| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imasvscaf.u |
⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) |
| 2 |
|
imasvscaf.v |
⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) |
| 3 |
|
imasvscaf.f |
⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ 𝐵 ) |
| 4 |
|
imasvscaf.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑍 ) |
| 5 |
|
imasvscaf.g |
⊢ 𝐺 = ( Scalar ‘ 𝑅 ) |
| 6 |
|
imasvscaf.k |
⊢ 𝐾 = ( Base ‘ 𝐺 ) |
| 7 |
|
imasvscaf.q |
⊢ · = ( ·𝑠 ‘ 𝑅 ) |
| 8 |
|
imasvscaf.s |
⊢ ∙ = ( ·𝑠 ‘ 𝑈 ) |
| 9 |
|
imasvscaf.e |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑞 ) → ( 𝐹 ‘ ( 𝑝 · 𝑎 ) ) = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) |
| 10 |
|
eqid |
⊢ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) = ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) |
| 11 |
|
fvex |
⊢ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ∈ V |
| 12 |
10 11
|
fnmpoi |
⊢ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) Fn ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) |
| 13 |
|
fnrel |
⊢ ( ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) Fn ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) → Rel ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) |
| 14 |
12 13
|
ax-mp |
⊢ Rel ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) |
| 15 |
14
|
rgenw |
⊢ ∀ 𝑞 ∈ 𝑉 Rel ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) |
| 16 |
|
reliun |
⊢ ( Rel ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ↔ ∀ 𝑞 ∈ 𝑉 Rel ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) |
| 17 |
15 16
|
mpbir |
⊢ Rel ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) |
| 18 |
1 2 3 4 5 6 7 8
|
imasvsca |
⊢ ( 𝜑 → ∙ = ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) |
| 19 |
18
|
releqd |
⊢ ( 𝜑 → ( Rel ∙ ↔ Rel ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) ) |
| 20 |
17 19
|
mpbiri |
⊢ ( 𝜑 → Rel ∙ ) |
| 21 |
|
dffn2 |
⊢ ( ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) Fn ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) ↔ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) : ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) ⟶ V ) |
| 22 |
12 21
|
mpbi |
⊢ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) : ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) ⟶ V |
| 23 |
|
fssxp |
⊢ ( ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) : ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) ⟶ V → ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ⊆ ( ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) × V ) ) |
| 24 |
22 23
|
ax-mp |
⊢ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ⊆ ( ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) × V ) |
| 25 |
|
fof |
⊢ ( 𝐹 : 𝑉 –onto→ 𝐵 → 𝐹 : 𝑉 ⟶ 𝐵 ) |
| 26 |
3 25
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝑉 ⟶ 𝐵 ) |
| 27 |
26
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑉 ) → ( 𝐹 ‘ 𝑞 ) ∈ 𝐵 ) |
| 28 |
27
|
snssd |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑉 ) → { ( 𝐹 ‘ 𝑞 ) } ⊆ 𝐵 ) |
| 29 |
|
xpss2 |
⊢ ( { ( 𝐹 ‘ 𝑞 ) } ⊆ 𝐵 → ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) ⊆ ( 𝐾 × 𝐵 ) ) |
| 30 |
|
xpss1 |
⊢ ( ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) ⊆ ( 𝐾 × 𝐵 ) → ( ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) × V ) ⊆ ( ( 𝐾 × 𝐵 ) × V ) ) |
| 31 |
28 29 30
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑉 ) → ( ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) × V ) ⊆ ( ( 𝐾 × 𝐵 ) × V ) ) |
| 32 |
24 31
|
sstrid |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑉 ) → ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ⊆ ( ( 𝐾 × 𝐵 ) × V ) ) |
| 33 |
32
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ⊆ ( ( 𝐾 × 𝐵 ) × V ) ) |
| 34 |
|
iunss |
⊢ ( ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ⊆ ( ( 𝐾 × 𝐵 ) × V ) ↔ ∀ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ⊆ ( ( 𝐾 × 𝐵 ) × V ) ) |
| 35 |
33 34
|
sylibr |
⊢ ( 𝜑 → ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ⊆ ( ( 𝐾 × 𝐵 ) × V ) ) |
| 36 |
18 35
|
eqsstrd |
⊢ ( 𝜑 → ∙ ⊆ ( ( 𝐾 × 𝐵 ) × V ) ) |
| 37 |
|
dmss |
⊢ ( ∙ ⊆ ( ( 𝐾 × 𝐵 ) × V ) → dom ∙ ⊆ dom ( ( 𝐾 × 𝐵 ) × V ) ) |
| 38 |
36 37
|
syl |
⊢ ( 𝜑 → dom ∙ ⊆ dom ( ( 𝐾 × 𝐵 ) × V ) ) |
| 39 |
|
vn0 |
⊢ V ≠ ∅ |
| 40 |
|
dmxp |
⊢ ( V ≠ ∅ → dom ( ( 𝐾 × 𝐵 ) × V ) = ( 𝐾 × 𝐵 ) ) |
| 41 |
39 40
|
ax-mp |
⊢ dom ( ( 𝐾 × 𝐵 ) × V ) = ( 𝐾 × 𝐵 ) |
| 42 |
38 41
|
sseqtrdi |
⊢ ( 𝜑 → dom ∙ ⊆ ( 𝐾 × 𝐵 ) ) |
| 43 |
|
forn |
⊢ ( 𝐹 : 𝑉 –onto→ 𝐵 → ran 𝐹 = 𝐵 ) |
| 44 |
3 43
|
syl |
⊢ ( 𝜑 → ran 𝐹 = 𝐵 ) |
| 45 |
44
|
xpeq2d |
⊢ ( 𝜑 → ( 𝐾 × ran 𝐹 ) = ( 𝐾 × 𝐵 ) ) |
| 46 |
42 45
|
sseqtrrd |
⊢ ( 𝜑 → dom ∙ ⊆ ( 𝐾 × ran 𝐹 ) ) |
| 47 |
|
df-br |
⊢ ( 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ∙ 𝑤 ↔ 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ∙ ) |
| 48 |
18
|
eleq2d |
⊢ ( 𝜑 → ( 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ∙ ↔ 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) ) |
| 49 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ) ) → ( 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ∙ ↔ 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) ) |
| 50 |
|
eliun |
⊢ ( 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ↔ ∃ 𝑞 ∈ 𝑉 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) |
| 51 |
|
df-3an |
⊢ ( ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ↔ ( ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ) ∧ 𝑞 ∈ 𝑉 ) ) |
| 52 |
10
|
mpofun |
⊢ Fun ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) |
| 53 |
|
funopfv |
⊢ ( Fun ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) → ( 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) → ( ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ‘ 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ) = 𝑤 ) ) |
| 54 |
52 53
|
ax-mp |
⊢ ( 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) → ( ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ‘ 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ) = 𝑤 ) |
| 55 |
|
df-ov |
⊢ ( 𝑝 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ( 𝐹 ‘ 𝑎 ) ) = ( ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ‘ 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ) |
| 56 |
|
opex |
⊢ 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ∈ V |
| 57 |
|
vex |
⊢ 𝑤 ∈ V |
| 58 |
56 57
|
opeldm |
⊢ ( 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) → 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ∈ dom ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) |
| 59 |
10 11
|
dmmpo |
⊢ dom ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) = ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) |
| 60 |
58 59
|
eleqtrdi |
⊢ ( 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) → 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ∈ ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) ) |
| 61 |
|
opelxp |
⊢ ( 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ∈ ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) ↔ ( 𝑝 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑎 ) ∈ { ( 𝐹 ‘ 𝑞 ) } ) ) |
| 62 |
60 61
|
sylib |
⊢ ( 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) → ( 𝑝 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑎 ) ∈ { ( 𝐹 ‘ 𝑞 ) } ) ) |
| 63 |
|
fvoveq1 |
⊢ ( 𝑧 = 𝑝 → ( 𝐹 ‘ ( 𝑧 · 𝑞 ) ) = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) |
| 64 |
|
eqidd |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑎 ) → ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) |
| 65 |
|
fvoveq1 |
⊢ ( 𝑝 = 𝑧 → ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) = ( 𝐹 ‘ ( 𝑧 · 𝑞 ) ) ) |
| 66 |
|
eqidd |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ ( 𝑧 · 𝑞 ) ) = ( 𝐹 ‘ ( 𝑧 · 𝑞 ) ) ) |
| 67 |
65 66
|
cbvmpov |
⊢ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) = ( 𝑧 ∈ 𝐾 , 𝑦 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑧 · 𝑞 ) ) ) |
| 68 |
63 64 67 11
|
ovmpo |
⊢ ( ( 𝑝 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑎 ) ∈ { ( 𝐹 ‘ 𝑞 ) } ) → ( 𝑝 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ( 𝐹 ‘ 𝑎 ) ) = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) |
| 69 |
62 68
|
syl |
⊢ ( 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) → ( 𝑝 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ( 𝐹 ‘ 𝑎 ) ) = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) |
| 70 |
55 69
|
eqtr3id |
⊢ ( 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) → ( ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ‘ 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ) = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) |
| 71 |
54 70
|
eqtr3d |
⊢ ( 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) → 𝑤 = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) |
| 72 |
71
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) ∧ 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) → 𝑤 = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) |
| 73 |
|
elsni |
⊢ ( ( 𝐹 ‘ 𝑎 ) ∈ { ( 𝐹 ‘ 𝑞 ) } → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑞 ) ) |
| 74 |
62 73
|
simpl2im |
⊢ ( 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑞 ) ) |
| 75 |
9 74
|
impel |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) ∧ 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) → ( 𝐹 ‘ ( 𝑝 · 𝑎 ) ) = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) |
| 76 |
72 75
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) ∧ 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) → 𝑤 = ( 𝐹 ‘ ( 𝑝 · 𝑎 ) ) ) |
| 77 |
76
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) → 𝑤 = ( 𝐹 ‘ ( 𝑝 · 𝑎 ) ) ) ) |
| 78 |
51 77
|
sylan2br |
⊢ ( ( 𝜑 ∧ ( ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ) ∧ 𝑞 ∈ 𝑉 ) ) → ( 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) → 𝑤 = ( 𝐹 ‘ ( 𝑝 · 𝑎 ) ) ) ) |
| 79 |
78
|
anassrs |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ) ) ∧ 𝑞 ∈ 𝑉 ) → ( 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) → 𝑤 = ( 𝐹 ‘ ( 𝑝 · 𝑎 ) ) ) ) |
| 80 |
79
|
rexlimdva |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ) ) → ( ∃ 𝑞 ∈ 𝑉 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) → 𝑤 = ( 𝐹 ‘ ( 𝑝 · 𝑎 ) ) ) ) |
| 81 |
50 80
|
biimtrid |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ) ) → ( 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) → 𝑤 = ( 𝐹 ‘ ( 𝑝 · 𝑎 ) ) ) ) |
| 82 |
49 81
|
sylbid |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ) ) → ( 〈 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 , 𝑤 〉 ∈ ∙ → 𝑤 = ( 𝐹 ‘ ( 𝑝 · 𝑎 ) ) ) ) |
| 83 |
47 82
|
biimtrid |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ) ) → ( 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ∙ 𝑤 → 𝑤 = ( 𝐹 ‘ ( 𝑝 · 𝑎 ) ) ) ) |
| 84 |
83
|
alrimiv |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ) ) → ∀ 𝑤 ( 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ∙ 𝑤 → 𝑤 = ( 𝐹 ‘ ( 𝑝 · 𝑎 ) ) ) ) |
| 85 |
|
mo2icl |
⊢ ( ∀ 𝑤 ( 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ∙ 𝑤 → 𝑤 = ( 𝐹 ‘ ( 𝑝 · 𝑎 ) ) ) → ∃* 𝑤 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ∙ 𝑤 ) |
| 86 |
84 85
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ) ) → ∃* 𝑤 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ∙ 𝑤 ) |
| 87 |
86
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑝 ∈ 𝐾 ∀ 𝑎 ∈ 𝑉 ∃* 𝑤 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ∙ 𝑤 ) |
| 88 |
|
fofn |
⊢ ( 𝐹 : 𝑉 –onto→ 𝐵 → 𝐹 Fn 𝑉 ) |
| 89 |
|
opeq2 |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑎 ) → 〈 𝑝 , 𝑦 〉 = 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ) |
| 90 |
89
|
breq1d |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑎 ) → ( 〈 𝑝 , 𝑦 〉 ∙ 𝑤 ↔ 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ∙ 𝑤 ) ) |
| 91 |
90
|
mobidv |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑎 ) → ( ∃* 𝑤 〈 𝑝 , 𝑦 〉 ∙ 𝑤 ↔ ∃* 𝑤 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ∙ 𝑤 ) ) |
| 92 |
91
|
ralrn |
⊢ ( 𝐹 Fn 𝑉 → ( ∀ 𝑦 ∈ ran 𝐹 ∃* 𝑤 〈 𝑝 , 𝑦 〉 ∙ 𝑤 ↔ ∀ 𝑎 ∈ 𝑉 ∃* 𝑤 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ∙ 𝑤 ) ) |
| 93 |
3 88 92
|
3syl |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ran 𝐹 ∃* 𝑤 〈 𝑝 , 𝑦 〉 ∙ 𝑤 ↔ ∀ 𝑎 ∈ 𝑉 ∃* 𝑤 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ∙ 𝑤 ) ) |
| 94 |
93
|
ralbidv |
⊢ ( 𝜑 → ( ∀ 𝑝 ∈ 𝐾 ∀ 𝑦 ∈ ran 𝐹 ∃* 𝑤 〈 𝑝 , 𝑦 〉 ∙ 𝑤 ↔ ∀ 𝑝 ∈ 𝐾 ∀ 𝑎 ∈ 𝑉 ∃* 𝑤 〈 𝑝 , ( 𝐹 ‘ 𝑎 ) 〉 ∙ 𝑤 ) ) |
| 95 |
87 94
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑝 ∈ 𝐾 ∀ 𝑦 ∈ ran 𝐹 ∃* 𝑤 〈 𝑝 , 𝑦 〉 ∙ 𝑤 ) |
| 96 |
|
breq1 |
⊢ ( 𝑥 = 〈 𝑝 , 𝑦 〉 → ( 𝑥 ∙ 𝑤 ↔ 〈 𝑝 , 𝑦 〉 ∙ 𝑤 ) ) |
| 97 |
96
|
mobidv |
⊢ ( 𝑥 = 〈 𝑝 , 𝑦 〉 → ( ∃* 𝑤 𝑥 ∙ 𝑤 ↔ ∃* 𝑤 〈 𝑝 , 𝑦 〉 ∙ 𝑤 ) ) |
| 98 |
97
|
ralxp |
⊢ ( ∀ 𝑥 ∈ ( 𝐾 × ran 𝐹 ) ∃* 𝑤 𝑥 ∙ 𝑤 ↔ ∀ 𝑝 ∈ 𝐾 ∀ 𝑦 ∈ ran 𝐹 ∃* 𝑤 〈 𝑝 , 𝑦 〉 ∙ 𝑤 ) |
| 99 |
95 98
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐾 × ran 𝐹 ) ∃* 𝑤 𝑥 ∙ 𝑤 ) |
| 100 |
|
ssralv |
⊢ ( dom ∙ ⊆ ( 𝐾 × ran 𝐹 ) → ( ∀ 𝑥 ∈ ( 𝐾 × ran 𝐹 ) ∃* 𝑤 𝑥 ∙ 𝑤 → ∀ 𝑥 ∈ dom ∙ ∃* 𝑤 𝑥 ∙ 𝑤 ) ) |
| 101 |
46 99 100
|
sylc |
⊢ ( 𝜑 → ∀ 𝑥 ∈ dom ∙ ∃* 𝑤 𝑥 ∙ 𝑤 ) |
| 102 |
|
dffun7 |
⊢ ( Fun ∙ ↔ ( Rel ∙ ∧ ∀ 𝑥 ∈ dom ∙ ∃* 𝑤 𝑥 ∙ 𝑤 ) ) |
| 103 |
20 101 102
|
sylanbrc |
⊢ ( 𝜑 → Fun ∙ ) |
| 104 |
|
eqimss2 |
⊢ ( ∙ = ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) → ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ⊆ ∙ ) |
| 105 |
18 104
|
syl |
⊢ ( 𝜑 → ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ⊆ ∙ ) |
| 106 |
|
iunss |
⊢ ( ∪ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ⊆ ∙ ↔ ∀ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ⊆ ∙ ) |
| 107 |
105 106
|
sylib |
⊢ ( 𝜑 → ∀ 𝑞 ∈ 𝑉 ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ⊆ ∙ ) |
| 108 |
107
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑉 ) → ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ⊆ ∙ ) |
| 109 |
108
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑞 ∈ 𝑉 ) ) → ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ⊆ ∙ ) |
| 110 |
|
dmss |
⊢ ( ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ⊆ ∙ → dom ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ⊆ dom ∙ ) |
| 111 |
109 110
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑞 ∈ 𝑉 ) ) → dom ( 𝑝 ∈ 𝐾 , 𝑥 ∈ { ( 𝐹 ‘ 𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ⊆ dom ∙ ) |
| 112 |
59 111
|
eqsstrrid |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑞 ∈ 𝑉 ) ) → ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) ⊆ dom ∙ ) |
| 113 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑞 ∈ 𝑉 ) ) → 𝑝 ∈ 𝐾 ) |
| 114 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑞 ) ∈ V |
| 115 |
114
|
snid |
⊢ ( 𝐹 ‘ 𝑞 ) ∈ { ( 𝐹 ‘ 𝑞 ) } |
| 116 |
|
opelxpi |
⊢ ( ( 𝑝 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑞 ) ∈ { ( 𝐹 ‘ 𝑞 ) } ) → 〈 𝑝 , ( 𝐹 ‘ 𝑞 ) 〉 ∈ ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) ) |
| 117 |
113 115 116
|
sylancl |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑞 ∈ 𝑉 ) ) → 〈 𝑝 , ( 𝐹 ‘ 𝑞 ) 〉 ∈ ( 𝐾 × { ( 𝐹 ‘ 𝑞 ) } ) ) |
| 118 |
112 117
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐾 ∧ 𝑞 ∈ 𝑉 ) ) → 〈 𝑝 , ( 𝐹 ‘ 𝑞 ) 〉 ∈ dom ∙ ) |
| 119 |
118
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑝 ∈ 𝐾 ∀ 𝑞 ∈ 𝑉 〈 𝑝 , ( 𝐹 ‘ 𝑞 ) 〉 ∈ dom ∙ ) |
| 120 |
|
opeq2 |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑞 ) → 〈 𝑝 , 𝑦 〉 = 〈 𝑝 , ( 𝐹 ‘ 𝑞 ) 〉 ) |
| 121 |
120
|
eleq1d |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑞 ) → ( 〈 𝑝 , 𝑦 〉 ∈ dom ∙ ↔ 〈 𝑝 , ( 𝐹 ‘ 𝑞 ) 〉 ∈ dom ∙ ) ) |
| 122 |
121
|
ralrn |
⊢ ( 𝐹 Fn 𝑉 → ( ∀ 𝑦 ∈ ran 𝐹 〈 𝑝 , 𝑦 〉 ∈ dom ∙ ↔ ∀ 𝑞 ∈ 𝑉 〈 𝑝 , ( 𝐹 ‘ 𝑞 ) 〉 ∈ dom ∙ ) ) |
| 123 |
3 88 122
|
3syl |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ran 𝐹 〈 𝑝 , 𝑦 〉 ∈ dom ∙ ↔ ∀ 𝑞 ∈ 𝑉 〈 𝑝 , ( 𝐹 ‘ 𝑞 ) 〉 ∈ dom ∙ ) ) |
| 124 |
123
|
ralbidv |
⊢ ( 𝜑 → ( ∀ 𝑝 ∈ 𝐾 ∀ 𝑦 ∈ ran 𝐹 〈 𝑝 , 𝑦 〉 ∈ dom ∙ ↔ ∀ 𝑝 ∈ 𝐾 ∀ 𝑞 ∈ 𝑉 〈 𝑝 , ( 𝐹 ‘ 𝑞 ) 〉 ∈ dom ∙ ) ) |
| 125 |
119 124
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑝 ∈ 𝐾 ∀ 𝑦 ∈ ran 𝐹 〈 𝑝 , 𝑦 〉 ∈ dom ∙ ) |
| 126 |
|
eleq1 |
⊢ ( 𝑥 = 〈 𝑝 , 𝑦 〉 → ( 𝑥 ∈ dom ∙ ↔ 〈 𝑝 , 𝑦 〉 ∈ dom ∙ ) ) |
| 127 |
126
|
ralxp |
⊢ ( ∀ 𝑥 ∈ ( 𝐾 × ran 𝐹 ) 𝑥 ∈ dom ∙ ↔ ∀ 𝑝 ∈ 𝐾 ∀ 𝑦 ∈ ran 𝐹 〈 𝑝 , 𝑦 〉 ∈ dom ∙ ) |
| 128 |
125 127
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐾 × ran 𝐹 ) 𝑥 ∈ dom ∙ ) |
| 129 |
|
dfss3 |
⊢ ( ( 𝐾 × ran 𝐹 ) ⊆ dom ∙ ↔ ∀ 𝑥 ∈ ( 𝐾 × ran 𝐹 ) 𝑥 ∈ dom ∙ ) |
| 130 |
128 129
|
sylibr |
⊢ ( 𝜑 → ( 𝐾 × ran 𝐹 ) ⊆ dom ∙ ) |
| 131 |
45 130
|
eqsstrrd |
⊢ ( 𝜑 → ( 𝐾 × 𝐵 ) ⊆ dom ∙ ) |
| 132 |
42 131
|
eqssd |
⊢ ( 𝜑 → dom ∙ = ( 𝐾 × 𝐵 ) ) |
| 133 |
|
df-fn |
⊢ ( ∙ Fn ( 𝐾 × 𝐵 ) ↔ ( Fun ∙ ∧ dom ∙ = ( 𝐾 × 𝐵 ) ) ) |
| 134 |
103 132 133
|
sylanbrc |
⊢ ( 𝜑 → ∙ Fn ( 𝐾 × 𝐵 ) ) |