| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ptrest.0 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 2 |
|
ptrest.1 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ Top ) |
| 3 |
|
ptrest.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑆 ∈ 𝑊 ) |
| 4 |
|
firest |
⊢ ( fi ‘ ( ( { ∪ ( ∏t ‘ 𝐹 ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ↾t X 𝑘 ∈ 𝐴 𝑆 ) ) = ( ( fi ‘ ( { ∪ ( ∏t ‘ 𝐹 ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ) ↾t X 𝑘 ∈ 𝐴 𝑆 ) |
| 5 |
|
snex |
⊢ { ∪ ( ∏t ‘ 𝐹 ) } ∈ V |
| 6 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑢 ) ∈ V |
| 7 |
6
|
rgenw |
⊢ ∀ 𝑢 ∈ 𝐴 ( 𝐹 ‘ 𝑢 ) ∈ V |
| 8 |
|
eqid |
⊢ ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) = ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) |
| 9 |
8
|
mpoexxg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑢 ∈ 𝐴 ( 𝐹 ‘ 𝑢 ) ∈ V ) → ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ∈ V ) |
| 10 |
1 7 9
|
sylancl |
⊢ ( 𝜑 → ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ∈ V ) |
| 11 |
|
rnexg |
⊢ ( ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ∈ V → ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ∈ V ) |
| 12 |
10 11
|
syl |
⊢ ( 𝜑 → ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ∈ V ) |
| 13 |
|
unexg |
⊢ ( ( { ∪ ( ∏t ‘ 𝐹 ) } ∈ V ∧ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ∈ V ) → ( { ∪ ( ∏t ‘ 𝐹 ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ∈ V ) |
| 14 |
5 12 13
|
sylancr |
⊢ ( 𝜑 → ( { ∪ ( ∏t ‘ 𝐹 ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ∈ V ) |
| 15 |
3
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝑆 ∈ 𝑊 ) |
| 16 |
|
ixpexg |
⊢ ( ∀ 𝑘 ∈ 𝐴 𝑆 ∈ 𝑊 → X 𝑘 ∈ 𝐴 𝑆 ∈ V ) |
| 17 |
15 16
|
syl |
⊢ ( 𝜑 → X 𝑘 ∈ 𝐴 𝑆 ∈ V ) |
| 18 |
|
restval |
⊢ ( ( ( { ∪ ( ∏t ‘ 𝐹 ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ∈ V ∧ X 𝑘 ∈ 𝐴 𝑆 ∈ V ) → ( ( { ∪ ( ∏t ‘ 𝐹 ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ↾t X 𝑘 ∈ 𝐴 𝑆 ) = ran ( 𝑥 ∈ ( { ∪ ( ∏t ‘ 𝐹 ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ↦ ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) ) |
| 19 |
14 17 18
|
syl2anc |
⊢ ( 𝜑 → ( ( { ∪ ( ∏t ‘ 𝐹 ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ↾t X 𝑘 ∈ 𝐴 𝑆 ) = ran ( 𝑥 ∈ ( { ∪ ( ∏t ‘ 𝐹 ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ↦ ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) ) |
| 20 |
|
mptun |
⊢ ( 𝑥 ∈ ( { ∪ ( ∏t ‘ 𝐹 ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ↦ ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) = ( ( 𝑥 ∈ { ∪ ( ∏t ‘ 𝐹 ) } ↦ ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) ∪ ( 𝑥 ∈ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ↦ ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) ) |
| 21 |
20
|
rneqi |
⊢ ran ( 𝑥 ∈ ( { ∪ ( ∏t ‘ 𝐹 ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ↦ ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) = ran ( ( 𝑥 ∈ { ∪ ( ∏t ‘ 𝐹 ) } ↦ ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) ∪ ( 𝑥 ∈ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ↦ ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) ) |
| 22 |
|
rnun |
⊢ ran ( ( 𝑥 ∈ { ∪ ( ∏t ‘ 𝐹 ) } ↦ ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) ∪ ( 𝑥 ∈ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ↦ ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) ) = ( ran ( 𝑥 ∈ { ∪ ( ∏t ‘ 𝐹 ) } ↦ ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) ∪ ran ( 𝑥 ∈ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ↦ ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) ) |
| 23 |
21 22
|
eqtri |
⊢ ran ( 𝑥 ∈ ( { ∪ ( ∏t ‘ 𝐹 ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ↦ ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) = ( ran ( 𝑥 ∈ { ∪ ( ∏t ‘ 𝐹 ) } ↦ ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) ∪ ran ( 𝑥 ∈ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ↦ ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) ) |
| 24 |
|
elsni |
⊢ ( 𝑥 ∈ { ∪ ( ∏t ‘ 𝐹 ) } → 𝑥 = ∪ ( ∏t ‘ 𝐹 ) ) |
| 25 |
24
|
ineq1d |
⊢ ( 𝑥 ∈ { ∪ ( ∏t ‘ 𝐹 ) } → ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) = ( ∪ ( ∏t ‘ 𝐹 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) |
| 26 |
25
|
mpteq2ia |
⊢ ( 𝑥 ∈ { ∪ ( ∏t ‘ 𝐹 ) } ↦ ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) = ( 𝑥 ∈ { ∪ ( ∏t ‘ 𝐹 ) } ↦ ( ∪ ( ∏t ‘ 𝐹 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) |
| 27 |
|
fvex |
⊢ ( ∏t ‘ 𝐹 ) ∈ V |
| 28 |
27
|
uniex |
⊢ ∪ ( ∏t ‘ 𝐹 ) ∈ V |
| 29 |
28
|
inex1 |
⊢ ( ∪ ( ∏t ‘ 𝐹 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ∈ V |
| 30 |
|
fmptsn |
⊢ ( ( ∪ ( ∏t ‘ 𝐹 ) ∈ V ∧ ( ∪ ( ∏t ‘ 𝐹 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ∈ V ) → { 〈 ∪ ( ∏t ‘ 𝐹 ) , ( ∪ ( ∏t ‘ 𝐹 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) 〉 } = ( 𝑥 ∈ { ∪ ( ∏t ‘ 𝐹 ) } ↦ ( ∪ ( ∏t ‘ 𝐹 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) ) |
| 31 |
28 29 30
|
mp2an |
⊢ { 〈 ∪ ( ∏t ‘ 𝐹 ) , ( ∪ ( ∏t ‘ 𝐹 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) 〉 } = ( 𝑥 ∈ { ∪ ( ∏t ‘ 𝐹 ) } ↦ ( ∪ ( ∏t ‘ 𝐹 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) |
| 32 |
26 31
|
eqtr4i |
⊢ ( 𝑥 ∈ { ∪ ( ∏t ‘ 𝐹 ) } ↦ ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) = { 〈 ∪ ( ∏t ‘ 𝐹 ) , ( ∪ ( ∏t ‘ 𝐹 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) 〉 } |
| 33 |
32
|
rneqi |
⊢ ran ( 𝑥 ∈ { ∪ ( ∏t ‘ 𝐹 ) } ↦ ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) = ran { 〈 ∪ ( ∏t ‘ 𝐹 ) , ( ∪ ( ∏t ‘ 𝐹 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) 〉 } |
| 34 |
28
|
rnsnop |
⊢ ran { 〈 ∪ ( ∏t ‘ 𝐹 ) , ( ∪ ( ∏t ‘ 𝐹 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) 〉 } = { ( ∪ ( ∏t ‘ 𝐹 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) } |
| 35 |
33 34
|
eqtri |
⊢ ran ( 𝑥 ∈ { ∪ ( ∏t ‘ 𝐹 ) } ↦ ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) = { ( ∪ ( ∏t ‘ 𝐹 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) } |
| 36 |
2
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) ∈ Top ) |
| 37 |
|
inss1 |
⊢ ( ∪ ( 𝐹 ‘ 𝑘 ) ∩ 𝑆 ) ⊆ ∪ ( 𝐹 ‘ 𝑘 ) |
| 38 |
|
eqid |
⊢ ∪ ( 𝐹 ‘ 𝑘 ) = ∪ ( 𝐹 ‘ 𝑘 ) |
| 39 |
38
|
restuni |
⊢ ( ( ( 𝐹 ‘ 𝑘 ) ∈ Top ∧ ( ∪ ( 𝐹 ‘ 𝑘 ) ∩ 𝑆 ) ⊆ ∪ ( 𝐹 ‘ 𝑘 ) ) → ( ∪ ( 𝐹 ‘ 𝑘 ) ∩ 𝑆 ) = ∪ ( ( 𝐹 ‘ 𝑘 ) ↾t ( ∪ ( 𝐹 ‘ 𝑘 ) ∩ 𝑆 ) ) ) |
| 40 |
36 37 39
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ∪ ( 𝐹 ‘ 𝑘 ) ∩ 𝑆 ) = ∪ ( ( 𝐹 ‘ 𝑘 ) ↾t ( ∪ ( 𝐹 ‘ 𝑘 ) ∩ 𝑆 ) ) ) |
| 41 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑘 ) ∈ V |
| 42 |
38
|
restin |
⊢ ( ( ( 𝐹 ‘ 𝑘 ) ∈ V ∧ 𝑆 ∈ 𝑊 ) → ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) = ( ( 𝐹 ‘ 𝑘 ) ↾t ( 𝑆 ∩ ∪ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 43 |
41 3 42
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) = ( ( 𝐹 ‘ 𝑘 ) ↾t ( 𝑆 ∩ ∪ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 44 |
|
incom |
⊢ ( 𝑆 ∩ ∪ ( 𝐹 ‘ 𝑘 ) ) = ( ∪ ( 𝐹 ‘ 𝑘 ) ∩ 𝑆 ) |
| 45 |
44
|
oveq2i |
⊢ ( ( 𝐹 ‘ 𝑘 ) ↾t ( 𝑆 ∩ ∪ ( 𝐹 ‘ 𝑘 ) ) ) = ( ( 𝐹 ‘ 𝑘 ) ↾t ( ∪ ( 𝐹 ‘ 𝑘 ) ∩ 𝑆 ) ) |
| 46 |
43 45
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) = ( ( 𝐹 ‘ 𝑘 ) ↾t ( ∪ ( 𝐹 ‘ 𝑘 ) ∩ 𝑆 ) ) ) |
| 47 |
46
|
unieqd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ∪ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) = ∪ ( ( 𝐹 ‘ 𝑘 ) ↾t ( ∪ ( 𝐹 ‘ 𝑘 ) ∩ 𝑆 ) ) ) |
| 48 |
40 47
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ∪ ( 𝐹 ‘ 𝑘 ) ∩ 𝑆 ) = ∪ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) |
| 49 |
48
|
ixpeq2dva |
⊢ ( 𝜑 → X 𝑘 ∈ 𝐴 ( ∪ ( 𝐹 ‘ 𝑘 ) ∩ 𝑆 ) = X 𝑘 ∈ 𝐴 ∪ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) |
| 50 |
|
ixpin |
⊢ X 𝑘 ∈ 𝐴 ( ∪ ( 𝐹 ‘ 𝑘 ) ∩ 𝑆 ) = ( X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) |
| 51 |
|
nfcv |
⊢ Ⅎ 𝑦 ∪ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) |
| 52 |
|
nfcv |
⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑦 ) |
| 53 |
|
nfcv |
⊢ Ⅎ 𝑘 ↾t |
| 54 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑦 / 𝑘 ⦌ 𝑆 |
| 55 |
52 53 54
|
nfov |
⊢ Ⅎ 𝑘 ( ( 𝐹 ‘ 𝑦 ) ↾t ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) |
| 56 |
55
|
nfuni |
⊢ Ⅎ 𝑘 ∪ ( ( 𝐹 ‘ 𝑦 ) ↾t ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) |
| 57 |
|
fveq2 |
⊢ ( 𝑘 = 𝑦 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 58 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑦 → 𝑆 = ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) |
| 59 |
57 58
|
oveq12d |
⊢ ( 𝑘 = 𝑦 → ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) = ( ( 𝐹 ‘ 𝑦 ) ↾t ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) ) |
| 60 |
59
|
unieqd |
⊢ ( 𝑘 = 𝑦 → ∪ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) = ∪ ( ( 𝐹 ‘ 𝑦 ) ↾t ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) ) |
| 61 |
51 56 60
|
cbvixp |
⊢ X 𝑘 ∈ 𝐴 ∪ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) = X 𝑦 ∈ 𝐴 ∪ ( ( 𝐹 ‘ 𝑦 ) ↾t ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) |
| 62 |
|
ixpeq2 |
⊢ ( ∀ 𝑦 ∈ 𝐴 ∪ ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑦 ) = ∪ ( ( 𝐹 ‘ 𝑦 ) ↾t ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) → X 𝑦 ∈ 𝐴 ∪ ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑦 ) = X 𝑦 ∈ 𝐴 ∪ ( ( 𝐹 ‘ 𝑦 ) ↾t ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) ) |
| 63 |
|
ovex |
⊢ ( ( 𝐹 ‘ 𝑦 ) ↾t ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) ∈ V |
| 64 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑦 |
| 65 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) = ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) |
| 66 |
64 55 59 65
|
fvmptf |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( ( 𝐹 ‘ 𝑦 ) ↾t ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) ∈ V ) → ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑦 ) = ( ( 𝐹 ‘ 𝑦 ) ↾t ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) ) |
| 67 |
63 66
|
mpan2 |
⊢ ( 𝑦 ∈ 𝐴 → ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑦 ) = ( ( 𝐹 ‘ 𝑦 ) ↾t ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) ) |
| 68 |
67
|
unieqd |
⊢ ( 𝑦 ∈ 𝐴 → ∪ ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑦 ) = ∪ ( ( 𝐹 ‘ 𝑦 ) ↾t ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) ) |
| 69 |
62 68
|
mprg |
⊢ X 𝑦 ∈ 𝐴 ∪ ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑦 ) = X 𝑦 ∈ 𝐴 ∪ ( ( 𝐹 ‘ 𝑦 ) ↾t ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) |
| 70 |
61 69
|
eqtr4i |
⊢ X 𝑘 ∈ 𝐴 ∪ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) = X 𝑦 ∈ 𝐴 ∪ ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑦 ) |
| 71 |
49 50 70
|
3eqtr3g |
⊢ ( 𝜑 → ( X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) = X 𝑦 ∈ 𝐴 ∪ ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑦 ) ) |
| 72 |
|
eqid |
⊢ ( ∏t ‘ 𝐹 ) = ( ∏t ‘ 𝐹 ) |
| 73 |
72
|
ptuni |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) = ∪ ( ∏t ‘ 𝐹 ) ) |
| 74 |
1 2 73
|
syl2anc |
⊢ ( 𝜑 → X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) = ∪ ( ∏t ‘ 𝐹 ) ) |
| 75 |
74
|
ineq1d |
⊢ ( 𝜑 → ( X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) = ( ∪ ( ∏t ‘ 𝐹 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) |
| 76 |
|
resttop |
⊢ ( ( ( 𝐹 ‘ 𝑘 ) ∈ Top ∧ 𝑆 ∈ 𝑊 ) → ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ∈ Top ) |
| 77 |
36 3 76
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ∈ Top ) |
| 78 |
77
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) : 𝐴 ⟶ Top ) |
| 79 |
|
eqid |
⊢ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) = ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) |
| 80 |
79
|
ptuni |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) : 𝐴 ⟶ Top ) → X 𝑦 ∈ 𝐴 ∪ ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑦 ) = ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ) |
| 81 |
1 78 80
|
syl2anc |
⊢ ( 𝜑 → X 𝑦 ∈ 𝐴 ∪ ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑦 ) = ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ) |
| 82 |
71 75 81
|
3eqtr3d |
⊢ ( 𝜑 → ( ∪ ( ∏t ‘ 𝐹 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) = ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ) |
| 83 |
82
|
sneqd |
⊢ ( 𝜑 → { ( ∪ ( ∏t ‘ 𝐹 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) } = { ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) } ) |
| 84 |
35 83
|
eqtrid |
⊢ ( 𝜑 → ran ( 𝑥 ∈ { ∪ ( ∏t ‘ 𝐹 ) } ↦ ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) = { ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) } ) |
| 85 |
|
vex |
⊢ 𝑤 ∈ V |
| 86 |
85
|
elixp |
⊢ ( 𝑤 ∈ X 𝑘 ∈ 𝐴 𝑆 ↔ ( 𝑤 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑤 ‘ 𝑘 ) ∈ 𝑆 ) ) |
| 87 |
86
|
simprbi |
⊢ ( 𝑤 ∈ X 𝑘 ∈ 𝐴 𝑆 → ∀ 𝑘 ∈ 𝐴 ( 𝑤 ‘ 𝑘 ) ∈ 𝑆 ) |
| 88 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑢 / 𝑘 ⦌ 𝑆 |
| 89 |
88
|
nfel2 |
⊢ Ⅎ 𝑘 ( 𝑤 ‘ 𝑢 ) ∈ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 |
| 90 |
|
fveq2 |
⊢ ( 𝑘 = 𝑢 → ( 𝑤 ‘ 𝑘 ) = ( 𝑤 ‘ 𝑢 ) ) |
| 91 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑢 → 𝑆 = ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) |
| 92 |
90 91
|
eleq12d |
⊢ ( 𝑘 = 𝑢 → ( ( 𝑤 ‘ 𝑘 ) ∈ 𝑆 ↔ ( 𝑤 ‘ 𝑢 ) ∈ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) |
| 93 |
89 92
|
rspc |
⊢ ( 𝑢 ∈ 𝐴 → ( ∀ 𝑘 ∈ 𝐴 ( 𝑤 ‘ 𝑘 ) ∈ 𝑆 → ( 𝑤 ‘ 𝑢 ) ∈ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) |
| 94 |
87 93
|
syl5 |
⊢ ( 𝑢 ∈ 𝐴 → ( 𝑤 ∈ X 𝑘 ∈ 𝐴 𝑆 → ( 𝑤 ‘ 𝑢 ) ∈ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) |
| 95 |
94
|
pm4.71d |
⊢ ( 𝑢 ∈ 𝐴 → ( 𝑤 ∈ X 𝑘 ∈ 𝐴 𝑆 ↔ ( 𝑤 ∈ X 𝑘 ∈ 𝐴 𝑆 ∧ ( 𝑤 ‘ 𝑢 ) ∈ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) ) |
| 96 |
95
|
anbi2d |
⊢ ( 𝑢 ∈ 𝐴 → ( ( ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ ( 𝑤 ‘ 𝑢 ) ∈ 𝑣 ) ∧ 𝑤 ∈ X 𝑘 ∈ 𝐴 𝑆 ) ↔ ( ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ ( 𝑤 ‘ 𝑢 ) ∈ 𝑣 ) ∧ ( 𝑤 ∈ X 𝑘 ∈ 𝐴 𝑆 ∧ ( 𝑤 ‘ 𝑢 ) ∈ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) ) ) |
| 97 |
|
an4 |
⊢ ( ( ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ ( 𝑤 ‘ 𝑢 ) ∈ 𝑣 ) ∧ ( 𝑤 ∈ X 𝑘 ∈ 𝐴 𝑆 ∧ ( 𝑤 ‘ 𝑢 ) ∈ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) ↔ ( ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑤 ∈ X 𝑘 ∈ 𝐴 𝑆 ) ∧ ( ( 𝑤 ‘ 𝑢 ) ∈ 𝑣 ∧ ( 𝑤 ‘ 𝑢 ) ∈ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) ) |
| 98 |
|
elin |
⊢ ( ( 𝑤 ‘ 𝑢 ) ∈ ( 𝑣 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ↔ ( ( 𝑤 ‘ 𝑢 ) ∈ 𝑣 ∧ ( 𝑤 ‘ 𝑢 ) ∈ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) |
| 99 |
98
|
anbi2i |
⊢ ( ( ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑤 ∈ X 𝑘 ∈ 𝐴 𝑆 ) ∧ ( 𝑤 ‘ 𝑢 ) ∈ ( 𝑣 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) ↔ ( ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑤 ∈ X 𝑘 ∈ 𝐴 𝑆 ) ∧ ( ( 𝑤 ‘ 𝑢 ) ∈ 𝑣 ∧ ( 𝑤 ‘ 𝑢 ) ∈ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) ) |
| 100 |
97 99
|
bitr4i |
⊢ ( ( ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ ( 𝑤 ‘ 𝑢 ) ∈ 𝑣 ) ∧ ( 𝑤 ∈ X 𝑘 ∈ 𝐴 𝑆 ∧ ( 𝑤 ‘ 𝑢 ) ∈ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) ↔ ( ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑤 ∈ X 𝑘 ∈ 𝐴 𝑆 ) ∧ ( 𝑤 ‘ 𝑢 ) ∈ ( 𝑣 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) ) |
| 101 |
96 100
|
bitrdi |
⊢ ( 𝑢 ∈ 𝐴 → ( ( ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ ( 𝑤 ‘ 𝑢 ) ∈ 𝑣 ) ∧ 𝑤 ∈ X 𝑘 ∈ 𝐴 𝑆 ) ↔ ( ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑤 ∈ X 𝑘 ∈ 𝐴 𝑆 ) ∧ ( 𝑤 ‘ 𝑢 ) ∈ ( 𝑣 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) ) ) |
| 102 |
|
elin |
⊢ ( 𝑤 ∈ ( ∪ ( ∏t ‘ 𝐹 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ↔ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑤 ∈ X 𝑘 ∈ 𝐴 𝑆 ) ) |
| 103 |
82
|
eleq2d |
⊢ ( 𝜑 → ( 𝑤 ∈ ( ∪ ( ∏t ‘ 𝐹 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ↔ 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ) ) |
| 104 |
102 103
|
bitr3id |
⊢ ( 𝜑 → ( ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑤 ∈ X 𝑘 ∈ 𝐴 𝑆 ) ↔ 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ) ) |
| 105 |
104
|
anbi1d |
⊢ ( 𝜑 → ( ( ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑤 ∈ X 𝑘 ∈ 𝐴 𝑆 ) ∧ ( 𝑤 ‘ 𝑢 ) ∈ ( 𝑣 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) ↔ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ∧ ( 𝑤 ‘ 𝑢 ) ∈ ( 𝑣 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) ) ) |
| 106 |
101 105
|
sylan9bbr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ) → ( ( ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ ( 𝑤 ‘ 𝑢 ) ∈ 𝑣 ) ∧ 𝑤 ∈ X 𝑘 ∈ 𝐴 𝑆 ) ↔ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ∧ ( 𝑤 ‘ 𝑢 ) ∈ ( 𝑣 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) ) ) |
| 107 |
106
|
abbidv |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ) → { 𝑤 ∣ ( ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ ( 𝑤 ‘ 𝑢 ) ∈ 𝑣 ) ∧ 𝑤 ∈ X 𝑘 ∈ 𝐴 𝑆 ) } = { 𝑤 ∣ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ∧ ( 𝑤 ‘ 𝑢 ) ∈ ( 𝑣 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) } ) |
| 108 |
|
eqid |
⊢ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) = ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) |
| 109 |
108
|
mptpreima |
⊢ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) = { 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ∣ ( 𝑤 ‘ 𝑢 ) ∈ 𝑣 } |
| 110 |
|
df-rab |
⊢ { 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ∣ ( 𝑤 ‘ 𝑢 ) ∈ 𝑣 } = { 𝑤 ∣ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ ( 𝑤 ‘ 𝑢 ) ∈ 𝑣 ) } |
| 111 |
109 110
|
eqtr2i |
⊢ { 𝑤 ∣ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ ( 𝑤 ‘ 𝑢 ) ∈ 𝑣 ) } = ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) |
| 112 |
|
abid2 |
⊢ { 𝑤 ∣ 𝑤 ∈ X 𝑘 ∈ 𝐴 𝑆 } = X 𝑘 ∈ 𝐴 𝑆 |
| 113 |
111 112
|
ineq12i |
⊢ ( { 𝑤 ∣ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ ( 𝑤 ‘ 𝑢 ) ∈ 𝑣 ) } ∩ { 𝑤 ∣ 𝑤 ∈ X 𝑘 ∈ 𝐴 𝑆 } ) = ( ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) |
| 114 |
|
inab |
⊢ ( { 𝑤 ∣ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ ( 𝑤 ‘ 𝑢 ) ∈ 𝑣 ) } ∩ { 𝑤 ∣ 𝑤 ∈ X 𝑘 ∈ 𝐴 𝑆 } ) = { 𝑤 ∣ ( ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ ( 𝑤 ‘ 𝑢 ) ∈ 𝑣 ) ∧ 𝑤 ∈ X 𝑘 ∈ 𝐴 𝑆 ) } |
| 115 |
113 114
|
eqtr3i |
⊢ ( ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) = { 𝑤 ∣ ( ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ ( 𝑤 ‘ 𝑢 ) ∈ 𝑣 ) ∧ 𝑤 ∈ X 𝑘 ∈ 𝐴 𝑆 ) } |
| 116 |
|
eqid |
⊢ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) = ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) |
| 117 |
116
|
mptpreima |
⊢ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ ( 𝑣 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) = { 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ∣ ( 𝑤 ‘ 𝑢 ) ∈ ( 𝑣 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) } |
| 118 |
|
df-rab |
⊢ { 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ∣ ( 𝑤 ‘ 𝑢 ) ∈ ( 𝑣 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) } = { 𝑤 ∣ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ∧ ( 𝑤 ‘ 𝑢 ) ∈ ( 𝑣 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) } |
| 119 |
117 118
|
eqtri |
⊢ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ ( 𝑣 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) = { 𝑤 ∣ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ∧ ( 𝑤 ‘ 𝑢 ) ∈ ( 𝑣 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) } |
| 120 |
107 115 119
|
3eqtr4g |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ) → ( ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) = ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ ( 𝑣 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) ) |
| 121 |
120
|
eqeq2d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ) → ( 𝑥 = ( ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ↔ 𝑥 = ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ ( 𝑣 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) ) ) |
| 122 |
121
|
rexbidv |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ) → ( ∃ 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) 𝑥 = ( ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ↔ ∃ 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) 𝑥 = ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ ( 𝑣 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) ) ) |
| 123 |
|
ineq1 |
⊢ ( 𝑣 = 𝑦 → ( 𝑣 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) = ( 𝑦 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) |
| 124 |
123
|
imaeq2d |
⊢ ( 𝑣 = 𝑦 → ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ ( 𝑣 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) = ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ ( 𝑦 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) ) |
| 125 |
124
|
eqeq2d |
⊢ ( 𝑣 = 𝑦 → ( 𝑥 = ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ ( 𝑣 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) ↔ 𝑥 = ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ ( 𝑦 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) ) ) |
| 126 |
125
|
cbvrexvw |
⊢ ( ∃ 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) 𝑥 = ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ ( 𝑣 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) ↔ ∃ 𝑦 ∈ ( 𝐹 ‘ 𝑢 ) 𝑥 = ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ ( 𝑦 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) ) |
| 127 |
122 126
|
bitrdi |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ) → ( ∃ 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) 𝑥 = ( ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ↔ ∃ 𝑦 ∈ ( 𝐹 ‘ 𝑢 ) 𝑥 = ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ ( 𝑦 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) ) ) |
| 128 |
|
vex |
⊢ 𝑦 ∈ V |
| 129 |
128
|
inex1 |
⊢ ( 𝑦 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ∈ V |
| 130 |
129
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑢 ) ) → ( 𝑦 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ∈ V ) |
| 131 |
|
ovex |
⊢ ( ( 𝐹 ‘ 𝑢 ) ↾t ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ∈ V |
| 132 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑢 |
| 133 |
|
nfcv |
⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑢 ) |
| 134 |
133 53 88
|
nfov |
⊢ Ⅎ 𝑘 ( ( 𝐹 ‘ 𝑢 ) ↾t ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) |
| 135 |
|
fveq2 |
⊢ ( 𝑘 = 𝑢 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑢 ) ) |
| 136 |
135 91
|
oveq12d |
⊢ ( 𝑘 = 𝑢 → ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) = ( ( 𝐹 ‘ 𝑢 ) ↾t ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) |
| 137 |
132 134 136 65
|
fvmptf |
⊢ ( ( 𝑢 ∈ 𝐴 ∧ ( ( 𝐹 ‘ 𝑢 ) ↾t ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ∈ V ) → ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) = ( ( 𝐹 ‘ 𝑢 ) ↾t ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) |
| 138 |
131 137
|
mpan2 |
⊢ ( 𝑢 ∈ 𝐴 → ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) = ( ( 𝐹 ‘ 𝑢 ) ↾t ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) |
| 139 |
138
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) = ( ( 𝐹 ‘ 𝑢 ) ↾t ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) |
| 140 |
139
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ) → ( 𝑣 ∈ ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) ↔ 𝑣 ∈ ( ( 𝐹 ‘ 𝑢 ) ↾t ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) ) |
| 141 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑢 ∈ 𝐴 ) |
| 142 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑢 / 𝑘 ⦌ 𝑊 |
| 143 |
88 142
|
nfel |
⊢ Ⅎ 𝑘 ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ∈ ⦋ 𝑢 / 𝑘 ⦌ 𝑊 |
| 144 |
141 143
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ) → ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ∈ ⦋ 𝑢 / 𝑘 ⦌ 𝑊 ) |
| 145 |
|
eleq1w |
⊢ ( 𝑘 = 𝑢 → ( 𝑘 ∈ 𝐴 ↔ 𝑢 ∈ 𝐴 ) ) |
| 146 |
145
|
anbi2d |
⊢ ( 𝑘 = 𝑢 → ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ↔ ( 𝜑 ∧ 𝑢 ∈ 𝐴 ) ) ) |
| 147 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑢 → 𝑊 = ⦋ 𝑢 / 𝑘 ⦌ 𝑊 ) |
| 148 |
91 147
|
eleq12d |
⊢ ( 𝑘 = 𝑢 → ( 𝑆 ∈ 𝑊 ↔ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ∈ ⦋ 𝑢 / 𝑘 ⦌ 𝑊 ) ) |
| 149 |
146 148
|
imbi12d |
⊢ ( 𝑘 = 𝑢 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑆 ∈ 𝑊 ) ↔ ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ) → ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ∈ ⦋ 𝑢 / 𝑘 ⦌ 𝑊 ) ) ) |
| 150 |
144 149 3
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ) → ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ∈ ⦋ 𝑢 / 𝑘 ⦌ 𝑊 ) |
| 151 |
|
elrest |
⊢ ( ( ( 𝐹 ‘ 𝑢 ) ∈ V ∧ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ∈ ⦋ 𝑢 / 𝑘 ⦌ 𝑊 ) → ( 𝑣 ∈ ( ( 𝐹 ‘ 𝑢 ) ↾t ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ↔ ∃ 𝑦 ∈ ( 𝐹 ‘ 𝑢 ) 𝑣 = ( 𝑦 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) ) |
| 152 |
6 150 151
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ) → ( 𝑣 ∈ ( ( 𝐹 ‘ 𝑢 ) ↾t ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ↔ ∃ 𝑦 ∈ ( 𝐹 ‘ 𝑢 ) 𝑣 = ( 𝑦 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) ) |
| 153 |
140 152
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ) → ( 𝑣 ∈ ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) ↔ ∃ 𝑦 ∈ ( 𝐹 ‘ 𝑢 ) 𝑣 = ( 𝑦 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) ) |
| 154 |
|
imaeq2 |
⊢ ( 𝑣 = ( 𝑦 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) → ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) = ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ ( 𝑦 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) ) |
| 155 |
154
|
eqeq2d |
⊢ ( 𝑣 = ( 𝑦 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) → ( 𝑥 = ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ↔ 𝑥 = ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ ( 𝑦 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) ) ) |
| 156 |
155
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑣 = ( 𝑦 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) → ( 𝑥 = ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ↔ 𝑥 = ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ ( 𝑦 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) ) ) |
| 157 |
130 153 156
|
rexxfr2d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ) → ( ∃ 𝑣 ∈ ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) 𝑥 = ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ↔ ∃ 𝑦 ∈ ( 𝐹 ‘ 𝑢 ) 𝑥 = ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ ( 𝑦 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) ) ) |
| 158 |
127 157
|
bitr4d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ) → ( ∃ 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) 𝑥 = ( ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ↔ ∃ 𝑣 ∈ ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) 𝑥 = ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) |
| 159 |
158
|
rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑢 ∈ 𝐴 ∃ 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) 𝑥 = ( ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ↔ ∃ 𝑢 ∈ 𝐴 ∃ 𝑣 ∈ ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) 𝑥 = ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) |
| 160 |
159
|
abbidv |
⊢ ( 𝜑 → { 𝑥 ∣ ∃ 𝑢 ∈ 𝐴 ∃ 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) 𝑥 = ( ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) } = { 𝑥 ∣ ∃ 𝑢 ∈ 𝐴 ∃ 𝑣 ∈ ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) 𝑥 = ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) } ) |
| 161 |
|
eqid |
⊢ ( 𝑥 ∈ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ↦ ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) = ( 𝑥 ∈ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ↦ ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) |
| 162 |
161
|
rnmpt |
⊢ ran ( 𝑥 ∈ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ↦ ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) = { 𝑦 ∣ ∃ 𝑥 ∈ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) 𝑦 = ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) } |
| 163 |
|
nfre1 |
⊢ Ⅎ 𝑥 ∃ 𝑥 ∈ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) 𝑦 = ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) |
| 164 |
|
nfv |
⊢ Ⅎ 𝑦 ∃ 𝑢 ∈ 𝐴 ∃ 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) 𝑥 = ( ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) |
| 165 |
28
|
mptex |
⊢ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) ∈ V |
| 166 |
165
|
cnvex |
⊢ ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) ∈ V |
| 167 |
166
|
imaex |
⊢ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ∈ V |
| 168 |
167
|
rgen2w |
⊢ ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ∈ V |
| 169 |
|
ineq1 |
⊢ ( 𝑥 = ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) → ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) = ( ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) |
| 170 |
169
|
eqeq2d |
⊢ ( 𝑥 = ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) → ( 𝑦 = ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ↔ 𝑦 = ( ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) ) |
| 171 |
8 170
|
rexrnmpo |
⊢ ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ∈ V → ( ∃ 𝑥 ∈ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) 𝑦 = ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ↔ ∃ 𝑢 ∈ 𝐴 ∃ 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) 𝑦 = ( ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) ) |
| 172 |
168 171
|
ax-mp |
⊢ ( ∃ 𝑥 ∈ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) 𝑦 = ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ↔ ∃ 𝑢 ∈ 𝐴 ∃ 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) 𝑦 = ( ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) |
| 173 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 = ( ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ↔ 𝑥 = ( ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) ) |
| 174 |
173
|
2rexbidv |
⊢ ( 𝑦 = 𝑥 → ( ∃ 𝑢 ∈ 𝐴 ∃ 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) 𝑦 = ( ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ↔ ∃ 𝑢 ∈ 𝐴 ∃ 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) 𝑥 = ( ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) ) |
| 175 |
172 174
|
bitrid |
⊢ ( 𝑦 = 𝑥 → ( ∃ 𝑥 ∈ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) 𝑦 = ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ↔ ∃ 𝑢 ∈ 𝐴 ∃ 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) 𝑥 = ( ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) ) |
| 176 |
163 164 175
|
cbvabw |
⊢ { 𝑦 ∣ ∃ 𝑥 ∈ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) 𝑦 = ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) } = { 𝑥 ∣ ∃ 𝑢 ∈ 𝐴 ∃ 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) 𝑥 = ( ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) } |
| 177 |
162 176
|
eqtri |
⊢ ran ( 𝑥 ∈ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ↦ ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) = { 𝑥 ∣ ∃ 𝑢 ∈ 𝐴 ∃ 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) 𝑥 = ( ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) } |
| 178 |
|
eqid |
⊢ ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) = ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) |
| 179 |
178
|
rnmpo |
⊢ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) = { 𝑥 ∣ ∃ 𝑢 ∈ 𝐴 ∃ 𝑣 ∈ ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) 𝑥 = ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) } |
| 180 |
160 177 179
|
3eqtr4g |
⊢ ( 𝜑 → ran ( 𝑥 ∈ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ↦ ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) = ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) |
| 181 |
84 180
|
uneq12d |
⊢ ( 𝜑 → ( ran ( 𝑥 ∈ { ∪ ( ∏t ‘ 𝐹 ) } ↦ ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) ∪ ran ( 𝑥 ∈ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ↦ ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) ) = ( { ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ) |
| 182 |
23 181
|
eqtrid |
⊢ ( 𝜑 → ran ( 𝑥 ∈ ( { ∪ ( ∏t ‘ 𝐹 ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ↦ ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) = ( { ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ) |
| 183 |
19 182
|
eqtrd |
⊢ ( 𝜑 → ( ( { ∪ ( ∏t ‘ 𝐹 ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ↾t X 𝑘 ∈ 𝐴 𝑆 ) = ( { ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ) |
| 184 |
183
|
fveq2d |
⊢ ( 𝜑 → ( fi ‘ ( ( { ∪ ( ∏t ‘ 𝐹 ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ↾t X 𝑘 ∈ 𝐴 𝑆 ) ) = ( fi ‘ ( { ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ) ) |
| 185 |
4 184
|
eqtr3id |
⊢ ( 𝜑 → ( ( fi ‘ ( { ∪ ( ∏t ‘ 𝐹 ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ) ↾t X 𝑘 ∈ 𝐴 𝑆 ) = ( fi ‘ ( { ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ) ) |
| 186 |
185
|
fveq2d |
⊢ ( 𝜑 → ( topGen ‘ ( ( fi ‘ ( { ∪ ( ∏t ‘ 𝐹 ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ) ↾t X 𝑘 ∈ 𝐴 𝑆 ) ) = ( topGen ‘ ( fi ‘ ( { ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ) ) ) |
| 187 |
|
eqid |
⊢ ∪ ( ∏t ‘ 𝐹 ) = ∪ ( ∏t ‘ 𝐹 ) |
| 188 |
72 187 8
|
ptval2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → ( ∏t ‘ 𝐹 ) = ( topGen ‘ ( fi ‘ ( { ∪ ( ∏t ‘ 𝐹 ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ) ) ) |
| 189 |
1 2 188
|
syl2anc |
⊢ ( 𝜑 → ( ∏t ‘ 𝐹 ) = ( topGen ‘ ( fi ‘ ( { ∪ ( ∏t ‘ 𝐹 ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ) ) ) |
| 190 |
189
|
oveq1d |
⊢ ( 𝜑 → ( ( ∏t ‘ 𝐹 ) ↾t X 𝑘 ∈ 𝐴 𝑆 ) = ( ( topGen ‘ ( fi ‘ ( { ∪ ( ∏t ‘ 𝐹 ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ) ) ↾t X 𝑘 ∈ 𝐴 𝑆 ) ) |
| 191 |
|
fvex |
⊢ ( fi ‘ ( { ∪ ( ∏t ‘ 𝐹 ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ) ∈ V |
| 192 |
|
tgrest |
⊢ ( ( ( fi ‘ ( { ∪ ( ∏t ‘ 𝐹 ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ) ∈ V ∧ X 𝑘 ∈ 𝐴 𝑆 ∈ V ) → ( topGen ‘ ( ( fi ‘ ( { ∪ ( ∏t ‘ 𝐹 ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ) ↾t X 𝑘 ∈ 𝐴 𝑆 ) ) = ( ( topGen ‘ ( fi ‘ ( { ∪ ( ∏t ‘ 𝐹 ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ) ) ↾t X 𝑘 ∈ 𝐴 𝑆 ) ) |
| 193 |
191 17 192
|
sylancr |
⊢ ( 𝜑 → ( topGen ‘ ( ( fi ‘ ( { ∪ ( ∏t ‘ 𝐹 ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ) ↾t X 𝑘 ∈ 𝐴 𝑆 ) ) = ( ( topGen ‘ ( fi ‘ ( { ∪ ( ∏t ‘ 𝐹 ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ) ) ↾t X 𝑘 ∈ 𝐴 𝑆 ) ) |
| 194 |
190 193
|
eqtr4d |
⊢ ( 𝜑 → ( ( ∏t ‘ 𝐹 ) ↾t X 𝑘 ∈ 𝐴 𝑆 ) = ( topGen ‘ ( ( fi ‘ ( { ∪ ( ∏t ‘ 𝐹 ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ) ↾t X 𝑘 ∈ 𝐴 𝑆 ) ) ) |
| 195 |
|
eqid |
⊢ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) = ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) |
| 196 |
79 195 178
|
ptval2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) : 𝐴 ⟶ Top ) → ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) = ( topGen ‘ ( fi ‘ ( { ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ) ) ) |
| 197 |
1 78 196
|
syl2anc |
⊢ ( 𝜑 → ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) = ( topGen ‘ ( fi ‘ ( { ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ) ) ) |
| 198 |
186 194 197
|
3eqtr4d |
⊢ ( 𝜑 → ( ( ∏t ‘ 𝐹 ) ↾t X 𝑘 ∈ 𝐴 𝑆 ) = ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ) |