Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem22.f |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
2 |
|
fourierdlem22.c |
⊢ 𝐶 = ( - π (,) π ) |
3 |
|
fourierdlem22.fibl |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐶 ) ∈ 𝐿1 ) |
4 |
|
fourierdlem22.a |
⊢ 𝐴 = ( 𝑛 ∈ ℕ0 ↦ ( ∫ 𝐶 ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑛 · 𝑥 ) ) ) d 𝑥 / π ) ) |
5 |
|
fourierdlem22.b |
⊢ 𝐵 = ( 𝑛 ∈ ℕ ↦ ( ∫ 𝐶 ( ( 𝐹 ‘ 𝑥 ) · ( sin ‘ ( 𝑛 · 𝑥 ) ) ) d 𝑥 / π ) ) |
6 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝐹 : ℝ ⟶ ℝ ) |
7 |
|
ioossre |
⊢ ( - π (,) π ) ⊆ ℝ |
8 |
|
id |
⊢ ( 𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐶 ) |
9 |
8 2
|
eleqtrdi |
⊢ ( 𝑥 ∈ 𝐶 → 𝑥 ∈ ( - π (,) π ) ) |
10 |
7 9
|
sseldi |
⊢ ( 𝑥 ∈ 𝐶 → 𝑥 ∈ ℝ ) |
11 |
10
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ∈ ℝ ) |
12 |
6 11
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
13 |
12
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
14 |
|
nn0re |
⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℝ ) |
15 |
14
|
adantr |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑥 ∈ 𝐶 ) → 𝑛 ∈ ℝ ) |
16 |
10
|
adantl |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ∈ ℝ ) |
17 |
15 16
|
remulcld |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑥 ∈ 𝐶 ) → ( 𝑛 · 𝑥 ) ∈ ℝ ) |
18 |
17
|
recoscld |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑥 ∈ 𝐶 ) → ( cos ‘ ( 𝑛 · 𝑥 ) ) ∈ ℝ ) |
19 |
18
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐶 ) → ( cos ‘ ( 𝑛 · 𝑥 ) ) ∈ ℝ ) |
20 |
13 19
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐶 ) → ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ∈ ℝ ) |
21 |
|
ioombl |
⊢ ( - π (,) π ) ∈ dom vol |
22 |
2 21
|
eqeltri |
⊢ 𝐶 ∈ dom vol |
23 |
22
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → 𝐶 ∈ dom vol ) |
24 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) = ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ) |
25 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑥 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
26 |
23 19 13 24 25
|
offval2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ∘f · ( 𝑥 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐶 ↦ ( ( cos ‘ ( 𝑛 · 𝑥 ) ) · ( 𝐹 ‘ 𝑥 ) ) ) ) |
27 |
19
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐶 ) → ( cos ‘ ( 𝑛 · 𝑥 ) ) ∈ ℂ ) |
28 |
13
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
29 |
27 28
|
mulcomd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐶 ) → ( ( cos ‘ ( 𝑛 · 𝑥 ) ) · ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ) |
30 |
29
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑥 ∈ 𝐶 ↦ ( ( cos ‘ ( 𝑛 · 𝑥 ) ) · ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐶 ↦ ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ) ) |
31 |
26 30
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑥 ∈ 𝐶 ↦ ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ) = ( ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ∘f · ( 𝑥 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑥 ) ) ) ) |
32 |
|
coscn |
⊢ cos ∈ ( ℂ –cn→ ℂ ) |
33 |
32
|
a1i |
⊢ ( 𝑛 ∈ ℕ0 → cos ∈ ( ℂ –cn→ ℂ ) ) |
34 |
2 7
|
eqsstri |
⊢ 𝐶 ⊆ ℝ |
35 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
36 |
34 35
|
sstri |
⊢ 𝐶 ⊆ ℂ |
37 |
36
|
a1i |
⊢ ( 𝑛 ∈ ℕ0 → 𝐶 ⊆ ℂ ) |
38 |
14
|
recnd |
⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℂ ) |
39 |
|
ssid |
⊢ ℂ ⊆ ℂ |
40 |
39
|
a1i |
⊢ ( 𝑛 ∈ ℕ0 → ℂ ⊆ ℂ ) |
41 |
37 38 40
|
constcncfg |
⊢ ( 𝑛 ∈ ℕ0 → ( 𝑥 ∈ 𝐶 ↦ 𝑛 ) ∈ ( 𝐶 –cn→ ℂ ) ) |
42 |
|
cncfmptid |
⊢ ( ( 𝐶 ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑥 ∈ 𝐶 ↦ 𝑥 ) ∈ ( 𝐶 –cn→ ℂ ) ) |
43 |
36 39 42
|
mp2an |
⊢ ( 𝑥 ∈ 𝐶 ↦ 𝑥 ) ∈ ( 𝐶 –cn→ ℂ ) |
44 |
43
|
a1i |
⊢ ( 𝑛 ∈ ℕ0 → ( 𝑥 ∈ 𝐶 ↦ 𝑥 ) ∈ ( 𝐶 –cn→ ℂ ) ) |
45 |
41 44
|
mulcncf |
⊢ ( 𝑛 ∈ ℕ0 → ( 𝑥 ∈ 𝐶 ↦ ( 𝑛 · 𝑥 ) ) ∈ ( 𝐶 –cn→ ℂ ) ) |
46 |
33 45
|
cncfmpt1f |
⊢ ( 𝑛 ∈ ℕ0 → ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ∈ ( 𝐶 –cn→ ℂ ) ) |
47 |
|
cnmbf |
⊢ ( ( 𝐶 ∈ dom vol ∧ ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ∈ ( 𝐶 –cn→ ℂ ) ) → ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ∈ MblFn ) |
48 |
22 46 47
|
sylancr |
⊢ ( 𝑛 ∈ ℕ0 → ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ∈ MblFn ) |
49 |
48
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ∈ MblFn ) |
50 |
1
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ ℝ ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
51 |
50
|
reseq1d |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐶 ) = ( ( 𝑥 ∈ ℝ ↦ ( 𝐹 ‘ 𝑥 ) ) ↾ 𝐶 ) ) |
52 |
|
resmpt |
⊢ ( 𝐶 ⊆ ℝ → ( ( 𝑥 ∈ ℝ ↦ ( 𝐹 ‘ 𝑥 ) ) ↾ 𝐶 ) = ( 𝑥 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
53 |
34 52
|
mp1i |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ ↦ ( 𝐹 ‘ 𝑥 ) ) ↾ 𝐶 ) = ( 𝑥 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
54 |
51 53
|
eqtr2d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ↾ 𝐶 ) ) |
55 |
54 3
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ 𝐿1 ) |
56 |
55
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑥 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ 𝐿1 ) |
57 |
|
1re |
⊢ 1 ∈ ℝ |
58 |
|
simpr |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ dom ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ) → 𝑦 ∈ dom ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ) |
59 |
|
nfv |
⊢ Ⅎ 𝑥 𝑛 ∈ ℕ0 |
60 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) |
61 |
60
|
nfdm |
⊢ Ⅎ 𝑥 dom ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) |
62 |
61
|
nfcri |
⊢ Ⅎ 𝑥 𝑦 ∈ dom ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) |
63 |
59 62
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ dom ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ) |
64 |
18
|
ex |
⊢ ( 𝑛 ∈ ℕ0 → ( 𝑥 ∈ 𝐶 → ( cos ‘ ( 𝑛 · 𝑥 ) ) ∈ ℝ ) ) |
65 |
64
|
adantr |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ dom ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ) → ( 𝑥 ∈ 𝐶 → ( cos ‘ ( 𝑛 · 𝑥 ) ) ∈ ℝ ) ) |
66 |
63 65
|
ralrimi |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ dom ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ) → ∀ 𝑥 ∈ 𝐶 ( cos ‘ ( 𝑛 · 𝑥 ) ) ∈ ℝ ) |
67 |
|
dmmptg |
⊢ ( ∀ 𝑥 ∈ 𝐶 ( cos ‘ ( 𝑛 · 𝑥 ) ) ∈ ℝ → dom ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) = 𝐶 ) |
68 |
66 67
|
syl |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ dom ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ) → dom ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) = 𝐶 ) |
69 |
58 68
|
eleqtrd |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ dom ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ) → 𝑦 ∈ 𝐶 ) |
70 |
|
eqidd |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ 𝐶 ) → ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) = ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ) |
71 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑛 · 𝑥 ) = ( 𝑛 · 𝑦 ) ) |
72 |
71
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( cos ‘ ( 𝑛 · 𝑥 ) ) = ( cos ‘ ( 𝑛 · 𝑦 ) ) ) |
73 |
72
|
adantl |
⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑥 = 𝑦 ) → ( cos ‘ ( 𝑛 · 𝑥 ) ) = ( cos ‘ ( 𝑛 · 𝑦 ) ) ) |
74 |
|
simpr |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ 𝐶 ) → 𝑦 ∈ 𝐶 ) |
75 |
14
|
adantr |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ 𝐶 ) → 𝑛 ∈ ℝ ) |
76 |
34 74
|
sseldi |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ 𝐶 ) → 𝑦 ∈ ℝ ) |
77 |
75 76
|
remulcld |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ 𝐶 ) → ( 𝑛 · 𝑦 ) ∈ ℝ ) |
78 |
77
|
recoscld |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ 𝐶 ) → ( cos ‘ ( 𝑛 · 𝑦 ) ) ∈ ℝ ) |
79 |
70 73 74 78
|
fvmptd |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ 𝐶 ) → ( ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ‘ 𝑦 ) = ( cos ‘ ( 𝑛 · 𝑦 ) ) ) |
80 |
79
|
fveq2d |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ 𝐶 ) → ( abs ‘ ( ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ‘ 𝑦 ) ) = ( abs ‘ ( cos ‘ ( 𝑛 · 𝑦 ) ) ) ) |
81 |
|
abscosbd |
⊢ ( ( 𝑛 · 𝑦 ) ∈ ℝ → ( abs ‘ ( cos ‘ ( 𝑛 · 𝑦 ) ) ) ≤ 1 ) |
82 |
77 81
|
syl |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ 𝐶 ) → ( abs ‘ ( cos ‘ ( 𝑛 · 𝑦 ) ) ) ≤ 1 ) |
83 |
80 82
|
eqbrtrd |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ 𝐶 ) → ( abs ‘ ( ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ‘ 𝑦 ) ) ≤ 1 ) |
84 |
69 83
|
syldan |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ dom ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ) → ( abs ‘ ( ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ‘ 𝑦 ) ) ≤ 1 ) |
85 |
84
|
ralrimiva |
⊢ ( 𝑛 ∈ ℕ0 → ∀ 𝑦 ∈ dom ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ( abs ‘ ( ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ‘ 𝑦 ) ) ≤ 1 ) |
86 |
|
breq2 |
⊢ ( 𝑏 = 1 → ( ( abs ‘ ( ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ‘ 𝑦 ) ) ≤ 𝑏 ↔ ( abs ‘ ( ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ‘ 𝑦 ) ) ≤ 1 ) ) |
87 |
86
|
ralbidv |
⊢ ( 𝑏 = 1 → ( ∀ 𝑦 ∈ dom ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ( abs ‘ ( ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ‘ 𝑦 ) ) ≤ 𝑏 ↔ ∀ 𝑦 ∈ dom ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ( abs ‘ ( ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ‘ 𝑦 ) ) ≤ 1 ) ) |
88 |
87
|
rspcev |
⊢ ( ( 1 ∈ ℝ ∧ ∀ 𝑦 ∈ dom ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ( abs ‘ ( ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ‘ 𝑦 ) ) ≤ 1 ) → ∃ 𝑏 ∈ ℝ ∀ 𝑦 ∈ dom ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ( abs ‘ ( ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ‘ 𝑦 ) ) ≤ 𝑏 ) |
89 |
57 85 88
|
sylancr |
⊢ ( 𝑛 ∈ ℕ0 → ∃ 𝑏 ∈ ℝ ∀ 𝑦 ∈ dom ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ( abs ‘ ( ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ‘ 𝑦 ) ) ≤ 𝑏 ) |
90 |
89
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ∃ 𝑏 ∈ ℝ ∀ 𝑦 ∈ dom ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ( abs ‘ ( ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ‘ 𝑦 ) ) ≤ 𝑏 ) |
91 |
|
bddmulibl |
⊢ ( ( ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ 𝐿1 ∧ ∃ 𝑏 ∈ ℝ ∀ 𝑦 ∈ dom ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ( abs ‘ ( ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ‘ 𝑦 ) ) ≤ 𝑏 ) → ( ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ∘f · ( 𝑥 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑥 ) ) ) ∈ 𝐿1 ) |
92 |
49 56 90 91
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑥 ∈ 𝐶 ↦ ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ∘f · ( 𝑥 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑥 ) ) ) ∈ 𝐿1 ) |
93 |
31 92
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑥 ∈ 𝐶 ↦ ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑛 · 𝑥 ) ) ) ) ∈ 𝐿1 ) |
94 |
20 93
|
itgrecl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ∫ 𝐶 ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑛 · 𝑥 ) ) ) d 𝑥 ∈ ℝ ) |
95 |
|
pire |
⊢ π ∈ ℝ |
96 |
95
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → π ∈ ℝ ) |
97 |
|
0re |
⊢ 0 ∈ ℝ |
98 |
|
pipos |
⊢ 0 < π |
99 |
97 98
|
gtneii |
⊢ π ≠ 0 |
100 |
99
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → π ≠ 0 ) |
101 |
94 96 100
|
redivcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ∫ 𝐶 ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑛 · 𝑥 ) ) ) d 𝑥 / π ) ∈ ℝ ) |
102 |
101 4
|
fmptd |
⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℝ ) |
103 |
102
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑛 ) ∈ ℝ ) |
104 |
103
|
ex |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ0 → ( 𝐴 ‘ 𝑛 ) ∈ ℝ ) ) |
105 |
|
nnnn0 |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) |
106 |
17
|
resincld |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑥 ∈ 𝐶 ) → ( sin ‘ ( 𝑛 · 𝑥 ) ) ∈ ℝ ) |
107 |
106
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐶 ) → ( sin ‘ ( 𝑛 · 𝑥 ) ) ∈ ℝ ) |
108 |
13 107
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐶 ) → ( ( 𝐹 ‘ 𝑥 ) · ( sin ‘ ( 𝑛 · 𝑥 ) ) ) ∈ ℝ ) |
109 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑥 ∈ 𝐶 ↦ ( sin ‘ ( 𝑛 · 𝑥 ) ) ) = ( 𝑥 ∈ 𝐶 ↦ ( sin ‘ ( 𝑛 · 𝑥 ) ) ) ) |
110 |
23 107 13 109 25
|
offval2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑥 ∈ 𝐶 ↦ ( sin ‘ ( 𝑛 · 𝑥 ) ) ) ∘f · ( 𝑥 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐶 ↦ ( ( sin ‘ ( 𝑛 · 𝑥 ) ) · ( 𝐹 ‘ 𝑥 ) ) ) ) |
111 |
107
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐶 ) → ( sin ‘ ( 𝑛 · 𝑥 ) ) ∈ ℂ ) |
112 |
111 28
|
mulcomd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐶 ) → ( ( sin ‘ ( 𝑛 · 𝑥 ) ) · ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( sin ‘ ( 𝑛 · 𝑥 ) ) ) ) |
113 |
112
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑥 ∈ 𝐶 ↦ ( ( sin ‘ ( 𝑛 · 𝑥 ) ) · ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐶 ↦ ( ( 𝐹 ‘ 𝑥 ) · ( sin ‘ ( 𝑛 · 𝑥 ) ) ) ) ) |
114 |
110 113
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑥 ∈ 𝐶 ↦ ( ( 𝐹 ‘ 𝑥 ) · ( sin ‘ ( 𝑛 · 𝑥 ) ) ) ) = ( ( 𝑥 ∈ 𝐶 ↦ ( sin ‘ ( 𝑛 · 𝑥 ) ) ) ∘f · ( 𝑥 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑥 ) ) ) ) |
115 |
|
sincn |
⊢ sin ∈ ( ℂ –cn→ ℂ ) |
116 |
115
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → sin ∈ ( ℂ –cn→ ℂ ) ) |
117 |
45
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑥 ∈ 𝐶 ↦ ( 𝑛 · 𝑥 ) ) ∈ ( 𝐶 –cn→ ℂ ) ) |
118 |
116 117
|
cncfmpt1f |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑥 ∈ 𝐶 ↦ ( sin ‘ ( 𝑛 · 𝑥 ) ) ) ∈ ( 𝐶 –cn→ ℂ ) ) |
119 |
|
cnmbf |
⊢ ( ( 𝐶 ∈ dom vol ∧ ( 𝑥 ∈ 𝐶 ↦ ( sin ‘ ( 𝑛 · 𝑥 ) ) ) ∈ ( 𝐶 –cn→ ℂ ) ) → ( 𝑥 ∈ 𝐶 ↦ ( sin ‘ ( 𝑛 · 𝑥 ) ) ) ∈ MblFn ) |
120 |
22 118 119
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑥 ∈ 𝐶 ↦ ( sin ‘ ( 𝑛 · 𝑥 ) ) ) ∈ MblFn ) |
121 |
|
simpr |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ dom ( 𝑥 ∈ 𝐶 ↦ ( sin ‘ ( 𝑛 · 𝑥 ) ) ) ) → 𝑦 ∈ dom ( 𝑥 ∈ 𝐶 ↦ ( sin ‘ ( 𝑛 · 𝑥 ) ) ) ) |
122 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐶 ↦ ( sin ‘ ( 𝑛 · 𝑥 ) ) ) |
123 |
122
|
nfdm |
⊢ Ⅎ 𝑥 dom ( 𝑥 ∈ 𝐶 ↦ ( sin ‘ ( 𝑛 · 𝑥 ) ) ) |
124 |
123
|
nfcri |
⊢ Ⅎ 𝑥 𝑦 ∈ dom ( 𝑥 ∈ 𝐶 ↦ ( sin ‘ ( 𝑛 · 𝑥 ) ) ) |
125 |
59 124
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ dom ( 𝑥 ∈ 𝐶 ↦ ( sin ‘ ( 𝑛 · 𝑥 ) ) ) ) |
126 |
106
|
ex |
⊢ ( 𝑛 ∈ ℕ0 → ( 𝑥 ∈ 𝐶 → ( sin ‘ ( 𝑛 · 𝑥 ) ) ∈ ℝ ) ) |
127 |
126
|
adantr |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ dom ( 𝑥 ∈ 𝐶 ↦ ( sin ‘ ( 𝑛 · 𝑥 ) ) ) ) → ( 𝑥 ∈ 𝐶 → ( sin ‘ ( 𝑛 · 𝑥 ) ) ∈ ℝ ) ) |
128 |
125 127
|
ralrimi |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ dom ( 𝑥 ∈ 𝐶 ↦ ( sin ‘ ( 𝑛 · 𝑥 ) ) ) ) → ∀ 𝑥 ∈ 𝐶 ( sin ‘ ( 𝑛 · 𝑥 ) ) ∈ ℝ ) |
129 |
|
dmmptg |
⊢ ( ∀ 𝑥 ∈ 𝐶 ( sin ‘ ( 𝑛 · 𝑥 ) ) ∈ ℝ → dom ( 𝑥 ∈ 𝐶 ↦ ( sin ‘ ( 𝑛 · 𝑥 ) ) ) = 𝐶 ) |
130 |
128 129
|
syl |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ dom ( 𝑥 ∈ 𝐶 ↦ ( sin ‘ ( 𝑛 · 𝑥 ) ) ) ) → dom ( 𝑥 ∈ 𝐶 ↦ ( sin ‘ ( 𝑛 · 𝑥 ) ) ) = 𝐶 ) |
131 |
121 130
|
eleqtrd |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ dom ( 𝑥 ∈ 𝐶 ↦ ( sin ‘ ( 𝑛 · 𝑥 ) ) ) ) → 𝑦 ∈ 𝐶 ) |
132 |
|
eqidd |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ 𝐶 ) → ( 𝑥 ∈ 𝐶 ↦ ( sin ‘ ( 𝑛 · 𝑥 ) ) ) = ( 𝑥 ∈ 𝐶 ↦ ( sin ‘ ( 𝑛 · 𝑥 ) ) ) ) |
133 |
71
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( sin ‘ ( 𝑛 · 𝑥 ) ) = ( sin ‘ ( 𝑛 · 𝑦 ) ) ) |
134 |
133
|
adantl |
⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑥 = 𝑦 ) → ( sin ‘ ( 𝑛 · 𝑥 ) ) = ( sin ‘ ( 𝑛 · 𝑦 ) ) ) |
135 |
77
|
resincld |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ 𝐶 ) → ( sin ‘ ( 𝑛 · 𝑦 ) ) ∈ ℝ ) |
136 |
132 134 74 135
|
fvmptd |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ 𝐶 ) → ( ( 𝑥 ∈ 𝐶 ↦ ( sin ‘ ( 𝑛 · 𝑥 ) ) ) ‘ 𝑦 ) = ( sin ‘ ( 𝑛 · 𝑦 ) ) ) |
137 |
136
|
fveq2d |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ 𝐶 ) → ( abs ‘ ( ( 𝑥 ∈ 𝐶 ↦ ( sin ‘ ( 𝑛 · 𝑥 ) ) ) ‘ 𝑦 ) ) = ( abs ‘ ( sin ‘ ( 𝑛 · 𝑦 ) ) ) ) |
138 |
|
abssinbd |
⊢ ( ( 𝑛 · 𝑦 ) ∈ ℝ → ( abs ‘ ( sin ‘ ( 𝑛 · 𝑦 ) ) ) ≤ 1 ) |
139 |
77 138
|
syl |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ 𝐶 ) → ( abs ‘ ( sin ‘ ( 𝑛 · 𝑦 ) ) ) ≤ 1 ) |
140 |
137 139
|
eqbrtrd |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ 𝐶 ) → ( abs ‘ ( ( 𝑥 ∈ 𝐶 ↦ ( sin ‘ ( 𝑛 · 𝑥 ) ) ) ‘ 𝑦 ) ) ≤ 1 ) |
141 |
131 140
|
syldan |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ dom ( 𝑥 ∈ 𝐶 ↦ ( sin ‘ ( 𝑛 · 𝑥 ) ) ) ) → ( abs ‘ ( ( 𝑥 ∈ 𝐶 ↦ ( sin ‘ ( 𝑛 · 𝑥 ) ) ) ‘ 𝑦 ) ) ≤ 1 ) |
142 |
141
|
ralrimiva |
⊢ ( 𝑛 ∈ ℕ0 → ∀ 𝑦 ∈ dom ( 𝑥 ∈ 𝐶 ↦ ( sin ‘ ( 𝑛 · 𝑥 ) ) ) ( abs ‘ ( ( 𝑥 ∈ 𝐶 ↦ ( sin ‘ ( 𝑛 · 𝑥 ) ) ) ‘ 𝑦 ) ) ≤ 1 ) |
143 |
|
breq2 |
⊢ ( 𝑏 = 1 → ( ( abs ‘ ( ( 𝑥 ∈ 𝐶 ↦ ( sin ‘ ( 𝑛 · 𝑥 ) ) ) ‘ 𝑦 ) ) ≤ 𝑏 ↔ ( abs ‘ ( ( 𝑥 ∈ 𝐶 ↦ ( sin ‘ ( 𝑛 · 𝑥 ) ) ) ‘ 𝑦 ) ) ≤ 1 ) ) |
144 |
143
|
ralbidv |
⊢ ( 𝑏 = 1 → ( ∀ 𝑦 ∈ dom ( 𝑥 ∈ 𝐶 ↦ ( sin ‘ ( 𝑛 · 𝑥 ) ) ) ( abs ‘ ( ( 𝑥 ∈ 𝐶 ↦ ( sin ‘ ( 𝑛 · 𝑥 ) ) ) ‘ 𝑦 ) ) ≤ 𝑏 ↔ ∀ 𝑦 ∈ dom ( 𝑥 ∈ 𝐶 ↦ ( sin ‘ ( 𝑛 · 𝑥 ) ) ) ( abs ‘ ( ( 𝑥 ∈ 𝐶 ↦ ( sin ‘ ( 𝑛 · 𝑥 ) ) ) ‘ 𝑦 ) ) ≤ 1 ) ) |
145 |
144
|
rspcev |
⊢ ( ( 1 ∈ ℝ ∧ ∀ 𝑦 ∈ dom ( 𝑥 ∈ 𝐶 ↦ ( sin ‘ ( 𝑛 · 𝑥 ) ) ) ( abs ‘ ( ( 𝑥 ∈ 𝐶 ↦ ( sin ‘ ( 𝑛 · 𝑥 ) ) ) ‘ 𝑦 ) ) ≤ 1 ) → ∃ 𝑏 ∈ ℝ ∀ 𝑦 ∈ dom ( 𝑥 ∈ 𝐶 ↦ ( sin ‘ ( 𝑛 · 𝑥 ) ) ) ( abs ‘ ( ( 𝑥 ∈ 𝐶 ↦ ( sin ‘ ( 𝑛 · 𝑥 ) ) ) ‘ 𝑦 ) ) ≤ 𝑏 ) |
146 |
57 142 145
|
sylancr |
⊢ ( 𝑛 ∈ ℕ0 → ∃ 𝑏 ∈ ℝ ∀ 𝑦 ∈ dom ( 𝑥 ∈ 𝐶 ↦ ( sin ‘ ( 𝑛 · 𝑥 ) ) ) ( abs ‘ ( ( 𝑥 ∈ 𝐶 ↦ ( sin ‘ ( 𝑛 · 𝑥 ) ) ) ‘ 𝑦 ) ) ≤ 𝑏 ) |
147 |
146
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ∃ 𝑏 ∈ ℝ ∀ 𝑦 ∈ dom ( 𝑥 ∈ 𝐶 ↦ ( sin ‘ ( 𝑛 · 𝑥 ) ) ) ( abs ‘ ( ( 𝑥 ∈ 𝐶 ↦ ( sin ‘ ( 𝑛 · 𝑥 ) ) ) ‘ 𝑦 ) ) ≤ 𝑏 ) |
148 |
|
bddmulibl |
⊢ ( ( ( 𝑥 ∈ 𝐶 ↦ ( sin ‘ ( 𝑛 · 𝑥 ) ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ 𝐿1 ∧ ∃ 𝑏 ∈ ℝ ∀ 𝑦 ∈ dom ( 𝑥 ∈ 𝐶 ↦ ( sin ‘ ( 𝑛 · 𝑥 ) ) ) ( abs ‘ ( ( 𝑥 ∈ 𝐶 ↦ ( sin ‘ ( 𝑛 · 𝑥 ) ) ) ‘ 𝑦 ) ) ≤ 𝑏 ) → ( ( 𝑥 ∈ 𝐶 ↦ ( sin ‘ ( 𝑛 · 𝑥 ) ) ) ∘f · ( 𝑥 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑥 ) ) ) ∈ 𝐿1 ) |
149 |
120 56 147 148
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑥 ∈ 𝐶 ↦ ( sin ‘ ( 𝑛 · 𝑥 ) ) ) ∘f · ( 𝑥 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑥 ) ) ) ∈ 𝐿1 ) |
150 |
114 149
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑥 ∈ 𝐶 ↦ ( ( 𝐹 ‘ 𝑥 ) · ( sin ‘ ( 𝑛 · 𝑥 ) ) ) ) ∈ 𝐿1 ) |
151 |
108 150
|
itgrecl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ∫ 𝐶 ( ( 𝐹 ‘ 𝑥 ) · ( sin ‘ ( 𝑛 · 𝑥 ) ) ) d 𝑥 ∈ ℝ ) |
152 |
105 151
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∫ 𝐶 ( ( 𝐹 ‘ 𝑥 ) · ( sin ‘ ( 𝑛 · 𝑥 ) ) ) d 𝑥 ∈ ℝ ) |
153 |
95
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → π ∈ ℝ ) |
154 |
99
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → π ≠ 0 ) |
155 |
152 153 154
|
redivcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ∫ 𝐶 ( ( 𝐹 ‘ 𝑥 ) · ( sin ‘ ( 𝑛 · 𝑥 ) ) ) d 𝑥 / π ) ∈ ℝ ) |
156 |
155 5
|
fmptd |
⊢ ( 𝜑 → 𝐵 : ℕ ⟶ ℝ ) |
157 |
156
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐵 ‘ 𝑛 ) ∈ ℝ ) |
158 |
157
|
ex |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ → ( 𝐵 ‘ 𝑛 ) ∈ ℝ ) ) |
159 |
104 158
|
jca |
⊢ ( 𝜑 → ( ( 𝑛 ∈ ℕ0 → ( 𝐴 ‘ 𝑛 ) ∈ ℝ ) ∧ ( 𝑛 ∈ ℕ → ( 𝐵 ‘ 𝑛 ) ∈ ℝ ) ) ) |