Step |
Hyp |
Ref |
Expression |
1 |
|
imasvscaf.u |
⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) |
2 |
|
imasvscaf.v |
⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) |
3 |
|
imasvscaf.f |
⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ 𝐵 ) |
4 |
|
imasvscaf.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑍 ) |
5 |
|
imasvscaf.g |
⊢ 𝐺 = ( Scalar ‘ 𝑅 ) |
6 |
|
imasvscaf.k |
⊢ 𝐾 = ( Base ‘ 𝐺 ) |
7 |
|
imasvscaf.q |
⊢ · = ( ·𝑠 ‘ 𝑅 ) |
8 |
|
imasvscaf.s |
⊢ ∙ = ( ·𝑠 ‘ 𝑈 ) |
9 |
|
imasvscaf.e |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑞 ) → ( 𝐹 ‘ ( 𝑝 · 𝑎 ) ) = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) |
10 |
|
eqid |
⊢ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) = ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) |
11 |
|
fvex |
⊢ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ∈ V |
12 |
10 11
|
fnmpoi |
⊢ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) Fn ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) |
13 |
|
fnrel |
⊢ ( ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) Fn ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) → Rel ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) |
14 |
12 13
|
ax-mp |
⊢ Rel ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) |
15 |
14
|
rgenw |
⊢ ∀ 𝑞 ∈ 𝑉 Rel ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) |
16 |
|
reliun |
⊢ ( Rel ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ↔ ∀ 𝑞 ∈ 𝑉 Rel ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) |
17 |
15 16
|
mpbir |
⊢ Rel ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) |
18 |
1 2 3 4 5 6 7 8
|
imasvsca |
⊢ ( 𝜑 → ∙ = ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) |
19 |
18
|
releqd |
⊢ ( 𝜑 → ( Rel ∙ ↔ Rel ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) ) |
20 |
17 19
|
mpbiri |
⊢ ( 𝜑 → Rel ∙ ) |
21 |
|
dffn2 |
⊢ ( ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) Fn ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) ↔ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) : ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) ⟶ V ) |
22 |
12 21
|
mpbi |
⊢ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) : ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) ⟶ V |
23 |
|
fssxp |
⊢ ( ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) : ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) ⟶ V → ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ⊆ ( ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) × V ) ) |
24 |
22 23
|
ax-mp |
⊢ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ⊆ ( ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) × V ) |
25 |
|
fof |
⊢ ( 𝐹 : 𝑉 –onto→ 𝐵 → 𝐹 : 𝑉 ⟶ 𝐵 ) |
26 |
3 25
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝑉 ⟶ 𝐵 ) |
27 |
26
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑉 ) → ( 𝐹 ‘ 𝑞 ) ∈ 𝐵 ) |
28 |
27
|
snssd |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑉 ) → { ( 𝐹 ‘ 𝑞 ) } ⊆ 𝐵 ) |
29 |
|
xpss2 |
⊢ ( { ( 𝐹 ‘ 𝑞 ) } ⊆ 𝐵 → ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) ⊆ ( 𝐾 × 𝐵 ) ) |
30 |
|
xpss1 |
⊢ ( ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) ⊆ ( 𝐾 × 𝐵 ) → ( ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) × V ) ⊆ ( ( 𝐾 × 𝐵 ) × V ) ) |
31 |
28 29 30
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑉 ) → ( ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) × V ) ⊆ ( ( 𝐾 × 𝐵 ) × V ) ) |
32 |
24 31
|
sstrid |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑉 ) → ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ⊆ ( ( 𝐾 × 𝐵 ) × V ) ) |
33 |
32
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ⊆ ( ( 𝐾 × 𝐵 ) × V ) ) |
34 |
|
iunss |
⊢ ( ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ⊆ ( ( 𝐾 × 𝐵 ) × V ) ↔ ∀ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ⊆ ( ( 𝐾 × 𝐵 ) × V ) ) |
35 |
33 34
|
sylibr |
⊢ ( 𝜑 → ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ⊆ ( ( 𝐾 × 𝐵 ) × V ) ) |
36 |
18 35
|
eqsstrd |
⊢ ( 𝜑 → ∙ ⊆ ( ( 𝐾 × 𝐵 ) × V ) ) |
37 |
|
dmss |
⊢ ( ∙ ⊆ ( ( 𝐾 × 𝐵 ) × V ) → dom ∙ ⊆ dom ( ( 𝐾 × 𝐵 ) × V ) ) |
38 |
36 37
|
syl |
⊢ ( 𝜑 → dom ∙ ⊆ dom ( ( 𝐾 × 𝐵 ) × V ) ) |
39 |
|
vn0 |
⊢ V ≠ ∅ |
40 |
|
dmxp |
⊢ ( V ≠ ∅ → dom ( ( 𝐾 × 𝐵 ) × V ) = ( 𝐾 × 𝐵 ) ) |
41 |
39 40
|
ax-mp |
⊢ dom ( ( 𝐾 × 𝐵 ) × V ) = ( 𝐾 × 𝐵 ) |
42 |
38 41
|
sseqtrdi |
⊢ ( 𝜑 → dom ∙ ⊆ ( 𝐾 × 𝐵 ) ) |
43 |
|
forn |
⊢ ( 𝐹 : 𝑉 –onto→ 𝐵 → ran 𝐹 = 𝐵 ) |
44 |
3 43
|
syl |
⊢ ( 𝜑 → ran 𝐹 = 𝐵 ) |
45 |
44
|
xpeq2d |
⊢ ( 𝜑 → ( 𝐾 × ran 𝐹 ) = ( 𝐾 × 𝐵 ) ) |
46 |
42 45
|
sseqtrrd |
⊢ ( 𝜑 → dom ∙ ⊆ ( 𝐾 × ran 𝐹 ) ) |
47 |
|
df-br |
⊢ ( 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ∙ 𝑤 ↔ 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ∙ ) |
48 |
18
|
eleq2d |
⊢ ( 𝜑 → ( 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ∙ ↔ 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) ) |
49 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ) ) → ( 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ∙ ↔ 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) ) |
50 |
|
eliun |
⊢ ( 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ↔ ∃ 𝑞 ∈ 𝑉 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) |
51 |
|
df-3an |
⊢ ( ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ↔ ( ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ) ∧ 𝑞 ∈ 𝑉 ) ) |
52 |
10
|
mpofun |
⊢ Fun ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) |
53 |
|
funopfv |
⊢ ( Fun ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) → ( 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) → ( ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ‘ 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ) = 𝑤 ) ) |
54 |
52 53
|
ax-mp |
⊢ ( 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) → ( ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ‘ 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ) = 𝑤 ) |
55 |
|
df-ov |
⊢ ( 𝑝 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ( 𝐹 ‘ 𝑎 ) ) = ( ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ‘ 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ) |
56 |
|
opex |
⊢ 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ∈ V |
57 |
|
vex |
⊢ 𝑤 ∈ V |
58 |
56 57
|
opeldm |
⊢ ( 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) → 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ∈ dom ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) |
59 |
10 11
|
dmmpo |
⊢ dom ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) = ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) |
60 |
58 59
|
eleqtrdi |
⊢ ( 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) → 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ∈ ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) ) |
61 |
|
opelxp |
⊢ ( 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ∈ ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) ↔ ( 𝑝 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑎 ) ∈ { ( 𝐹 ‘ 𝑞 ) } ) ) |
62 |
60 61
|
sylib |
⊢ ( 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) → ( 𝑝 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑎 ) ∈ { ( 𝐹 ‘ 𝑞 ) } ) ) |
63 |
|
fvoveq1 |
⊢ ( 𝑧 = 𝑝 → ( 𝐹 ‘ ( 𝑧 · 𝑞 ) ) = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) |
64 |
|
eqidd |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑎 ) → ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) |
65 |
|
fvoveq1 |
⊢ ( 𝑝 = 𝑧 → ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) = ( 𝐹 ‘ ( 𝑧 · 𝑞 ) ) ) |
66 |
|
eqidd |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ ( 𝑧 · 𝑞 ) ) = ( 𝐹 ‘ ( 𝑧 · 𝑞 ) ) ) |
67 |
65 66
|
cbvmpov |
⊢ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) = ( 𝑧 ∈ 𝐾 , 𝑦 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑧 · 𝑞 ) ) ) |
68 |
63 64 67 11
|
ovmpo |
⊢ ( ( 𝑝 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑎 ) ∈ { ( 𝐹 ‘ 𝑞 ) } ) → ( 𝑝 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ( 𝐹 ‘ 𝑎 ) ) = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) |
69 |
62 68
|
syl |
⊢ ( 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) → ( 𝑝 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ( 𝐹 ‘ 𝑎 ) ) = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) |
70 |
55 69
|
eqtr3id |
⊢ ( 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) → ( ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ‘ 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ) = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) |
71 |
54 70
|
eqtr3d |
⊢ ( 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) → 𝑤 = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) |
72 |
71
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) ∧ 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) → 𝑤 = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) |
73 |
|
elsni |
⊢ ( ( 𝐹 ‘ 𝑎 ) ∈ { ( 𝐹 ‘ 𝑞 ) } → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑞 ) ) |
74 |
62 73
|
simpl2im |
⊢ ( 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑞 ) ) |
75 |
9 74
|
impel |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) ∧ 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) → ( 𝐹 ‘ ( 𝑝 · 𝑎 ) ) = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) |
76 |
72 75
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) ∧ 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) → 𝑤 = ( 𝐹 ‘ ( 𝑝 · 𝑎 ) ) ) |
77 |
76
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) → 𝑤 = ( 𝐹 ‘ ( 𝑝 · 𝑎 ) ) ) ) |
78 |
51 77
|
sylan2br |
⊢ ( ( 𝜑 ∧ ( ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ) ∧ 𝑞 ∈ 𝑉 ) ) → ( 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) → 𝑤 = ( 𝐹 ‘ ( 𝑝 · 𝑎 ) ) ) ) |
79 |
78
|
anassrs |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ) ) ∧ 𝑞 ∈ 𝑉 ) → ( 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) → 𝑤 = ( 𝐹 ‘ ( 𝑝 · 𝑎 ) ) ) ) |
80 |
79
|
rexlimdva |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ) ) → ( ∃ 𝑞 ∈ 𝑉 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) → 𝑤 = ( 𝐹 ‘ ( 𝑝 · 𝑎 ) ) ) ) |
81 |
50 80
|
syl5bi |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ) ) → ( 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) → 𝑤 = ( 𝐹 ‘ ( 𝑝 · 𝑎 ) ) ) ) |
82 |
49 81
|
sylbid |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ) ) → ( 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ∙ → 𝑤 = ( 𝐹 ‘ ( 𝑝 · 𝑎 ) ) ) ) |
83 |
47 82
|
syl5bi |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ) ) → ( 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ∙ 𝑤 → 𝑤 = ( 𝐹 ‘ ( 𝑝 · 𝑎 ) ) ) ) |
84 |
83
|
alrimiv |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ) ) → ∀ 𝑤 ( 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ∙ 𝑤 → 𝑤 = ( 𝐹 ‘ ( 𝑝 · 𝑎 ) ) ) ) |
85 |
|
mo2icl |
⊢ ( ∀ 𝑤 ( 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ∙ 𝑤 → 𝑤 = ( 𝐹 ‘ ( 𝑝 · 𝑎 ) ) ) → ∃* 𝑤 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ∙ 𝑤 ) |
86 |
84 85
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ) ) → ∃* 𝑤 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ∙ 𝑤 ) |
87 |
86
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑝 ∈ 𝐾 ∀ 𝑎 ∈ 𝑉 ∃* 𝑤 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ∙ 𝑤 ) |
88 |
|
fofn |
⊢ ( 𝐹 : 𝑉 –onto→ 𝐵 → 𝐹 Fn 𝑉 ) |
89 |
|
opeq2 |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑎 ) → 〈 𝑝 , 𝑦 〉 = 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ) |
90 |
89
|
breq1d |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑎 ) → ( 〈 𝑝 , 𝑦 〉 ∙ 𝑤 ↔ 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ∙ 𝑤 ) ) |
91 |
90
|
mobidv |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑎 ) → ( ∃* 𝑤 〈 𝑝 , 𝑦 〉 ∙ 𝑤 ↔ ∃* 𝑤 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ∙ 𝑤 ) ) |
92 |
91
|
ralrn |
⊢ ( 𝐹 Fn 𝑉 → ( ∀ 𝑦 ∈ ran 𝐹 ∃* 𝑤 〈 𝑝 , 𝑦 〉 ∙ 𝑤 ↔ ∀ 𝑎 ∈ 𝑉 ∃* 𝑤 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ∙ 𝑤 ) ) |
93 |
3 88 92
|
3syl |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ran 𝐹 ∃* 𝑤 〈 𝑝 , 𝑦 〉 ∙ 𝑤 ↔ ∀ 𝑎 ∈ 𝑉 ∃* 𝑤 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ∙ 𝑤 ) ) |
94 |
93
|
ralbidv |
⊢ ( 𝜑 → ( ∀ 𝑝 ∈ 𝐾 ∀ 𝑦 ∈ ran 𝐹 ∃* 𝑤 〈 𝑝 , 𝑦 〉 ∙ 𝑤 ↔ ∀ 𝑝 ∈ 𝐾 ∀ 𝑎 ∈ 𝑉 ∃* 𝑤 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ∙ 𝑤 ) ) |
95 |
87 94
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑝 ∈ 𝐾 ∀ 𝑦 ∈ ran 𝐹 ∃* 𝑤 〈 𝑝 , 𝑦 〉 ∙ 𝑤 ) |
96 |
|
breq1 |
⊢ ( 𝑥 = 〈 𝑝 , 𝑦 〉 → ( 𝑥 ∙ 𝑤 ↔ 〈 𝑝 , 𝑦 〉 ∙ 𝑤 ) ) |
97 |
96
|
mobidv |
⊢ ( 𝑥 = 〈 𝑝 , 𝑦 〉 → ( ∃* 𝑤 𝑥 ∙ 𝑤 ↔ ∃* 𝑤 〈 𝑝 , 𝑦 〉 ∙ 𝑤 ) ) |
98 |
97
|
ralxp |
⊢ ( ∀ 𝑥 ∈ ( 𝐾 × ran 𝐹 ) ∃* 𝑤 𝑥 ∙ 𝑤 ↔ ∀ 𝑝 ∈ 𝐾 ∀ 𝑦 ∈ ran 𝐹 ∃* 𝑤 〈 𝑝 , 𝑦 〉 ∙ 𝑤 ) |
99 |
95 98
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐾 × ran 𝐹 ) ∃* 𝑤 𝑥 ∙ 𝑤 ) |
100 |
|
ssralv |
⊢ ( dom ∙ ⊆ ( 𝐾 × ran 𝐹 ) → ( ∀ 𝑥 ∈ ( 𝐾 × ran 𝐹 ) ∃* 𝑤 𝑥 ∙ 𝑤 → ∀ 𝑥 ∈ dom ∙ ∃* 𝑤 𝑥 ∙ 𝑤 ) ) |
101 |
46 99 100
|
sylc |
⊢ ( 𝜑 → ∀ 𝑥 ∈ dom ∙ ∃* 𝑤 𝑥 ∙ 𝑤 ) |
102 |
|
dffun7 |
⊢ ( Fun ∙ ↔ ( Rel ∙ ∧ ∀ 𝑥 ∈ dom ∙ ∃* 𝑤 𝑥 ∙ 𝑤 ) ) |
103 |
20 101 102
|
sylanbrc |
⊢ ( 𝜑 → Fun ∙ ) |
104 |
|
eqimss2 |
⊢ ( ∙ = ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) → ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ⊆ ∙ ) |
105 |
18 104
|
syl |
⊢ ( 𝜑 → ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ⊆ ∙ ) |
106 |
|
iunss |
⊢ ( ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ⊆ ∙ ↔ ∀ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ⊆ ∙ ) |
107 |
105 106
|
sylib |
⊢ ( 𝜑 → ∀ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ⊆ ∙ ) |
108 |
107
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑉 ) → ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ⊆ ∙ ) |
109 |
108
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑞 ∈ 𝑉 ) ) → ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ⊆ ∙ ) |
110 |
|
dmss |
⊢ ( ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ⊆ ∙ → dom ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ⊆ dom ∙ ) |
111 |
109 110
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑞 ∈ 𝑉 ) ) → dom ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ⊆ dom ∙ ) |
112 |
59 111
|
eqsstrrid |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑞 ∈ 𝑉 ) ) → ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) ⊆ dom ∙ ) |
113 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑞 ∈ 𝑉 ) ) → 𝑝 ∈ 𝐾 ) |
114 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑞 ) ∈ V |
115 |
114
|
snid |
⊢ ( 𝐹 ‘ 𝑞 ) ∈ { ( 𝐹 ‘ 𝑞 ) } |
116 |
|
opelxpi |
⊢ ( ( 𝑝 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑞 ) ∈ { ( 𝐹 ‘ 𝑞 ) } ) → 〈 𝑝 , ( 𝐹 ‘ 𝑞 ) 〉 ∈ ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) ) |
117 |
113 115 116
|
sylancl |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑞 ∈ 𝑉 ) ) → 〈 𝑝 , ( 𝐹 ‘ 𝑞 ) 〉 ∈ ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) ) |
118 |
112 117
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑞 ∈ 𝑉 ) ) → 〈 𝑝 , ( 𝐹 ‘ 𝑞 ) 〉 ∈ dom ∙ ) |
119 |
118
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑝 ∈ 𝐾 ∀ 𝑞 ∈ 𝑉 〈 𝑝 , ( 𝐹 ‘ 𝑞 ) 〉 ∈ dom ∙ ) |
120 |
|
opeq2 |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑞 ) → 〈 𝑝 , 𝑦 〉 = 〈 𝑝 , ( 𝐹 ‘ 𝑞 ) 〉 ) |
121 |
120
|
eleq1d |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑞 ) → ( 〈 𝑝 , 𝑦 〉 ∈ dom ∙ ↔ 〈 𝑝 , ( 𝐹 ‘ 𝑞 ) 〉 ∈ dom ∙ ) ) |
122 |
121
|
ralrn |
⊢ ( 𝐹 Fn 𝑉 → ( ∀ 𝑦 ∈ ran 𝐹 〈 𝑝 , 𝑦 〉 ∈ dom ∙ ↔ ∀ 𝑞 ∈ 𝑉 〈 𝑝 , ( 𝐹 ‘ 𝑞 ) 〉 ∈ dom ∙ ) ) |
123 |
3 88 122
|
3syl |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ran 𝐹 〈 𝑝 , 𝑦 〉 ∈ dom ∙ ↔ ∀ 𝑞 ∈ 𝑉 〈 𝑝 , ( 𝐹 ‘ 𝑞 ) 〉 ∈ dom ∙ ) ) |
124 |
123
|
ralbidv |
⊢ ( 𝜑 → ( ∀ 𝑝 ∈ 𝐾 ∀ 𝑦 ∈ ran 𝐹 〈 𝑝 , 𝑦 〉 ∈ dom ∙ ↔ ∀ 𝑝 ∈ 𝐾 ∀ 𝑞 ∈ 𝑉 〈 𝑝 , ( 𝐹 ‘ 𝑞 ) 〉 ∈ dom ∙ ) ) |
125 |
119 124
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑝 ∈ 𝐾 ∀ 𝑦 ∈ ran 𝐹 〈 𝑝 , 𝑦 〉 ∈ dom ∙ ) |
126 |
|
eleq1 |
⊢ ( 𝑥 = 〈 𝑝 , 𝑦 〉 → ( 𝑥 ∈ dom ∙ ↔ 〈 𝑝 , 𝑦 〉 ∈ dom ∙ ) ) |
127 |
126
|
ralxp |
⊢ ( ∀ 𝑥 ∈ ( 𝐾 × ran 𝐹 ) 𝑥 ∈ dom ∙ ↔ ∀ 𝑝 ∈ 𝐾 ∀ 𝑦 ∈ ran 𝐹 〈 𝑝 , 𝑦 〉 ∈ dom ∙ ) |
128 |
125 127
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐾 × ran 𝐹 ) 𝑥 ∈ dom ∙ ) |
129 |
|
dfss3 |
⊢ ( ( 𝐾 × ran 𝐹 ) ⊆ dom ∙ ↔ ∀ 𝑥 ∈ ( 𝐾 × ran 𝐹 ) 𝑥 ∈ dom ∙ ) |
130 |
128 129
|
sylibr |
⊢ ( 𝜑 → ( 𝐾 × ran 𝐹 ) ⊆ dom ∙ ) |
131 |
45 130
|
eqsstrrd |
⊢ ( 𝜑 → ( 𝐾 × 𝐵 ) ⊆ dom ∙ ) |
132 |
42 131
|
eqssd |
⊢ ( 𝜑 → dom ∙ = ( 𝐾 × 𝐵 ) ) |
133 |
|
df-fn |
⊢ ( ∙ Fn ( 𝐾 × 𝐵 ) ↔ ( Fun ∙ ∧ dom ∙ = ( 𝐾 × 𝐵 ) ) ) |
134 |
103 132 133
|
sylanbrc |
⊢ ( 𝜑 → ∙ Fn ( 𝐾 × 𝐵 ) ) |