Step |
Hyp |
Ref |
Expression |
1 |
|
iseralt.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
iseralt.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
iseralt.3 |
⊢ ( 𝜑 → 𝐺 : 𝑍 ⟶ ℝ ) |
4 |
|
iseralt.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐺 ‘ 𝑘 ) ) |
5 |
|
iseralt.5 |
⊢ ( 𝜑 → 𝐺 ⇝ 0 ) |
6 |
|
iseralt.6 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = ( ( - 1 ↑ 𝑘 ) · ( 𝐺 ‘ 𝑘 ) ) ) |
7 |
|
neg1rr |
⊢ - 1 ∈ ℝ |
8 |
7
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → - 1 ∈ ℝ ) |
9 |
|
neg1ne0 |
⊢ - 1 ≠ 0 |
10 |
9
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → - 1 ≠ 0 ) |
11 |
|
uzssz |
⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ |
12 |
1 11
|
eqsstri |
⊢ 𝑍 ⊆ ℤ |
13 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → 𝑁 ∈ 𝑍 ) |
14 |
12 13
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → 𝑁 ∈ ℤ ) |
15 |
8 10 14
|
reexpclzd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( - 1 ↑ 𝑁 ) ∈ ℝ ) |
16 |
15
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( - 1 ↑ 𝑁 ) ∈ ℂ ) |
17 |
7
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → - 1 ∈ ℝ ) |
18 |
9
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → - 1 ≠ 0 ) |
19 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑘 ∈ 𝑍 ) |
20 |
12 19
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑘 ∈ ℤ ) |
21 |
17 18 20
|
reexpclzd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( - 1 ↑ 𝑘 ) ∈ ℝ ) |
22 |
3
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
23 |
21 22
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( - 1 ↑ 𝑘 ) · ( 𝐺 ‘ 𝑘 ) ) ∈ ℝ ) |
24 |
6 23
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
25 |
1 2 24
|
serfre |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) : 𝑍 ⟶ ℝ ) |
26 |
25
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → seq 𝑀 ( + , 𝐹 ) : 𝑍 ⟶ ℝ ) |
27 |
13 1
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
28 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
29 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → 𝐾 ∈ ℕ0 ) |
30 |
|
nn0mulcl |
⊢ ( ( 2 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → ( 2 · 𝐾 ) ∈ ℕ0 ) |
31 |
28 29 30
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( 2 · 𝐾 ) ∈ ℕ0 ) |
32 |
|
uzaddcl |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 2 · 𝐾 ) ∈ ℕ0 ) → ( 𝑁 + ( 2 · 𝐾 ) ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
33 |
27 31 32
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑁 + ( 2 · 𝐾 ) ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
34 |
33 1
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑁 + ( 2 · 𝐾 ) ) ∈ 𝑍 ) |
35 |
26 34
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + ( 2 · 𝐾 ) ) ) ∈ ℝ ) |
36 |
35
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + ( 2 · 𝐾 ) ) ) ∈ ℂ ) |
37 |
26 13
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ∈ ℝ ) |
38 |
37
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ∈ ℂ ) |
39 |
16 36 38
|
subdid |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( - 1 ↑ 𝑁 ) · ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + ( 2 · 𝐾 ) ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) = ( ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + ( 2 · 𝐾 ) ) ) ) − ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) ) |
40 |
39
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( abs ‘ ( ( - 1 ↑ 𝑁 ) · ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + ( 2 · 𝐾 ) ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) ) = ( abs ‘ ( ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + ( 2 · 𝐾 ) ) ) ) − ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) ) ) |
41 |
35 37
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + ( 2 · 𝐾 ) ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ∈ ℝ ) |
42 |
41
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + ( 2 · 𝐾 ) ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ∈ ℂ ) |
43 |
16 42
|
absmuld |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( abs ‘ ( ( - 1 ↑ 𝑁 ) · ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + ( 2 · 𝐾 ) ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) ) = ( ( abs ‘ ( - 1 ↑ 𝑁 ) ) · ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + ( 2 · 𝐾 ) ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) ) ) |
44 |
40 43
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( abs ‘ ( ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + ( 2 · 𝐾 ) ) ) ) − ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) ) = ( ( abs ‘ ( - 1 ↑ 𝑁 ) ) · ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + ( 2 · 𝐾 ) ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) ) ) |
45 |
8
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → - 1 ∈ ℂ ) |
46 |
|
absexpz |
⊢ ( ( - 1 ∈ ℂ ∧ - 1 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( abs ‘ ( - 1 ↑ 𝑁 ) ) = ( ( abs ‘ - 1 ) ↑ 𝑁 ) ) |
47 |
45 10 14 46
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( abs ‘ ( - 1 ↑ 𝑁 ) ) = ( ( abs ‘ - 1 ) ↑ 𝑁 ) ) |
48 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
49 |
48
|
absnegi |
⊢ ( abs ‘ - 1 ) = ( abs ‘ 1 ) |
50 |
|
abs1 |
⊢ ( abs ‘ 1 ) = 1 |
51 |
49 50
|
eqtri |
⊢ ( abs ‘ - 1 ) = 1 |
52 |
51
|
oveq1i |
⊢ ( ( abs ‘ - 1 ) ↑ 𝑁 ) = ( 1 ↑ 𝑁 ) |
53 |
|
1exp |
⊢ ( 𝑁 ∈ ℤ → ( 1 ↑ 𝑁 ) = 1 ) |
54 |
14 53
|
syl |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( 1 ↑ 𝑁 ) = 1 ) |
55 |
52 54
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( abs ‘ - 1 ) ↑ 𝑁 ) = 1 ) |
56 |
47 55
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( abs ‘ ( - 1 ↑ 𝑁 ) ) = 1 ) |
57 |
56
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( abs ‘ ( - 1 ↑ 𝑁 ) ) · ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + ( 2 · 𝐾 ) ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) ) = ( 1 · ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + ( 2 · 𝐾 ) ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) ) ) |
58 |
42
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + ( 2 · 𝐾 ) ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) ∈ ℝ ) |
59 |
58
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + ( 2 · 𝐾 ) ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) ∈ ℂ ) |
60 |
59
|
mulid2d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( 1 · ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + ( 2 · 𝐾 ) ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) ) = ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + ( 2 · 𝐾 ) ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) ) |
61 |
44 57 60
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( abs ‘ ( ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + ( 2 · 𝐾 ) ) ) ) − ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) ) = ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + ( 2 · 𝐾 ) ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) ) |
62 |
15 37
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ∈ ℝ ) |
63 |
3
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → 𝐺 : 𝑍 ⟶ ℝ ) |
64 |
1
|
peano2uzs |
⊢ ( 𝑁 ∈ 𝑍 → ( 𝑁 + 1 ) ∈ 𝑍 ) |
65 |
64
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑁 + 1 ) ∈ 𝑍 ) |
66 |
63 65
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( 𝐺 ‘ ( 𝑁 + 1 ) ) ∈ ℝ ) |
67 |
62 66
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) − ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ∈ ℝ ) |
68 |
1
|
peano2uzs |
⊢ ( ( 𝑁 + ( 2 · 𝐾 ) ) ∈ 𝑍 → ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ∈ 𝑍 ) |
69 |
34 68
|
syl |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ∈ 𝑍 ) |
70 |
26 69
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ∈ ℝ ) |
71 |
15 70
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) ∈ ℝ ) |
72 |
15 35
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + ( 2 · 𝐾 ) ) ) ) ∈ ℝ ) |
73 |
|
seqp1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) + ( 𝐹 ‘ ( 𝑁 + 1 ) ) ) ) |
74 |
27 73
|
syl |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) + ( 𝐹 ‘ ( 𝑁 + 1 ) ) ) ) |
75 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝑁 + 1 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝑁 + 1 ) ) ) |
76 |
|
oveq2 |
⊢ ( 𝑘 = ( 𝑁 + 1 ) → ( - 1 ↑ 𝑘 ) = ( - 1 ↑ ( 𝑁 + 1 ) ) ) |
77 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝑁 + 1 ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) |
78 |
76 77
|
oveq12d |
⊢ ( 𝑘 = ( 𝑁 + 1 ) → ( ( - 1 ↑ 𝑘 ) · ( 𝐺 ‘ 𝑘 ) ) = ( ( - 1 ↑ ( 𝑁 + 1 ) ) · ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) |
79 |
75 78
|
eqeq12d |
⊢ ( 𝑘 = ( 𝑁 + 1 ) → ( ( 𝐹 ‘ 𝑘 ) = ( ( - 1 ↑ 𝑘 ) · ( 𝐺 ‘ 𝑘 ) ) ↔ ( 𝐹 ‘ ( 𝑁 + 1 ) ) = ( ( - 1 ↑ ( 𝑁 + 1 ) ) · ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) ) |
80 |
6
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) = ( ( - 1 ↑ 𝑘 ) · ( 𝐺 ‘ 𝑘 ) ) ) |
81 |
80
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) = ( ( - 1 ↑ 𝑘 ) · ( 𝐺 ‘ 𝑘 ) ) ) |
82 |
79 81 65
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( 𝐹 ‘ ( 𝑁 + 1 ) ) = ( ( - 1 ↑ ( 𝑁 + 1 ) ) · ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) |
83 |
82
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) + ( 𝐹 ‘ ( 𝑁 + 1 ) ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) + ( ( - 1 ↑ ( 𝑁 + 1 ) ) · ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) ) |
84 |
45 10 14
|
expp1zd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( - 1 ↑ ( 𝑁 + 1 ) ) = ( ( - 1 ↑ 𝑁 ) · - 1 ) ) |
85 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
86 |
|
mulcom |
⊢ ( ( ( - 1 ↑ 𝑁 ) ∈ ℂ ∧ - 1 ∈ ℂ ) → ( ( - 1 ↑ 𝑁 ) · - 1 ) = ( - 1 · ( - 1 ↑ 𝑁 ) ) ) |
87 |
16 85 86
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( - 1 ↑ 𝑁 ) · - 1 ) = ( - 1 · ( - 1 ↑ 𝑁 ) ) ) |
88 |
16
|
mulm1d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( - 1 · ( - 1 ↑ 𝑁 ) ) = - ( - 1 ↑ 𝑁 ) ) |
89 |
84 87 88
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( - 1 ↑ ( 𝑁 + 1 ) ) = - ( - 1 ↑ 𝑁 ) ) |
90 |
89
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( - 1 ↑ ( 𝑁 + 1 ) ) · ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) = ( - ( - 1 ↑ 𝑁 ) · ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) |
91 |
66
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( 𝐺 ‘ ( 𝑁 + 1 ) ) ∈ ℂ ) |
92 |
16 91
|
mulneg1d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( - ( - 1 ↑ 𝑁 ) · ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) = - ( ( - 1 ↑ 𝑁 ) · ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) |
93 |
90 92
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( - 1 ↑ ( 𝑁 + 1 ) ) · ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) = - ( ( - 1 ↑ 𝑁 ) · ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) |
94 |
93
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) + ( ( - 1 ↑ ( 𝑁 + 1 ) ) · ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) + - ( ( - 1 ↑ 𝑁 ) · ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) ) |
95 |
74 83 94
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) + - ( ( - 1 ↑ 𝑁 ) · ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) ) |
96 |
15 66
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( - 1 ↑ 𝑁 ) · ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ∈ ℝ ) |
97 |
96
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( - 1 ↑ 𝑁 ) · ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ∈ ℂ ) |
98 |
38 97
|
negsubd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) + - ( ( - 1 ↑ 𝑁 ) · ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) − ( ( - 1 ↑ 𝑁 ) · ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) ) |
99 |
95 98
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) − ( ( - 1 ↑ 𝑁 ) · ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) ) |
100 |
99
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + 1 ) ) ) = ( ( - 1 ↑ 𝑁 ) · ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) − ( ( - 1 ↑ 𝑁 ) · ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) ) ) |
101 |
16 38 97
|
subdid |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( - 1 ↑ 𝑁 ) · ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) − ( ( - 1 ↑ 𝑁 ) · ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) ) = ( ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) − ( ( - 1 ↑ 𝑁 ) · ( ( - 1 ↑ 𝑁 ) · ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) ) ) |
102 |
14
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → 𝑁 ∈ ℂ ) |
103 |
102
|
2timesd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( 2 · 𝑁 ) = ( 𝑁 + 𝑁 ) ) |
104 |
103
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( - 1 ↑ ( 2 · 𝑁 ) ) = ( - 1 ↑ ( 𝑁 + 𝑁 ) ) ) |
105 |
|
2z |
⊢ 2 ∈ ℤ |
106 |
105
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → 2 ∈ ℤ ) |
107 |
|
expmulz |
⊢ ( ( ( - 1 ∈ ℂ ∧ - 1 ≠ 0 ) ∧ ( 2 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( - 1 ↑ ( 2 · 𝑁 ) ) = ( ( - 1 ↑ 2 ) ↑ 𝑁 ) ) |
108 |
45 10 106 14 107
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( - 1 ↑ ( 2 · 𝑁 ) ) = ( ( - 1 ↑ 2 ) ↑ 𝑁 ) ) |
109 |
104 108
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( - 1 ↑ ( 𝑁 + 𝑁 ) ) = ( ( - 1 ↑ 2 ) ↑ 𝑁 ) ) |
110 |
|
neg1sqe1 |
⊢ ( - 1 ↑ 2 ) = 1 |
111 |
110
|
oveq1i |
⊢ ( ( - 1 ↑ 2 ) ↑ 𝑁 ) = ( 1 ↑ 𝑁 ) |
112 |
109 111
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( - 1 ↑ ( 𝑁 + 𝑁 ) ) = ( 1 ↑ 𝑁 ) ) |
113 |
|
expaddz |
⊢ ( ( ( - 1 ∈ ℂ ∧ - 1 ≠ 0 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( - 1 ↑ ( 𝑁 + 𝑁 ) ) = ( ( - 1 ↑ 𝑁 ) · ( - 1 ↑ 𝑁 ) ) ) |
114 |
45 10 14 14 113
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( - 1 ↑ ( 𝑁 + 𝑁 ) ) = ( ( - 1 ↑ 𝑁 ) · ( - 1 ↑ 𝑁 ) ) ) |
115 |
112 114 54
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( - 1 ↑ 𝑁 ) · ( - 1 ↑ 𝑁 ) ) = 1 ) |
116 |
115
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( - 1 ↑ 𝑁 ) · ( - 1 ↑ 𝑁 ) ) · ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) = ( 1 · ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) |
117 |
16 16 91
|
mulassd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( - 1 ↑ 𝑁 ) · ( - 1 ↑ 𝑁 ) ) · ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) = ( ( - 1 ↑ 𝑁 ) · ( ( - 1 ↑ 𝑁 ) · ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) ) |
118 |
91
|
mulid2d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( 1 · ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) = ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) |
119 |
116 117 118
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( - 1 ↑ 𝑁 ) · ( ( - 1 ↑ 𝑁 ) · ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) = ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) |
120 |
119
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) − ( ( - 1 ↑ 𝑁 ) · ( ( - 1 ↑ 𝑁 ) · ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) ) = ( ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) − ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) |
121 |
100 101 120
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + 1 ) ) ) = ( ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) − ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) |
122 |
1 2 3 4 5 6
|
iseraltlem2 |
⊢ ( ( 𝜑 ∧ ( 𝑁 + 1 ) ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( - 1 ↑ ( 𝑁 + 1 ) ) · ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑁 + 1 ) + ( 2 · 𝐾 ) ) ) ) ≤ ( ( - 1 ↑ ( 𝑁 + 1 ) ) · ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + 1 ) ) ) ) |
123 |
64 122
|
syl3an2 |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( - 1 ↑ ( 𝑁 + 1 ) ) · ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑁 + 1 ) + ( 2 · 𝐾 ) ) ) ) ≤ ( ( - 1 ↑ ( 𝑁 + 1 ) ) · ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + 1 ) ) ) ) |
124 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → 1 ∈ ℂ ) |
125 |
31
|
nn0cnd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( 2 · 𝐾 ) ∈ ℂ ) |
126 |
102 124 125
|
add32d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( 𝑁 + 1 ) + ( 2 · 𝐾 ) ) = ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) |
127 |
126
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑁 + 1 ) + ( 2 · 𝐾 ) ) ) = ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) |
128 |
89 127
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( - 1 ↑ ( 𝑁 + 1 ) ) · ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑁 + 1 ) + ( 2 · 𝐾 ) ) ) ) = ( - ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) ) |
129 |
89
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( - 1 ↑ ( 𝑁 + 1 ) ) · ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + 1 ) ) ) = ( - ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + 1 ) ) ) ) |
130 |
123 128 129
|
3brtr3d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( - ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) ≤ ( - ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + 1 ) ) ) ) |
131 |
70
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ∈ ℂ ) |
132 |
16 131
|
mulneg1d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( - ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) = - ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) ) |
133 |
26 65
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + 1 ) ) ∈ ℝ ) |
134 |
133
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + 1 ) ) ∈ ℂ ) |
135 |
16 134
|
mulneg1d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( - ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + 1 ) ) ) = - ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + 1 ) ) ) ) |
136 |
130 132 135
|
3brtr3d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → - ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) ≤ - ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + 1 ) ) ) ) |
137 |
15 133
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + 1 ) ) ) ∈ ℝ ) |
138 |
137 71
|
lenegd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + 1 ) ) ) ≤ ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) ↔ - ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) ≤ - ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + 1 ) ) ) ) ) |
139 |
136 138
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + 1 ) ) ) ≤ ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) ) |
140 |
121 139
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) − ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ≤ ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) ) |
141 |
|
seqp1 |
⊢ ( ( 𝑁 + ( 2 · 𝐾 ) ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + ( 2 · 𝐾 ) ) ) + ( 𝐹 ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) ) |
142 |
33 141
|
syl |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + ( 2 · 𝐾 ) ) ) + ( 𝐹 ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) ) |
143 |
|
fveq2 |
⊢ ( 𝑘 = ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) |
144 |
|
oveq2 |
⊢ ( 𝑘 = ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) → ( - 1 ↑ 𝑘 ) = ( - 1 ↑ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) |
145 |
|
fveq2 |
⊢ ( 𝑘 = ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) |
146 |
144 145
|
oveq12d |
⊢ ( 𝑘 = ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) → ( ( - 1 ↑ 𝑘 ) · ( 𝐺 ‘ 𝑘 ) ) = ( ( - 1 ↑ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) · ( 𝐺 ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) ) |
147 |
143 146
|
eqeq12d |
⊢ ( 𝑘 = ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) → ( ( 𝐹 ‘ 𝑘 ) = ( ( - 1 ↑ 𝑘 ) · ( 𝐺 ‘ 𝑘 ) ) ↔ ( 𝐹 ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) = ( ( - 1 ↑ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) · ( 𝐺 ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) ) ) |
148 |
147 81 69
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( 𝐹 ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) = ( ( - 1 ↑ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) · ( 𝐺 ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) ) |
149 |
12 65
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑁 + 1 ) ∈ ℤ ) |
150 |
31
|
nn0zd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( 2 · 𝐾 ) ∈ ℤ ) |
151 |
|
expaddz |
⊢ ( ( ( - 1 ∈ ℂ ∧ - 1 ≠ 0 ) ∧ ( ( 𝑁 + 1 ) ∈ ℤ ∧ ( 2 · 𝐾 ) ∈ ℤ ) ) → ( - 1 ↑ ( ( 𝑁 + 1 ) + ( 2 · 𝐾 ) ) ) = ( ( - 1 ↑ ( 𝑁 + 1 ) ) · ( - 1 ↑ ( 2 · 𝐾 ) ) ) ) |
152 |
45 10 149 150 151
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( - 1 ↑ ( ( 𝑁 + 1 ) + ( 2 · 𝐾 ) ) ) = ( ( - 1 ↑ ( 𝑁 + 1 ) ) · ( - 1 ↑ ( 2 · 𝐾 ) ) ) ) |
153 |
29
|
nn0zd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → 𝐾 ∈ ℤ ) |
154 |
|
expmulz |
⊢ ( ( ( - 1 ∈ ℂ ∧ - 1 ≠ 0 ) ∧ ( 2 ∈ ℤ ∧ 𝐾 ∈ ℤ ) ) → ( - 1 ↑ ( 2 · 𝐾 ) ) = ( ( - 1 ↑ 2 ) ↑ 𝐾 ) ) |
155 |
45 10 106 153 154
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( - 1 ↑ ( 2 · 𝐾 ) ) = ( ( - 1 ↑ 2 ) ↑ 𝐾 ) ) |
156 |
110
|
oveq1i |
⊢ ( ( - 1 ↑ 2 ) ↑ 𝐾 ) = ( 1 ↑ 𝐾 ) |
157 |
|
1exp |
⊢ ( 𝐾 ∈ ℤ → ( 1 ↑ 𝐾 ) = 1 ) |
158 |
153 157
|
syl |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( 1 ↑ 𝐾 ) = 1 ) |
159 |
156 158
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( - 1 ↑ 2 ) ↑ 𝐾 ) = 1 ) |
160 |
155 159
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( - 1 ↑ ( 2 · 𝐾 ) ) = 1 ) |
161 |
89 160
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( - 1 ↑ ( 𝑁 + 1 ) ) · ( - 1 ↑ ( 2 · 𝐾 ) ) ) = ( - ( - 1 ↑ 𝑁 ) · 1 ) ) |
162 |
152 161
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( - 1 ↑ ( ( 𝑁 + 1 ) + ( 2 · 𝐾 ) ) ) = ( - ( - 1 ↑ 𝑁 ) · 1 ) ) |
163 |
126
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( - 1 ↑ ( ( 𝑁 + 1 ) + ( 2 · 𝐾 ) ) ) = ( - 1 ↑ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) |
164 |
16
|
negcld |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → - ( - 1 ↑ 𝑁 ) ∈ ℂ ) |
165 |
164
|
mulid1d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( - ( - 1 ↑ 𝑁 ) · 1 ) = - ( - 1 ↑ 𝑁 ) ) |
166 |
162 163 165
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( - 1 ↑ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) = - ( - 1 ↑ 𝑁 ) ) |
167 |
166
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( - 1 ↑ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) · ( 𝐺 ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) = ( - ( - 1 ↑ 𝑁 ) · ( 𝐺 ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) ) |
168 |
63 69
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( 𝐺 ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ∈ ℝ ) |
169 |
168
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( 𝐺 ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ∈ ℂ ) |
170 |
16 169
|
mulneg1d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( - ( - 1 ↑ 𝑁 ) · ( 𝐺 ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) = - ( ( - 1 ↑ 𝑁 ) · ( 𝐺 ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) ) |
171 |
148 167 170
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( 𝐹 ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) = - ( ( - 1 ↑ 𝑁 ) · ( 𝐺 ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) ) |
172 |
171
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + ( 2 · 𝐾 ) ) ) + ( 𝐹 ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + ( 2 · 𝐾 ) ) ) + - ( ( - 1 ↑ 𝑁 ) · ( 𝐺 ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) ) ) |
173 |
15 168
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( - 1 ↑ 𝑁 ) · ( 𝐺 ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) ∈ ℝ ) |
174 |
173
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( - 1 ↑ 𝑁 ) · ( 𝐺 ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) ∈ ℂ ) |
175 |
36 174
|
negsubd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + ( 2 · 𝐾 ) ) ) + - ( ( - 1 ↑ 𝑁 ) · ( 𝐺 ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + ( 2 · 𝐾 ) ) ) − ( ( - 1 ↑ 𝑁 ) · ( 𝐺 ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) ) ) |
176 |
142 172 175
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + ( 2 · 𝐾 ) ) ) − ( ( - 1 ↑ 𝑁 ) · ( 𝐺 ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) ) ) |
177 |
176
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) = ( ( - 1 ↑ 𝑁 ) · ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + ( 2 · 𝐾 ) ) ) − ( ( - 1 ↑ 𝑁 ) · ( 𝐺 ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) ) ) ) |
178 |
16 36 174
|
subdid |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( - 1 ↑ 𝑁 ) · ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + ( 2 · 𝐾 ) ) ) − ( ( - 1 ↑ 𝑁 ) · ( 𝐺 ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) ) ) = ( ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + ( 2 · 𝐾 ) ) ) ) − ( ( - 1 ↑ 𝑁 ) · ( ( - 1 ↑ 𝑁 ) · ( 𝐺 ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) ) ) ) |
179 |
115
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( - 1 ↑ 𝑁 ) · ( - 1 ↑ 𝑁 ) ) · ( 𝐺 ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) = ( 1 · ( 𝐺 ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) ) |
180 |
16 16 169
|
mulassd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( - 1 ↑ 𝑁 ) · ( - 1 ↑ 𝑁 ) ) · ( 𝐺 ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) = ( ( - 1 ↑ 𝑁 ) · ( ( - 1 ↑ 𝑁 ) · ( 𝐺 ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) ) ) |
181 |
169
|
mulid2d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( 1 · ( 𝐺 ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) = ( 𝐺 ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) |
182 |
179 180 181
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( - 1 ↑ 𝑁 ) · ( ( - 1 ↑ 𝑁 ) · ( 𝐺 ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) ) = ( 𝐺 ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) |
183 |
182
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + ( 2 · 𝐾 ) ) ) ) − ( ( - 1 ↑ 𝑁 ) · ( ( - 1 ↑ 𝑁 ) · ( 𝐺 ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) ) ) = ( ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + ( 2 · 𝐾 ) ) ) ) − ( 𝐺 ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) ) |
184 |
177 178 183
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) = ( ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + ( 2 · 𝐾 ) ) ) ) − ( 𝐺 ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) ) |
185 |
|
simp1 |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → 𝜑 ) |
186 |
1 2 3 4 5
|
iseraltlem1 |
⊢ ( ( 𝜑 ∧ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ∈ 𝑍 ) → 0 ≤ ( 𝐺 ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) |
187 |
185 69 186
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → 0 ≤ ( 𝐺 ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) |
188 |
72 168
|
subge02d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( 0 ≤ ( 𝐺 ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ↔ ( ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + ( 2 · 𝐾 ) ) ) ) − ( 𝐺 ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) ≤ ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + ( 2 · 𝐾 ) ) ) ) ) ) |
189 |
187 188
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + ( 2 · 𝐾 ) ) ) ) − ( 𝐺 ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) ≤ ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + ( 2 · 𝐾 ) ) ) ) ) |
190 |
184 189
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) ≤ ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + ( 2 · 𝐾 ) ) ) ) ) |
191 |
67 71 72 140 190
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) − ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ≤ ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + ( 2 · 𝐾 ) ) ) ) ) |
192 |
62 66
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) + ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ∈ ℝ ) |
193 |
1 2 3 4 5 6
|
iseraltlem2 |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + ( 2 · 𝐾 ) ) ) ) ≤ ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) |
194 |
1 2 3 4 5
|
iseraltlem1 |
⊢ ( ( 𝜑 ∧ ( 𝑁 + 1 ) ∈ 𝑍 ) → 0 ≤ ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) |
195 |
185 65 194
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → 0 ≤ ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) |
196 |
62 66
|
addge01d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( 0 ≤ ( 𝐺 ‘ ( 𝑁 + 1 ) ) ↔ ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ≤ ( ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) + ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) ) |
197 |
195 196
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ≤ ( ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) + ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) |
198 |
72 62 192 193 197
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + ( 2 · 𝐾 ) ) ) ) ≤ ( ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) + ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) |
199 |
72 62 66
|
absdifled |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( abs ‘ ( ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + ( 2 · 𝐾 ) ) ) ) − ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) ) ≤ ( 𝐺 ‘ ( 𝑁 + 1 ) ) ↔ ( ( ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) − ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ≤ ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + ( 2 · 𝐾 ) ) ) ) ∧ ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + ( 2 · 𝐾 ) ) ) ) ≤ ( ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) + ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) ) ) |
200 |
191 198 199
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( abs ‘ ( ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + ( 2 · 𝐾 ) ) ) ) − ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) ) ≤ ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) |
201 |
61 200
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + ( 2 · 𝐾 ) ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) ≤ ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) |
202 |
16 131 38
|
subdid |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( - 1 ↑ 𝑁 ) · ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) = ( ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) − ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) ) |
203 |
202
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( abs ‘ ( ( - 1 ↑ 𝑁 ) · ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) ) = ( abs ‘ ( ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) − ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) ) ) |
204 |
70 37
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ∈ ℝ ) |
205 |
204
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ∈ ℂ ) |
206 |
16 205
|
absmuld |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( abs ‘ ( ( - 1 ↑ 𝑁 ) · ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) ) = ( ( abs ‘ ( - 1 ↑ 𝑁 ) ) · ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) ) ) |
207 |
203 206
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( abs ‘ ( ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) − ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) ) = ( ( abs ‘ ( - 1 ↑ 𝑁 ) ) · ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) ) ) |
208 |
56
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( abs ‘ ( - 1 ↑ 𝑁 ) ) · ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) ) = ( 1 · ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) ) ) |
209 |
205
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) ∈ ℝ ) |
210 |
209
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) ∈ ℂ ) |
211 |
210
|
mulid2d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( 1 · ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) ) = ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) ) |
212 |
207 208 211
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( abs ‘ ( ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) − ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) ) = ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) ) |
213 |
71 72 192 190 198
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) ≤ ( ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) + ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) |
214 |
71 62 66
|
absdifled |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( abs ‘ ( ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) − ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) ) ≤ ( 𝐺 ‘ ( 𝑁 + 1 ) ) ↔ ( ( ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) − ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ≤ ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) ∧ ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) ≤ ( ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) + ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) ) ) |
215 |
140 213 214
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( abs ‘ ( ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) ) − ( ( - 1 ↑ 𝑁 ) · ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) ) ≤ ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) |
216 |
212 215
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) ≤ ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) |
217 |
201 216
|
jca |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0 ) → ( ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + ( 2 · 𝐾 ) ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) ≤ ( 𝐺 ‘ ( 𝑁 + 1 ) ) ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑁 + ( 2 · 𝐾 ) ) + 1 ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) ≤ ( 𝐺 ‘ ( 𝑁 + 1 ) ) ) ) |