Step |
Hyp |
Ref |
Expression |
1 |
|
fvoveq1 |
⊢ ( 𝐼 = ∅ → ( Base ‘ ( 𝐼 Mat 𝑅 ) ) = ( Base ‘ ( ∅ Mat 𝑅 ) ) ) |
2 |
|
mat0dimbas0 |
⊢ ( 𝑅 ∈ Field → ( Base ‘ ( ∅ Mat 𝑅 ) ) = { ∅ } ) |
3 |
1 2
|
sylan9eq |
⊢ ( ( 𝐼 = ∅ ∧ 𝑅 ∈ Field ) → ( Base ‘ ( 𝐼 Mat 𝑅 ) ) = { ∅ } ) |
4 |
3
|
eleq2d |
⊢ ( ( 𝐼 = ∅ ∧ 𝑅 ∈ Field ) → ( 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ↔ 𝑀 ∈ { ∅ } ) ) |
5 |
|
elsni |
⊢ ( 𝑀 ∈ { ∅ } → 𝑀 = ∅ ) |
6 |
4 5
|
syl6bi |
⊢ ( ( 𝐼 = ∅ ∧ 𝑅 ∈ Field ) → ( 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) → 𝑀 = ∅ ) ) |
7 |
6
|
imdistanda |
⊢ ( 𝐼 = ∅ → ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( 𝑅 ∈ Field ∧ 𝑀 = ∅ ) ) ) |
8 |
7
|
impcom |
⊢ ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ 𝐼 = ∅ ) → ( 𝑅 ∈ Field ∧ 𝑀 = ∅ ) ) |
9 |
|
isfld |
⊢ ( 𝑅 ∈ Field ↔ ( 𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing ) ) |
10 |
9
|
simplbi |
⊢ ( 𝑅 ∈ Field → 𝑅 ∈ DivRing ) |
11 |
|
drngring |
⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring ) |
12 |
|
eqid |
⊢ ( ∅ Mat 𝑅 ) = ( ∅ Mat 𝑅 ) |
13 |
12
|
mat0dimid |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ ( ∅ Mat 𝑅 ) ) = ∅ ) |
14 |
|
0fin |
⊢ ∅ ∈ Fin |
15 |
12
|
matring |
⊢ ( ( ∅ ∈ Fin ∧ 𝑅 ∈ Ring ) → ( ∅ Mat 𝑅 ) ∈ Ring ) |
16 |
14 15
|
mpan |
⊢ ( 𝑅 ∈ Ring → ( ∅ Mat 𝑅 ) ∈ Ring ) |
17 |
|
eqid |
⊢ ( Unit ‘ ( ∅ Mat 𝑅 ) ) = ( Unit ‘ ( ∅ Mat 𝑅 ) ) |
18 |
|
eqid |
⊢ ( 1r ‘ ( ∅ Mat 𝑅 ) ) = ( 1r ‘ ( ∅ Mat 𝑅 ) ) |
19 |
17 18
|
1unit |
⊢ ( ( ∅ Mat 𝑅 ) ∈ Ring → ( 1r ‘ ( ∅ Mat 𝑅 ) ) ∈ ( Unit ‘ ( ∅ Mat 𝑅 ) ) ) |
20 |
16 19
|
syl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ ( ∅ Mat 𝑅 ) ) ∈ ( Unit ‘ ( ∅ Mat 𝑅 ) ) ) |
21 |
13 20
|
eqeltrrd |
⊢ ( 𝑅 ∈ Ring → ∅ ∈ ( Unit ‘ ( ∅ Mat 𝑅 ) ) ) |
22 |
10 11 21
|
3syl |
⊢ ( 𝑅 ∈ Field → ∅ ∈ ( Unit ‘ ( ∅ Mat 𝑅 ) ) ) |
23 |
|
f0 |
⊢ ∅ : ∅ ⟶ ( Base ‘ ( 𝑅 freeLMod ∅ ) ) |
24 |
|
dm0 |
⊢ dom ∅ = ∅ |
25 |
24
|
feq2i |
⊢ ( ∅ : dom ∅ ⟶ ( Base ‘ ( 𝑅 freeLMod ∅ ) ) ↔ ∅ : ∅ ⟶ ( Base ‘ ( 𝑅 freeLMod ∅ ) ) ) |
26 |
23 25
|
mpbir |
⊢ ∅ : dom ∅ ⟶ ( Base ‘ ( 𝑅 freeLMod ∅ ) ) |
27 |
|
rzal |
⊢ ( dom ∅ = ∅ → ∀ 𝑥 ∈ dom ∅ ∀ 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ ( 𝑅 freeLMod ∅ ) ) ) ∖ { ( 0g ‘ ( Scalar ‘ ( 𝑅 freeLMod ∅ ) ) ) } ) ¬ ( 𝑦 ( ·𝑠 ‘ ( 𝑅 freeLMod ∅ ) ) ( ∅ ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ ( 𝑅 freeLMod ∅ ) ) ‘ ( ∅ “ ( dom ∅ ∖ { 𝑥 } ) ) ) ) |
28 |
24 27
|
ax-mp |
⊢ ∀ 𝑥 ∈ dom ∅ ∀ 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ ( 𝑅 freeLMod ∅ ) ) ) ∖ { ( 0g ‘ ( Scalar ‘ ( 𝑅 freeLMod ∅ ) ) ) } ) ¬ ( 𝑦 ( ·𝑠 ‘ ( 𝑅 freeLMod ∅ ) ) ( ∅ ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ ( 𝑅 freeLMod ∅ ) ) ‘ ( ∅ “ ( dom ∅ ∖ { 𝑥 } ) ) ) |
29 |
|
ovex |
⊢ ( 𝑅 freeLMod ∅ ) ∈ V |
30 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 freeLMod ∅ ) ) = ( Base ‘ ( 𝑅 freeLMod ∅ ) ) |
31 |
|
eqid |
⊢ ( ·𝑠 ‘ ( 𝑅 freeLMod ∅ ) ) = ( ·𝑠 ‘ ( 𝑅 freeLMod ∅ ) ) |
32 |
|
eqid |
⊢ ( LSpan ‘ ( 𝑅 freeLMod ∅ ) ) = ( LSpan ‘ ( 𝑅 freeLMod ∅ ) ) |
33 |
|
eqid |
⊢ ( Scalar ‘ ( 𝑅 freeLMod ∅ ) ) = ( Scalar ‘ ( 𝑅 freeLMod ∅ ) ) |
34 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ ( 𝑅 freeLMod ∅ ) ) ) = ( Base ‘ ( Scalar ‘ ( 𝑅 freeLMod ∅ ) ) ) |
35 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ ( 𝑅 freeLMod ∅ ) ) ) = ( 0g ‘ ( Scalar ‘ ( 𝑅 freeLMod ∅ ) ) ) |
36 |
30 31 32 33 34 35
|
islindf |
⊢ ( ( ( 𝑅 freeLMod ∅ ) ∈ V ∧ ∅ ∈ Fin ) → ( ∅ LIndF ( 𝑅 freeLMod ∅ ) ↔ ( ∅ : dom ∅ ⟶ ( Base ‘ ( 𝑅 freeLMod ∅ ) ) ∧ ∀ 𝑥 ∈ dom ∅ ∀ 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ ( 𝑅 freeLMod ∅ ) ) ) ∖ { ( 0g ‘ ( Scalar ‘ ( 𝑅 freeLMod ∅ ) ) ) } ) ¬ ( 𝑦 ( ·𝑠 ‘ ( 𝑅 freeLMod ∅ ) ) ( ∅ ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ ( 𝑅 freeLMod ∅ ) ) ‘ ( ∅ “ ( dom ∅ ∖ { 𝑥 } ) ) ) ) ) ) |
37 |
29 14 36
|
mp2an |
⊢ ( ∅ LIndF ( 𝑅 freeLMod ∅ ) ↔ ( ∅ : dom ∅ ⟶ ( Base ‘ ( 𝑅 freeLMod ∅ ) ) ∧ ∀ 𝑥 ∈ dom ∅ ∀ 𝑦 ∈ ( ( Base ‘ ( Scalar ‘ ( 𝑅 freeLMod ∅ ) ) ) ∖ { ( 0g ‘ ( Scalar ‘ ( 𝑅 freeLMod ∅ ) ) ) } ) ¬ ( 𝑦 ( ·𝑠 ‘ ( 𝑅 freeLMod ∅ ) ) ( ∅ ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ ( 𝑅 freeLMod ∅ ) ) ‘ ( ∅ “ ( dom ∅ ∖ { 𝑥 } ) ) ) ) ) |
38 |
26 28 37
|
mpbir2an |
⊢ ∅ LIndF ( 𝑅 freeLMod ∅ ) |
39 |
38
|
a1i |
⊢ ( 𝑅 ∈ Field → ∅ LIndF ( 𝑅 freeLMod ∅ ) ) |
40 |
22 39
|
2thd |
⊢ ( 𝑅 ∈ Field → ( ∅ ∈ ( Unit ‘ ( ∅ Mat 𝑅 ) ) ↔ ∅ LIndF ( 𝑅 freeLMod ∅ ) ) ) |
41 |
|
fvoveq1 |
⊢ ( 𝐼 = ∅ → ( Unit ‘ ( 𝐼 Mat 𝑅 ) ) = ( Unit ‘ ( ∅ Mat 𝑅 ) ) ) |
42 |
|
eleq12 |
⊢ ( ( 𝑀 = ∅ ∧ ( Unit ‘ ( 𝐼 Mat 𝑅 ) ) = ( Unit ‘ ( ∅ Mat 𝑅 ) ) ) → ( 𝑀 ∈ ( Unit ‘ ( 𝐼 Mat 𝑅 ) ) ↔ ∅ ∈ ( Unit ‘ ( ∅ Mat 𝑅 ) ) ) ) |
43 |
41 42
|
sylan2 |
⊢ ( ( 𝑀 = ∅ ∧ 𝐼 = ∅ ) → ( 𝑀 ∈ ( Unit ‘ ( 𝐼 Mat 𝑅 ) ) ↔ ∅ ∈ ( Unit ‘ ( ∅ Mat 𝑅 ) ) ) ) |
44 |
|
cureq |
⊢ ( 𝑀 = ∅ → curry 𝑀 = curry ∅ ) |
45 |
|
df-cur |
⊢ curry ∅ = ( 𝑥 ∈ dom dom ∅ ↦ { 〈 𝑦 , 𝑧 〉 ∣ 〈 𝑥 , 𝑦 〉 ∅ 𝑧 } ) |
46 |
24
|
dmeqi |
⊢ dom dom ∅ = dom ∅ |
47 |
46 24
|
eqtri |
⊢ dom dom ∅ = ∅ |
48 |
|
mpteq1 |
⊢ ( dom dom ∅ = ∅ → ( 𝑥 ∈ dom dom ∅ ↦ { 〈 𝑦 , 𝑧 〉 ∣ 〈 𝑥 , 𝑦 〉 ∅ 𝑧 } ) = ( 𝑥 ∈ ∅ ↦ { 〈 𝑦 , 𝑧 〉 ∣ 〈 𝑥 , 𝑦 〉 ∅ 𝑧 } ) ) |
49 |
47 48
|
ax-mp |
⊢ ( 𝑥 ∈ dom dom ∅ ↦ { 〈 𝑦 , 𝑧 〉 ∣ 〈 𝑥 , 𝑦 〉 ∅ 𝑧 } ) = ( 𝑥 ∈ ∅ ↦ { 〈 𝑦 , 𝑧 〉 ∣ 〈 𝑥 , 𝑦 〉 ∅ 𝑧 } ) |
50 |
|
mpt0 |
⊢ ( 𝑥 ∈ ∅ ↦ { 〈 𝑦 , 𝑧 〉 ∣ 〈 𝑥 , 𝑦 〉 ∅ 𝑧 } ) = ∅ |
51 |
45 49 50
|
3eqtri |
⊢ curry ∅ = ∅ |
52 |
44 51
|
eqtrdi |
⊢ ( 𝑀 = ∅ → curry 𝑀 = ∅ ) |
53 |
|
oveq2 |
⊢ ( 𝐼 = ∅ → ( 𝑅 freeLMod 𝐼 ) = ( 𝑅 freeLMod ∅ ) ) |
54 |
52 53
|
breqan12d |
⊢ ( ( 𝑀 = ∅ ∧ 𝐼 = ∅ ) → ( curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ↔ ∅ LIndF ( 𝑅 freeLMod ∅ ) ) ) |
55 |
43 54
|
bibi12d |
⊢ ( ( 𝑀 = ∅ ∧ 𝐼 = ∅ ) → ( ( 𝑀 ∈ ( Unit ‘ ( 𝐼 Mat 𝑅 ) ) ↔ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) ↔ ( ∅ ∈ ( Unit ‘ ( ∅ Mat 𝑅 ) ) ↔ ∅ LIndF ( 𝑅 freeLMod ∅ ) ) ) ) |
56 |
55
|
biimparc |
⊢ ( ( ( ∅ ∈ ( Unit ‘ ( ∅ Mat 𝑅 ) ) ↔ ∅ LIndF ( 𝑅 freeLMod ∅ ) ) ∧ ( 𝑀 = ∅ ∧ 𝐼 = ∅ ) ) → ( 𝑀 ∈ ( Unit ‘ ( 𝐼 Mat 𝑅 ) ) ↔ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) ) |
57 |
40 56
|
sylan |
⊢ ( ( 𝑅 ∈ Field ∧ ( 𝑀 = ∅ ∧ 𝐼 = ∅ ) ) → ( 𝑀 ∈ ( Unit ‘ ( 𝐼 Mat 𝑅 ) ) ↔ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) ) |
58 |
57
|
anassrs |
⊢ ( ( ( 𝑅 ∈ Field ∧ 𝑀 = ∅ ) ∧ 𝐼 = ∅ ) → ( 𝑀 ∈ ( Unit ‘ ( 𝐼 Mat 𝑅 ) ) ↔ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) ) |
59 |
8 58
|
sylancom |
⊢ ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ 𝐼 = ∅ ) → ( 𝑀 ∈ ( Unit ‘ ( 𝐼 Mat 𝑅 ) ) ↔ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) ) |
60 |
9
|
simprbi |
⊢ ( 𝑅 ∈ Field → 𝑅 ∈ CRing ) |
61 |
|
eqid |
⊢ ( 𝐼 Mat 𝑅 ) = ( 𝐼 Mat 𝑅 ) |
62 |
|
eqid |
⊢ ( 𝐼 maDet 𝑅 ) = ( 𝐼 maDet 𝑅 ) |
63 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) = ( Base ‘ ( 𝐼 Mat 𝑅 ) ) |
64 |
|
eqid |
⊢ ( Unit ‘ ( 𝐼 Mat 𝑅 ) ) = ( Unit ‘ ( 𝐼 Mat 𝑅 ) ) |
65 |
|
eqid |
⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) |
66 |
61 62 63 64 65
|
matunit |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( 𝑀 ∈ ( Unit ‘ ( 𝐼 Mat 𝑅 ) ) ↔ ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ∈ ( Unit ‘ 𝑅 ) ) ) |
67 |
60 66
|
sylan |
⊢ ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( 𝑀 ∈ ( Unit ‘ ( 𝐼 Mat 𝑅 ) ) ↔ ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ∈ ( Unit ‘ 𝑅 ) ) ) |
68 |
67
|
adantr |
⊢ ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ 𝐼 ≠ ∅ ) → ( 𝑀 ∈ ( Unit ‘ ( 𝐼 Mat 𝑅 ) ) ↔ ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ∈ ( Unit ‘ 𝑅 ) ) ) |
69 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
70 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
71 |
69 65 70
|
drngunit |
⊢ ( 𝑅 ∈ DivRing → ( ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ∈ ( Unit ‘ 𝑅 ) ↔ ( ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ≠ ( 0g ‘ 𝑅 ) ) ) ) |
72 |
10 71
|
syl |
⊢ ( 𝑅 ∈ Field → ( ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ∈ ( Unit ‘ 𝑅 ) ↔ ( ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ≠ ( 0g ‘ 𝑅 ) ) ) ) |
73 |
72
|
adantr |
⊢ ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ∈ ( Unit ‘ 𝑅 ) ↔ ( ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ≠ ( 0g ‘ 𝑅 ) ) ) ) |
74 |
62 61 63 69
|
mdetcl |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ∈ ( Base ‘ 𝑅 ) ) |
75 |
60 74
|
sylan |
⊢ ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ∈ ( Base ‘ 𝑅 ) ) |
76 |
75
|
biantrurd |
⊢ ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ≠ ( 0g ‘ 𝑅 ) ↔ ( ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ≠ ( 0g ‘ 𝑅 ) ) ) ) |
77 |
73 76
|
bitr4d |
⊢ ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ∈ ( Unit ‘ 𝑅 ) ↔ ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ≠ ( 0g ‘ 𝑅 ) ) ) |
78 |
77
|
adantr |
⊢ ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ 𝐼 ≠ ∅ ) → ( ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ∈ ( Unit ‘ 𝑅 ) ↔ ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ≠ ( 0g ‘ 𝑅 ) ) ) |
79 |
61 63
|
matrcl |
⊢ ( 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) → ( 𝐼 ∈ Fin ∧ 𝑅 ∈ V ) ) |
80 |
79
|
simpld |
⊢ ( 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) → 𝐼 ∈ Fin ) |
81 |
80
|
pm4.71i |
⊢ ( 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ↔ ( 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ∧ 𝐼 ∈ Fin ) ) |
82 |
|
xpfi |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝐼 ∈ Fin ) → ( 𝐼 × 𝐼 ) ∈ Fin ) |
83 |
82
|
anidms |
⊢ ( 𝐼 ∈ Fin → ( 𝐼 × 𝐼 ) ∈ Fin ) |
84 |
|
eqid |
⊢ ( 𝑅 freeLMod ( 𝐼 × 𝐼 ) ) = ( 𝑅 freeLMod ( 𝐼 × 𝐼 ) ) |
85 |
84 69
|
frlmfibas |
⊢ ( ( 𝑅 ∈ Field ∧ ( 𝐼 × 𝐼 ) ∈ Fin ) → ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) = ( Base ‘ ( 𝑅 freeLMod ( 𝐼 × 𝐼 ) ) ) ) |
86 |
83 85
|
sylan2 |
⊢ ( ( 𝑅 ∈ Field ∧ 𝐼 ∈ Fin ) → ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) = ( Base ‘ ( 𝑅 freeLMod ( 𝐼 × 𝐼 ) ) ) ) |
87 |
61 84
|
matbas |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝑅 ∈ Field ) → ( Base ‘ ( 𝑅 freeLMod ( 𝐼 × 𝐼 ) ) ) = ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) |
88 |
87
|
ancoms |
⊢ ( ( 𝑅 ∈ Field ∧ 𝐼 ∈ Fin ) → ( Base ‘ ( 𝑅 freeLMod ( 𝐼 × 𝐼 ) ) ) = ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) |
89 |
86 88
|
eqtrd |
⊢ ( ( 𝑅 ∈ Field ∧ 𝐼 ∈ Fin ) → ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) = ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) |
90 |
89
|
eleq2d |
⊢ ( ( 𝑅 ∈ Field ∧ 𝐼 ∈ Fin ) → ( 𝑀 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) ↔ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ) |
91 |
|
fvex |
⊢ ( Base ‘ 𝑅 ) ∈ V |
92 |
|
elmapg |
⊢ ( ( ( Base ‘ 𝑅 ) ∈ V ∧ ( 𝐼 × 𝐼 ) ∈ Fin ) → ( 𝑀 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) ↔ 𝑀 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ) |
93 |
91 83 92
|
sylancr |
⊢ ( 𝐼 ∈ Fin → ( 𝑀 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) ↔ 𝑀 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ) |
94 |
93
|
adantl |
⊢ ( ( 𝑅 ∈ Field ∧ 𝐼 ∈ Fin ) → ( 𝑀 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) ↔ 𝑀 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ) |
95 |
90 94
|
bitr3d |
⊢ ( ( 𝑅 ∈ Field ∧ 𝐼 ∈ Fin ) → ( 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ↔ 𝑀 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ) |
96 |
95
|
ex |
⊢ ( 𝑅 ∈ Field → ( 𝐼 ∈ Fin → ( 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ↔ 𝑀 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ) ) |
97 |
96
|
pm5.32rd |
⊢ ( 𝑅 ∈ Field → ( ( 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ∧ 𝐼 ∈ Fin ) ↔ ( 𝑀 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ∧ 𝐼 ∈ Fin ) ) ) |
98 |
81 97
|
syl5bb |
⊢ ( 𝑅 ∈ Field → ( 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ↔ ( 𝑀 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ∧ 𝐼 ∈ Fin ) ) ) |
99 |
98
|
biimpd |
⊢ ( 𝑅 ∈ Field → ( 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) → ( 𝑀 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ∧ 𝐼 ∈ Fin ) ) ) |
100 |
99
|
imdistani |
⊢ ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( 𝑅 ∈ Field ∧ ( 𝑀 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ∧ 𝐼 ∈ Fin ) ) ) |
101 |
|
anass |
⊢ ( ( ( 𝑅 ∈ Field ∧ 𝑀 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝐼 ∈ Fin ) ↔ ( 𝑅 ∈ Field ∧ ( 𝑀 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ∧ 𝐼 ∈ Fin ) ) ) |
102 |
100 101
|
sylibr |
⊢ ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( ( 𝑅 ∈ Field ∧ 𝑀 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝐼 ∈ Fin ) ) |
103 |
|
eldifsn |
⊢ ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ↔ ( 𝐼 ∈ Fin ∧ 𝐼 ≠ ∅ ) ) |
104 |
|
matunitlindflem1 |
⊢ ( ( ( 𝑅 ∈ Field ∧ 𝑀 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝐼 ∈ ( Fin ∖ { ∅ } ) ) → ( ¬ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) → ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) = ( 0g ‘ 𝑅 ) ) ) |
105 |
104
|
necon1ad |
⊢ ( ( ( 𝑅 ∈ Field ∧ 𝑀 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝐼 ∈ ( Fin ∖ { ∅ } ) ) → ( ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ≠ ( 0g ‘ 𝑅 ) → curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) ) |
106 |
103 105
|
sylan2br |
⊢ ( ( ( 𝑅 ∈ Field ∧ 𝑀 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ∧ ( 𝐼 ∈ Fin ∧ 𝐼 ≠ ∅ ) ) → ( ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ≠ ( 0g ‘ 𝑅 ) → curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) ) |
107 |
106
|
anassrs |
⊢ ( ( ( ( 𝑅 ∈ Field ∧ 𝑀 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝐼 ∈ Fin ) ∧ 𝐼 ≠ ∅ ) → ( ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ≠ ( 0g ‘ 𝑅 ) → curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) ) |
108 |
102 107
|
sylan |
⊢ ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ 𝐼 ≠ ∅ ) → ( ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ≠ ( 0g ‘ 𝑅 ) → curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) ) |
109 |
78 108
|
sylbid |
⊢ ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ 𝐼 ≠ ∅ ) → ( ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ∈ ( Unit ‘ 𝑅 ) → curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) ) |
110 |
|
matunitlindflem2 |
⊢ ( ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ 𝐼 ≠ ∅ ) ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) → ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ∈ ( Unit ‘ 𝑅 ) ) |
111 |
110
|
ex |
⊢ ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ 𝐼 ≠ ∅ ) → ( curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) → ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ∈ ( Unit ‘ 𝑅 ) ) ) |
112 |
109 111
|
impbid |
⊢ ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ 𝐼 ≠ ∅ ) → ( ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ∈ ( Unit ‘ 𝑅 ) ↔ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) ) |
113 |
68 112
|
bitrd |
⊢ ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ 𝐼 ≠ ∅ ) → ( 𝑀 ∈ ( Unit ‘ ( 𝐼 Mat 𝑅 ) ) ↔ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) ) |
114 |
59 113
|
pm2.61dane |
⊢ ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( 𝑀 ∈ ( Unit ‘ ( 𝐼 Mat 𝑅 ) ) ↔ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) ) |