ( ( 𝐺𝑜 ) ∈ ( ( ℕ0m ℕ ) ∩ 𝑅 ) → ( 𝑆 ‘ ( 𝐺𝑜 ) ) = Σ 𝑘 ∈ ℕ ( ( ( 𝐺𝑜 ) ‘ 𝑘 ) · 𝑘 ) )
59 57 58 syl ( 𝑜 ∈ ( 𝑇𝑅 ) → ( 𝑆 ‘ ( 𝐺𝑜 ) ) = Σ 𝑘 ∈ ℕ ( ( ( 𝐺𝑜 ) ‘ 𝑘 ) · 𝑘 ) )
60 1 2 3 4 5 6 7 8 9 eulerpartlemt0 ( 𝑜 ∈ ( 𝑇𝑅 ) ↔ ( 𝑜 ∈ ( ℕ0m ℕ ) ∧ ( 𝑜 “ ℕ ) ∈ Fin ∧ ( 𝑜 “ ℕ ) ⊆ 𝐽 ) )
61 60 simp1bi ( 𝑜 ∈ ( 𝑇𝑅 ) → 𝑜 ∈ ( ℕ0m ℕ ) )
62 inss2 ( 𝑇𝑅 ) ⊆ 𝑅
63 62 sseli ( 𝑜 ∈ ( 𝑇𝑅 ) → 𝑜𝑅 )
64 61 63 elind ( 𝑜 ∈ ( 𝑇𝑅 ) → 𝑜 ∈ ( ( ℕ0m ℕ ) ∩ 𝑅 ) )
65 8 11 eulerpartlemsv1 ( 𝑜 ∈ ( ( ℕ0m ℕ ) ∩ 𝑅 ) → ( 𝑆𝑜 ) = Σ 𝑘 ∈ ℕ ( ( 𝑜𝑘 ) · 𝑘 ) )
66 64 65 syl ( 𝑜 ∈ ( 𝑇𝑅 ) → ( 𝑆𝑜 ) = Σ 𝑘 ∈ ℕ ( ( 𝑜𝑘 ) · 𝑘 ) )
67 44 59 66 3eqtr3d ( 𝑜 ∈ ( 𝑇𝑅 ) → Σ 𝑘 ∈ ℕ ( ( ( 𝐺𝑜 ) ‘ 𝑘 ) · 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝑜𝑘 ) · 𝑘 ) )
68 67 3ad2ant2 ( ( ⊤ ∧ 𝑜 ∈ ( 𝑇𝑅 ) ∧ 𝑑 = ( ( 𝟭 ‘ ℕ ) ‘ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜𝐽 ) ) ) ) ) ) → Σ 𝑘 ∈ ℕ ( ( ( 𝐺𝑜 ) ‘ 𝑘 ) · 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝑜𝑘 ) · 𝑘 ) )
69 39 68 eqtr3d ( ( ⊤ ∧ 𝑜 ∈ ( 𝑇𝑅 ) ∧ 𝑑 = ( ( 𝟭 ‘ ℕ ) ‘ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜𝐽 ) ) ) ) ) ) → Σ 𝑘 ∈ ℕ ( ( 𝑑𝑘 ) · 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝑜𝑘 ) · 𝑘 ) )
70 69 eqeq1d ( ( ⊤ ∧ 𝑜 ∈ ( 𝑇𝑅 ) ∧ 𝑑 = ( ( 𝟭 ‘ ℕ ) ‘ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜𝐽 ) ) ) ) ) ) → ( Σ 𝑘 ∈ ℕ ( ( 𝑑𝑘 ) · 𝑘 ) = 𝑁 ↔ Σ 𝑘 ∈ ℕ ( ( 𝑜𝑘 ) · 𝑘 ) = 𝑁 ) )
71 10 24 70 f1oresrab ( ⊤ → ( 𝐺 ↾ { 𝑜 ∈ ( 𝑇𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑜𝑘 ) · 𝑘 ) = 𝑁 } ) : { 𝑜 ∈ ( 𝑇𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑜𝑘 ) · 𝑘 ) = 𝑁 } –1-1-onto→ { 𝑑 ∈ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑑𝑘 ) · 𝑘 ) = 𝑁 } )
72 22 71 chvarvv ( ⊤ → ( 𝐺 ↾ { 𝑞 ∈ ( 𝑇𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑞𝑘 ) · 𝑘 ) = 𝑁 } ) : { 𝑞 ∈ ( 𝑇𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑞𝑘 ) · 𝑘 ) = 𝑁 } –1-1-onto→ { 𝑑 ∈ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑑𝑘 ) · 𝑘 ) = 𝑁 } )
73 cnveq ( 𝑔 = 𝑞 𝑔 = 𝑞 )
74 73 imaeq1d ( 𝑔 = 𝑞 → ( 𝑔 “ ℕ ) = ( 𝑞 “ ℕ ) )
75 74 raleqdv ( 𝑔 = 𝑞 → ( ∀ 𝑛 ∈ ( 𝑔 “ ℕ ) ¬ 2 ∥ 𝑛 ↔ ∀ 𝑛 ∈ ( 𝑞 “ ℕ ) ¬ 2 ∥ 𝑛 ) )
76 75 cbvrabv { 𝑔𝑃 ∣ ∀ 𝑛 ∈ ( 𝑔 “ ℕ ) ¬ 2 ∥ 𝑛 } = { 𝑞𝑃 ∣ ∀ 𝑛 ∈ ( 𝑞 “ ℕ ) ¬ 2 ∥ 𝑛 }
77 nfrab1 𝑞 { 𝑞𝑃 ∣ ∀ 𝑛 ∈ ( 𝑞 “ ℕ ) ¬ 2 ∥ 𝑛 }
78 nfrab1 𝑞 { 𝑞 ∈ ( 𝑇𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑞𝑘 ) · 𝑘 ) = 𝑁 }
79 df-3an ( ( 𝑞 : ℕ ⟶ ℕ0 ∧ ( 𝑞 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑞𝑘 ) · 𝑘 ) = 𝑁 ) ↔ ( ( 𝑞 : ℕ ⟶ ℕ0 ∧ ( 𝑞 “ ℕ ) ∈ Fin ) ∧ Σ 𝑘 ∈ ℕ ( ( 𝑞𝑘 ) · 𝑘 ) = 𝑁 ) )
80 79 anbi1i ( ( ( 𝑞 : ℕ ⟶ ℕ0 ∧ ( 𝑞 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑞𝑘 ) · 𝑘 ) = 𝑁 ) ∧ ∀ 𝑛 ∈ ( 𝑞 “ ℕ ) ¬ 2 ∥ 𝑛 ) ↔ ( ( ( 𝑞 : ℕ ⟶ ℕ0 ∧ ( 𝑞 “ ℕ ) ∈ Fin ) ∧ Σ 𝑘 ∈ ℕ ( ( 𝑞𝑘 ) · 𝑘 ) = 𝑁 ) ∧ ∀ 𝑛 ∈ ( 𝑞 “ ℕ ) ¬ 2 ∥ 𝑛 ) )
81 1 eulerpartleme ( 𝑞𝑃 ↔ ( 𝑞 : ℕ ⟶ ℕ0 ∧ ( 𝑞 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑞𝑘 ) · 𝑘 ) = 𝑁 ) )
82 81 anbi1i ( ( 𝑞𝑃 ∧ ∀ 𝑛 ∈ ( 𝑞 “ ℕ ) ¬ 2 ∥ 𝑛 ) ↔ ( ( 𝑞 : ℕ ⟶ ℕ0 ∧ ( 𝑞 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑞𝑘 ) · 𝑘 ) = 𝑁 ) ∧ ∀ 𝑛 ∈ ( 𝑞 “ ℕ ) ¬ 2 ∥ 𝑛 ) )
83 an32 ( ( ( ( 𝑞 : ℕ ⟶ ℕ0 ∧ ( 𝑞 “ ℕ ) ∈ Fin ) ∧ ∀ 𝑛 ∈ ( 𝑞 “ ℕ ) ¬ 2 ∥ 𝑛 ) ∧ Σ 𝑘 ∈ ℕ ( ( 𝑞𝑘 ) · 𝑘 ) = 𝑁 ) ↔ ( ( ( 𝑞 : ℕ ⟶ ℕ0 ∧ ( 𝑞 “ ℕ ) ∈ Fin ) ∧ Σ 𝑘 ∈ ℕ ( ( 𝑞𝑘 ) · 𝑘 ) = 𝑁 ) ∧ ∀ 𝑛 ∈ ( 𝑞 “ ℕ ) ¬ 2 ∥ 𝑛 ) )
84 80 82 83 3bitr4i ( ( 𝑞𝑃 ∧ ∀ 𝑛 ∈ ( 𝑞 “ ℕ ) ¬ 2 ∥ 𝑛 ) ↔ ( ( ( 𝑞 : ℕ ⟶ ℕ0 ∧ ( 𝑞 “ ℕ ) ∈ Fin ) ∧ ∀ 𝑛 ∈ ( 𝑞 “ ℕ ) ¬ 2 ∥ 𝑛 ) ∧ Σ 𝑘 ∈ ℕ ( ( 𝑞𝑘 ) · 𝑘 ) = 𝑁 ) )
85 1 2 3 4 5 6 7 8 9 eulerpartlemt0 ( 𝑞 ∈ ( 𝑇𝑅 ) ↔ ( 𝑞 ∈ ( ℕ0m ℕ ) ∧ ( 𝑞 “ ℕ ) ∈ Fin ∧ ( 𝑞 “ ℕ ) ⊆ 𝐽 ) )
86 nnex ℕ ∈ V
87 45 86 elmap ( 𝑞 ∈ ( ℕ0m ℕ ) ↔ 𝑞 : ℕ ⟶ ℕ0 )
88 87 3anbi1i ( ( 𝑞 ∈ ( ℕ0m ℕ ) ∧ ( 𝑞 “ ℕ ) ∈ Fin ∧ ( 𝑞 “ ℕ ) ⊆ 𝐽 ) ↔ ( 𝑞 : ℕ ⟶ ℕ0 ∧ ( 𝑞 “ ℕ ) ∈ Fin ∧ ( 𝑞 “ ℕ ) ⊆ 𝐽 ) )
89 85 88 bitri ( 𝑞 ∈ ( 𝑇𝑅 ) ↔ ( 𝑞 : ℕ ⟶ ℕ0 ∧ ( 𝑞 “ ℕ ) ∈ Fin ∧ ( 𝑞 “ ℕ ) ⊆ 𝐽 ) )
90 df-3an ( ( 𝑞 : ℕ ⟶ ℕ0 ∧ ( 𝑞 “ ℕ ) ∈ Fin ∧ ( 𝑞 “ ℕ ) ⊆ 𝐽 ) ↔ ( ( 𝑞 : ℕ ⟶ ℕ0 ∧ ( 𝑞 “ ℕ ) ∈ Fin ) ∧ ( 𝑞 “ ℕ ) ⊆ 𝐽 ) )
91 dfss3 ( ( 𝑞 “ ℕ ) ⊆ 𝐽 ↔ ∀ 𝑛 ∈ ( 𝑞 “ ℕ ) 𝑛𝐽 )
92 breq2 ( 𝑧 = 𝑛 → ( 2 ∥ 𝑧 ↔ 2 ∥ 𝑛 ) )
93 92 notbid ( 𝑧 = 𝑛 → ( ¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ 𝑛 ) )
94 93 4 elrab2 ( 𝑛𝐽 ↔ ( 𝑛 ∈ ℕ ∧ ¬ 2 ∥ 𝑛 ) )
95 94 ralbii ( ∀ 𝑛 ∈ ( 𝑞 “ ℕ ) 𝑛𝐽 ↔ ∀ 𝑛 ∈ ( 𝑞 “ ℕ ) ( 𝑛 ∈ ℕ ∧ ¬ 2 ∥ 𝑛 ) )
96 r19.26 ( ∀ 𝑛 ∈ ( 𝑞 “ ℕ ) ( 𝑛 ∈ ℕ ∧ ¬ 2 ∥ 𝑛 ) ↔ ( ∀ 𝑛 ∈ ( 𝑞 “ ℕ ) 𝑛 ∈ ℕ ∧ ∀ 𝑛 ∈ ( 𝑞 “ ℕ ) ¬ 2 ∥ 𝑛 ) )
97 91 95 96 3bitri ( ( 𝑞 “ ℕ ) ⊆ 𝐽 ↔ ( ∀ 𝑛 ∈ ( 𝑞 “ ℕ ) 𝑛 ∈ ℕ ∧ ∀ 𝑛 ∈ ( 𝑞 “ ℕ ) ¬ 2 ∥ 𝑛 ) )
98 cnvimass ( 𝑞 “ ℕ ) ⊆ dom 𝑞
99 fdm ( 𝑞 : ℕ ⟶ ℕ0 → dom 𝑞 = ℕ )
100 98 99 sseqtrid ( 𝑞 : ℕ ⟶ ℕ0 → ( 𝑞 “ ℕ ) ⊆ ℕ )
101 dfss3 ( ( 𝑞 “ ℕ ) ⊆ ℕ ↔ ∀ 𝑛 ∈ ( 𝑞 “ ℕ ) 𝑛 ∈ ℕ )
102 100 101 sylib ( 𝑞 : ℕ ⟶ ℕ0 → ∀ 𝑛 ∈ ( 𝑞 “ ℕ ) 𝑛 ∈ ℕ )
103 102 biantrurd ( 𝑞 : ℕ ⟶ ℕ0 → ( ∀ 𝑛 ∈ ( 𝑞 “ ℕ ) ¬ 2 ∥ 𝑛 ↔ ( ∀ 𝑛 ∈ ( 𝑞 “ ℕ ) 𝑛 ∈ ℕ ∧ ∀ 𝑛 ∈ ( 𝑞 “ ℕ ) ¬ 2 ∥ 𝑛 ) ) )
104 97 103 bitr4id ( 𝑞 : ℕ ⟶ ℕ0 → ( ( 𝑞 “ ℕ ) ⊆ 𝐽 ↔ ∀ 𝑛 ∈ ( 𝑞 “ ℕ ) ¬ 2 ∥ 𝑛 ) )
105 104 adantr ( ( 𝑞 : ℕ ⟶ ℕ0 ∧ ( 𝑞 “ ℕ ) ∈ Fin ) → ( ( 𝑞 “ ℕ ) ⊆ 𝐽 ↔ ∀ 𝑛 ∈ ( 𝑞 “ ℕ ) ¬ 2 ∥ 𝑛 ) )
106 105 pm5.32i ( ( ( 𝑞 : ℕ ⟶ ℕ0 ∧ ( 𝑞 “ ℕ ) ∈ Fin ) ∧ ( 𝑞 “ ℕ ) ⊆ 𝐽 ) ↔ ( ( 𝑞 : ℕ ⟶ ℕ0 ∧ ( 𝑞 “ ℕ ) ∈ Fin ) ∧ ∀ 𝑛 ∈ ( 𝑞 “ ℕ ) ¬ 2 ∥ 𝑛 ) )
107 89 90 106 3bitri ( 𝑞 ∈ ( 𝑇𝑅 ) ↔ ( ( 𝑞 : ℕ ⟶ ℕ0 ∧ ( 𝑞 “ ℕ ) ∈ Fin ) ∧ ∀ 𝑛 ∈ ( 𝑞 “ ℕ ) ¬ 2 ∥ 𝑛 ) )
108 107 anbi1i ( ( 𝑞 ∈ ( 𝑇𝑅 ) ∧ Σ 𝑘 ∈ ℕ ( ( 𝑞𝑘 ) · 𝑘 ) = 𝑁 ) ↔ ( ( ( 𝑞 : ℕ ⟶ ℕ0 ∧ ( 𝑞 “ ℕ ) ∈ Fin ) ∧ ∀ 𝑛 ∈ ( 𝑞 “ ℕ ) ¬ 2 ∥ 𝑛 ) ∧ Σ 𝑘 ∈ ℕ ( ( 𝑞𝑘 ) · 𝑘 ) = 𝑁 ) )
109 84 108 bitr4i ( ( 𝑞𝑃 ∧ ∀ 𝑛 ∈ ( 𝑞 “ ℕ ) ¬ 2 ∥ 𝑛 ) ↔ ( 𝑞 ∈ ( 𝑇𝑅 ) ∧ Σ 𝑘 ∈ ℕ ( ( 𝑞𝑘 ) · 𝑘 ) = 𝑁 ) )
110 rabid ( 𝑞 ∈ { 𝑞𝑃 ∣ ∀ 𝑛 ∈ ( 𝑞 “ ℕ ) ¬ 2 ∥ 𝑛 } ↔ ( 𝑞𝑃 ∧ ∀ 𝑛 ∈ ( 𝑞 “ ℕ ) ¬ 2 ∥ 𝑛 ) )
111 rabid ( 𝑞 ∈ { 𝑞 ∈ ( 𝑇𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑞𝑘 ) · 𝑘 ) = 𝑁 } ↔ ( 𝑞 ∈ ( 𝑇𝑅 ) ∧ Σ 𝑘 ∈ ℕ ( ( 𝑞𝑘 ) · 𝑘 ) = 𝑁 ) )
112 109 110 111 3bitr4i ( 𝑞 ∈ { 𝑞𝑃 ∣ ∀ 𝑛 ∈ ( 𝑞 “ ℕ ) ¬ 2 ∥ 𝑛 } ↔ 𝑞 ∈ { 𝑞 ∈ ( 𝑇𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑞𝑘 ) · 𝑘 ) = 𝑁 } )
113 77 78 112 eqri { 𝑞𝑃 ∣ ∀ 𝑛 ∈ ( 𝑞 “ ℕ ) ¬ 2 ∥ 𝑛 } = { 𝑞 ∈ ( 𝑇𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑞𝑘 ) · 𝑘 ) = 𝑁 }
114 2 76 113 3eqtri 𝑂 = { 𝑞 ∈ ( 𝑇𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑞𝑘 ) · 𝑘 ) = 𝑁 }
115 114 reseq2i ( 𝐺𝑂 ) = ( 𝐺 ↾ { 𝑞 ∈ ( 𝑇𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑞𝑘 ) · 𝑘 ) = 𝑁 } )
116 115 a1i ( ⊤ → ( 𝐺𝑂 ) = ( 𝐺 ↾ { 𝑞 ∈ ( 𝑇𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑞𝑘 ) · 𝑘 ) = 𝑁 } ) )
117 114 a1i ( ⊤ → 𝑂 = { 𝑞 ∈ ( 𝑇𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑞𝑘 ) · 𝑘 ) = 𝑁 } )
118 nfcv 𝑑 𝐷
119 nfrab1 𝑑 { 𝑑 ∈ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑑𝑘 ) · 𝑘 ) = 𝑁 }
120 fnima ( 𝑑 Fn ℕ → ( 𝑑 “ ℕ ) = ran 𝑑 )
121 120 sseq1d ( 𝑑 Fn ℕ → ( ( 𝑑 “ ℕ ) ⊆ { 0 , 1 } ↔ ran 𝑑 ⊆ { 0 , 1 } ) )
122 121 anbi2d ( 𝑑 Fn ℕ → ( ( ran 𝑑 ⊆ ℕ0 ∧ ( 𝑑 “ ℕ ) ⊆ { 0 , 1 } ) ↔ ( ran 𝑑 ⊆ ℕ0 ∧ ran 𝑑 ⊆ { 0 , 1 } ) ) )
123 sstr ( ( ran 𝑑 ⊆ { 0 , 1 } ∧ { 0 , 1 } ⊆ ℕ0 ) → ran 𝑑 ⊆ ℕ0 )
124 49 123 mpan2 ( ran 𝑑 ⊆ { 0 , 1 } → ran 𝑑 ⊆ ℕ0 )
125 124 pm4.71ri ( ran 𝑑 ⊆ { 0 , 1 } ↔ ( ran 𝑑 ⊆ ℕ0 ∧ ran 𝑑 ⊆ { 0 , 1 } ) )
126 122 125 bitr4di ( 𝑑 Fn ℕ → ( ( ran 𝑑 ⊆ ℕ0 ∧ ( 𝑑 “ ℕ ) ⊆ { 0 , 1 } ) ↔ ran 𝑑 ⊆ { 0 , 1 } ) )
127 126 pm5.32i ( ( 𝑑 Fn ℕ ∧ ( ran 𝑑 ⊆ ℕ0 ∧ ( 𝑑 “ ℕ ) ⊆ { 0 , 1 } ) ) ↔ ( 𝑑 Fn ℕ ∧ ran 𝑑 ⊆ { 0 , 1 } ) )
128 anass ( ( ( 𝑑 Fn ℕ ∧ ran 𝑑 ⊆ ℕ0 ) ∧ ( 𝑑 “ ℕ ) ⊆ { 0 , 1 } ) ↔ ( 𝑑 Fn ℕ ∧ ( ran 𝑑 ⊆ ℕ0 ∧ ( 𝑑 “ ℕ ) ⊆ { 0 , 1 } ) ) )
129 df-f ( 𝑑 : ℕ ⟶ { 0 , 1 } ↔ ( 𝑑 Fn ℕ ∧ ran 𝑑 ⊆ { 0 , 1 } ) )
130 127 128 129 3bitr4ri ( 𝑑 : ℕ ⟶ { 0 , 1 } ↔ ( ( 𝑑 Fn ℕ ∧ ran 𝑑 ⊆ ℕ0 ) ∧ ( 𝑑 “ ℕ ) ⊆ { 0 , 1 } ) )
131 prex { 0 , 1 } ∈ V
132 131 86 elmap ( 𝑑 ∈ ( { 0 , 1 } ↑m ℕ ) ↔ 𝑑 : ℕ ⟶ { 0 , 1 } )
133 df-f ( 𝑑 : ℕ ⟶ ℕ0 ↔ ( 𝑑 Fn ℕ ∧ ran 𝑑 ⊆ ℕ0 ) )
134 133 anbi1i ( ( 𝑑 : ℕ ⟶ ℕ0 ∧ ( 𝑑 “ ℕ ) ⊆ { 0 , 1 } ) ↔ ( ( 𝑑 Fn ℕ ∧ ran 𝑑 ⊆ ℕ0 ) ∧ ( 𝑑 “ ℕ ) ⊆ { 0 , 1 } ) )
135 130 132 134 3bitr4i ( 𝑑 ∈ ( { 0 , 1 } ↑m ℕ ) ↔ ( 𝑑 : ℕ ⟶ ℕ0 ∧ ( 𝑑 “ ℕ ) ⊆ { 0 , 1 } ) )
136 vex 𝑑 ∈ V
137 cnveq ( 𝑓 = 𝑑 𝑓 = 𝑑 )
138 137 imaeq1d ( 𝑓 = 𝑑 → ( 𝑓 “ ℕ ) = ( 𝑑 “ ℕ ) )
139 138 eleq1d ( 𝑓 = 𝑑 → ( ( 𝑓 “ ℕ ) ∈ Fin ↔ ( 𝑑 “ ℕ ) ∈ Fin ) )
140 136 139 8 elab2 ( 𝑑𝑅 ↔ ( 𝑑 “ ℕ ) ∈ Fin )
141 135 140 anbi12i ( ( 𝑑 ∈ ( { 0 , 1 } ↑m ℕ ) ∧ 𝑑𝑅 ) ↔ ( ( 𝑑 : ℕ ⟶ ℕ0 ∧ ( 𝑑 “ ℕ ) ⊆ { 0 , 1 } ) ∧ ( 𝑑 “ ℕ ) ∈ Fin ) )
142 elin ( 𝑑 ∈ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) ↔ ( 𝑑 ∈ ( { 0 , 1 } ↑m ℕ ) ∧ 𝑑𝑅 ) )
143 an32 ( ( ( 𝑑 : ℕ ⟶ ℕ0 ∧ ( 𝑑 “ ℕ ) ∈ Fin ) ∧ ( 𝑑 “ ℕ ) ⊆ { 0 , 1 } ) ↔ ( ( 𝑑 : ℕ ⟶ ℕ0 ∧ ( 𝑑 “ ℕ ) ⊆ { 0 , 1 } ) ∧ ( 𝑑 “ ℕ ) ∈ Fin ) )
144 141 142 143 3bitr4i ( 𝑑 ∈ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) ↔ ( ( 𝑑 : ℕ ⟶ ℕ0 ∧ ( 𝑑 “ ℕ ) ∈ Fin ) ∧ ( 𝑑 “ ℕ ) ⊆ { 0 , 1 } ) )
145 144 anbi1i ( ( 𝑑 ∈ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) ∧ Σ 𝑘 ∈ ℕ ( ( 𝑑𝑘 ) · 𝑘 ) = 𝑁 ) ↔ ( ( ( 𝑑 : ℕ ⟶ ℕ0 ∧ ( 𝑑 “ ℕ ) ∈ Fin ) ∧ ( 𝑑 “ ℕ ) ⊆ { 0 , 1 } ) ∧ Σ 𝑘 ∈ ℕ ( ( 𝑑𝑘 ) · 𝑘 ) = 𝑁 ) )
146 1 eulerpartleme ( 𝑑𝑃 ↔ ( 𝑑 : ℕ ⟶ ℕ0 ∧ ( 𝑑 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑑𝑘 ) · 𝑘 ) = 𝑁 ) )
147 146 anbi1i ( ( 𝑑𝑃 ∧ ( 𝑑 “ ℕ ) ⊆ { 0 , 1 } ) ↔ ( ( 𝑑 : ℕ ⟶ ℕ0 ∧ ( 𝑑 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑑𝑘 ) · 𝑘 ) = 𝑁 ) ∧ ( 𝑑 “ ℕ ) ⊆ { 0 , 1 } ) )
148 df-3an ( ( 𝑑 : ℕ ⟶ ℕ0 ∧ ( 𝑑 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑑𝑘 ) · 𝑘 ) = 𝑁 ) ↔ ( ( 𝑑 : ℕ ⟶ ℕ0 ∧ ( 𝑑 “ ℕ ) ∈ Fin ) ∧ Σ 𝑘 ∈ ℕ ( ( 𝑑𝑘 ) · 𝑘 ) = 𝑁 ) )
149 148 anbi1i ( ( ( 𝑑 : ℕ ⟶ ℕ0 ∧ ( 𝑑 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑑𝑘 ) · 𝑘 ) = 𝑁 ) ∧ ( 𝑑 “ ℕ ) ⊆ { 0 , 1 } ) ↔ ( ( ( 𝑑 : ℕ ⟶ ℕ0 ∧ ( 𝑑 “ ℕ ) ∈ Fin ) ∧ Σ 𝑘 ∈ ℕ ( ( 𝑑𝑘 ) · 𝑘 ) = 𝑁 ) ∧ ( 𝑑 “ ℕ ) ⊆ { 0 , 1 } ) )
150 an32 ( ( ( ( 𝑑 : ℕ ⟶ ℕ0 ∧ ( 𝑑 “ ℕ ) ∈ Fin ) ∧ Σ 𝑘 ∈ ℕ ( ( 𝑑𝑘 ) · 𝑘 ) = 𝑁 ) ∧ ( 𝑑 “ ℕ ) ⊆ { 0 , 1 } ) ↔ ( ( ( 𝑑 : ℕ ⟶ ℕ0 ∧ ( 𝑑 “ ℕ ) ∈ Fin ) ∧ ( 𝑑 “ ℕ ) ⊆ { 0 , 1 } ) ∧ Σ 𝑘 ∈ ℕ ( ( 𝑑𝑘 ) · 𝑘 ) = 𝑁 ) )
151 147 149 150 3bitri ( ( 𝑑𝑃 ∧ ( 𝑑 “ ℕ ) ⊆ { 0 , 1 } ) ↔ ( ( ( 𝑑 : ℕ ⟶ ℕ0 ∧ ( 𝑑 “ ℕ ) ∈ Fin ) ∧ ( 𝑑 “ ℕ ) ⊆ { 0 , 1 } ) ∧ Σ 𝑘 ∈ ℕ ( ( 𝑑𝑘 ) · 𝑘 ) = 𝑁 ) )
152 145 151 bitr4i ( ( 𝑑 ∈ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) ∧ Σ 𝑘 ∈ ℕ ( ( 𝑑𝑘 ) · 𝑘 ) = 𝑁 ) ↔ ( 𝑑𝑃 ∧ ( 𝑑 “ ℕ ) ⊆ { 0 , 1 } ) )
153 rabid ( 𝑑 ∈ { 𝑑 ∈ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑑𝑘 ) · 𝑘 ) = 𝑁 } ↔ ( 𝑑 ∈ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) ∧ Σ 𝑘 ∈ ℕ ( ( 𝑑𝑘 ) · 𝑘 ) = 𝑁 ) )
154 1 2 3 eulerpartlemd ( 𝑑𝐷 ↔ ( 𝑑𝑃 ∧ ( 𝑑 “ ℕ ) ⊆ { 0 , 1 } ) )
155 152 153 154 3bitr4ri ( 𝑑𝐷𝑑 ∈ { 𝑑 ∈ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑑𝑘 ) · 𝑘 ) = 𝑁 } )
156 118 119 155 eqri 𝐷 = { 𝑑 ∈ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑑𝑘 ) · 𝑘 ) = 𝑁 }
157 156 a1i ( ⊤ → 𝐷 = { 𝑑 ∈ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑑𝑘 ) · 𝑘 ) = 𝑁 } )
158 116 117 157 f1oeq123d ( ⊤ → ( ( 𝐺𝑂 ) : 𝑂1-1-onto𝐷 ↔ ( 𝐺 ↾ { 𝑞 ∈ ( 𝑇𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑞𝑘 ) · 𝑘 ) = 𝑁 } ) : { 𝑞 ∈ ( 𝑇𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑞𝑘 ) · 𝑘 ) = 𝑁 } –1-1-onto→ { 𝑑 ∈ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑑𝑘 ) · 𝑘 ) = 𝑁 } ) )
159 72 158 mpbird ( ⊤ → ( 𝐺𝑂 ) : 𝑂1-1-onto𝐷 )
160 159 mptru ( 𝐺𝑂 ) : 𝑂1-1-onto𝐷