Metamath Proof Explorer


Theorem ptrest

Description: Expressing a restriction of a product topology as a product topology. (Contributed by Brendan Leahy, 24-Mar-2019)

Ref Expression
Hypotheses ptrest.0 ( 𝜑𝐴𝑉 )
ptrest.1 ( 𝜑𝐹 : 𝐴 ⟶ Top )
ptrest.2 ( ( 𝜑𝑘𝐴 ) → 𝑆𝑊 )
Assertion ptrest ( 𝜑 → ( ( ∏t𝐹 ) ↾t X 𝑘𝐴 𝑆 ) = ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) )

Proof

Step Hyp Ref Expression
1 ptrest.0 ( 𝜑𝐴𝑉 )
2 ptrest.1 ( 𝜑𝐹 : 𝐴 ⟶ Top )
3 ptrest.2 ( ( 𝜑𝑘𝐴 ) → 𝑆𝑊 )
4 firest ( fi ‘ ( ( { ( ∏t𝐹 ) } ∪ ran ( 𝑢𝐴 , 𝑣 ∈ ( 𝐹𝑢 ) ↦ ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) ) ↾t X 𝑘𝐴 𝑆 ) ) = ( ( fi ‘ ( { ( ∏t𝐹 ) } ∪ ran ( 𝑢𝐴 , 𝑣 ∈ ( 𝐹𝑢 ) ↦ ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) ) ) ↾t X 𝑘𝐴 𝑆 )
5 snex { ( ∏t𝐹 ) } ∈ V
6 fvex ( 𝐹𝑢 ) ∈ V
7 6 rgenw 𝑢𝐴 ( 𝐹𝑢 ) ∈ V
8 eqid ( 𝑢𝐴 , 𝑣 ∈ ( 𝐹𝑢 ) ↦ ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) = ( 𝑢𝐴 , 𝑣 ∈ ( 𝐹𝑢 ) ↦ ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) )
9 8 mpoexxg ( ( 𝐴𝑉 ∧ ∀ 𝑢𝐴 ( 𝐹𝑢 ) ∈ V ) → ( 𝑢𝐴 , 𝑣 ∈ ( 𝐹𝑢 ) ↦ ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) ∈ V )
10 1 7 9 sylancl ( 𝜑 → ( 𝑢𝐴 , 𝑣 ∈ ( 𝐹𝑢 ) ↦ ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) ∈ V )
11 rnexg ( ( 𝑢𝐴 , 𝑣 ∈ ( 𝐹𝑢 ) ↦ ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) ∈ V → ran ( 𝑢𝐴 , 𝑣 ∈ ( 𝐹𝑢 ) ↦ ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) ∈ V )
12 10 11 syl ( 𝜑 → ran ( 𝑢𝐴 , 𝑣 ∈ ( 𝐹𝑢 ) ↦ ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) ∈ V )
13 unexg ( ( { ( ∏t𝐹 ) } ∈ V ∧ ran ( 𝑢𝐴 , 𝑣 ∈ ( 𝐹𝑢 ) ↦ ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) ∈ V ) → ( { ( ∏t𝐹 ) } ∪ ran ( 𝑢𝐴 , 𝑣 ∈ ( 𝐹𝑢 ) ↦ ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) ) ∈ V )
14 5 12 13 sylancr ( 𝜑 → ( { ( ∏t𝐹 ) } ∪ ran ( 𝑢𝐴 , 𝑣 ∈ ( 𝐹𝑢 ) ↦ ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) ) ∈ V )
15 3 ralrimiva ( 𝜑 → ∀ 𝑘𝐴 𝑆𝑊 )
16 ixpexg ( ∀ 𝑘𝐴 𝑆𝑊X 𝑘𝐴 𝑆 ∈ V )
17 15 16 syl ( 𝜑X 𝑘𝐴 𝑆 ∈ V )
18 restval ( ( ( { ( ∏t𝐹 ) } ∪ ran ( 𝑢𝐴 , 𝑣 ∈ ( 𝐹𝑢 ) ↦ ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) ) ∈ V ∧ X 𝑘𝐴 𝑆 ∈ V ) → ( ( { ( ∏t𝐹 ) } ∪ ran ( 𝑢𝐴 , 𝑣 ∈ ( 𝐹𝑢 ) ↦ ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) ) ↾t X 𝑘𝐴 𝑆 ) = ran ( 𝑥 ∈ ( { ( ∏t𝐹 ) } ∪ ran ( 𝑢𝐴 , 𝑣 ∈ ( 𝐹𝑢 ) ↦ ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) ) ↦ ( 𝑥X 𝑘𝐴 𝑆 ) ) )
19 14 17 18 syl2anc ( 𝜑 → ( ( { ( ∏t𝐹 ) } ∪ ran ( 𝑢𝐴 , 𝑣 ∈ ( 𝐹𝑢 ) ↦ ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) ) ↾t X 𝑘𝐴 𝑆 ) = ran ( 𝑥 ∈ ( { ( ∏t𝐹 ) } ∪ ran ( 𝑢𝐴 , 𝑣 ∈ ( 𝐹𝑢 ) ↦ ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) ) ↦ ( 𝑥X 𝑘𝐴 𝑆 ) ) )
20 mptun ( 𝑥 ∈ ( { ( ∏t𝐹 ) } ∪ ran ( 𝑢𝐴 , 𝑣 ∈ ( 𝐹𝑢 ) ↦ ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) ) ↦ ( 𝑥X 𝑘𝐴 𝑆 ) ) = ( ( 𝑥 ∈ { ( ∏t𝐹 ) } ↦ ( 𝑥X 𝑘𝐴 𝑆 ) ) ∪ ( 𝑥 ∈ ran ( 𝑢𝐴 , 𝑣 ∈ ( 𝐹𝑢 ) ↦ ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) ↦ ( 𝑥X 𝑘𝐴 𝑆 ) ) )
21 20 rneqi ran ( 𝑥 ∈ ( { ( ∏t𝐹 ) } ∪ ran ( 𝑢𝐴 , 𝑣 ∈ ( 𝐹𝑢 ) ↦ ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) ) ↦ ( 𝑥X 𝑘𝐴 𝑆 ) ) = ran ( ( 𝑥 ∈ { ( ∏t𝐹 ) } ↦ ( 𝑥X 𝑘𝐴 𝑆 ) ) ∪ ( 𝑥 ∈ ran ( 𝑢𝐴 , 𝑣 ∈ ( 𝐹𝑢 ) ↦ ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) ↦ ( 𝑥X 𝑘𝐴 𝑆 ) ) )
22 rnun ran ( ( 𝑥 ∈ { ( ∏t𝐹 ) } ↦ ( 𝑥X 𝑘𝐴 𝑆 ) ) ∪ ( 𝑥 ∈ ran ( 𝑢𝐴 , 𝑣 ∈ ( 𝐹𝑢 ) ↦ ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) ↦ ( 𝑥X 𝑘𝐴 𝑆 ) ) ) = ( ran ( 𝑥 ∈ { ( ∏t𝐹 ) } ↦ ( 𝑥X 𝑘𝐴 𝑆 ) ) ∪ ran ( 𝑥 ∈ ran ( 𝑢𝐴 , 𝑣 ∈ ( 𝐹𝑢 ) ↦ ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) ↦ ( 𝑥X 𝑘𝐴 𝑆 ) ) )
23 21 22 eqtri ran ( 𝑥 ∈ ( { ( ∏t𝐹 ) } ∪ ran ( 𝑢𝐴 , 𝑣 ∈ ( 𝐹𝑢 ) ↦ ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) ) ↦ ( 𝑥X 𝑘𝐴 𝑆 ) ) = ( ran ( 𝑥 ∈ { ( ∏t𝐹 ) } ↦ ( 𝑥X 𝑘𝐴 𝑆 ) ) ∪ ran ( 𝑥 ∈ ran ( 𝑢𝐴 , 𝑣 ∈ ( 𝐹𝑢 ) ↦ ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) ↦ ( 𝑥X 𝑘𝐴 𝑆 ) ) )
24 elsni ( 𝑥 ∈ { ( ∏t𝐹 ) } → 𝑥 = ( ∏t𝐹 ) )
25 24 ineq1d ( 𝑥 ∈ { ( ∏t𝐹 ) } → ( 𝑥X 𝑘𝐴 𝑆 ) = ( ( ∏t𝐹 ) ∩ X 𝑘𝐴 𝑆 ) )
26 25 mpteq2ia ( 𝑥 ∈ { ( ∏t𝐹 ) } ↦ ( 𝑥X 𝑘𝐴 𝑆 ) ) = ( 𝑥 ∈ { ( ∏t𝐹 ) } ↦ ( ( ∏t𝐹 ) ∩ X 𝑘𝐴 𝑆 ) )
27 fvex ( ∏t𝐹 ) ∈ V
28 27 uniex ( ∏t𝐹 ) ∈ V
29 28 inex1 ( ( ∏t𝐹 ) ∩ X 𝑘𝐴 𝑆 ) ∈ V
30 fmptsn ( ( ( ∏t𝐹 ) ∈ V ∧ ( ( ∏t𝐹 ) ∩ X 𝑘𝐴 𝑆 ) ∈ V ) → { ⟨ ( ∏t𝐹 ) , ( ( ∏t𝐹 ) ∩ X 𝑘𝐴 𝑆 ) ⟩ } = ( 𝑥 ∈ { ( ∏t𝐹 ) } ↦ ( ( ∏t𝐹 ) ∩ X 𝑘𝐴 𝑆 ) ) )
31 28 29 30 mp2an { ⟨ ( ∏t𝐹 ) , ( ( ∏t𝐹 ) ∩ X 𝑘𝐴 𝑆 ) ⟩ } = ( 𝑥 ∈ { ( ∏t𝐹 ) } ↦ ( ( ∏t𝐹 ) ∩ X 𝑘𝐴 𝑆 ) )
32 26 31 eqtr4i ( 𝑥 ∈ { ( ∏t𝐹 ) } ↦ ( 𝑥X 𝑘𝐴 𝑆 ) ) = { ⟨ ( ∏t𝐹 ) , ( ( ∏t𝐹 ) ∩ X 𝑘𝐴 𝑆 ) ⟩ }
33 32 rneqi ran ( 𝑥 ∈ { ( ∏t𝐹 ) } ↦ ( 𝑥X 𝑘𝐴 𝑆 ) ) = ran { ⟨ ( ∏t𝐹 ) , ( ( ∏t𝐹 ) ∩ X 𝑘𝐴 𝑆 ) ⟩ }
34 28 rnsnop ran { ⟨ ( ∏t𝐹 ) , ( ( ∏t𝐹 ) ∩ X 𝑘𝐴 𝑆 ) ⟩ } = { ( ( ∏t𝐹 ) ∩ X 𝑘𝐴 𝑆 ) }
35 33 34 eqtri ran ( 𝑥 ∈ { ( ∏t𝐹 ) } ↦ ( 𝑥X 𝑘𝐴 𝑆 ) ) = { ( ( ∏t𝐹 ) ∩ X 𝑘𝐴 𝑆 ) }
36 2 ffvelrnda ( ( 𝜑𝑘𝐴 ) → ( 𝐹𝑘 ) ∈ Top )
37 inss1 ( ( 𝐹𝑘 ) ∩ 𝑆 ) ⊆ ( 𝐹𝑘 )
38 eqid ( 𝐹𝑘 ) = ( 𝐹𝑘 )
39 38 restuni ( ( ( 𝐹𝑘 ) ∈ Top ∧ ( ( 𝐹𝑘 ) ∩ 𝑆 ) ⊆ ( 𝐹𝑘 ) ) → ( ( 𝐹𝑘 ) ∩ 𝑆 ) = ( ( 𝐹𝑘 ) ↾t ( ( 𝐹𝑘 ) ∩ 𝑆 ) ) )
40 36 37 39 sylancl ( ( 𝜑𝑘𝐴 ) → ( ( 𝐹𝑘 ) ∩ 𝑆 ) = ( ( 𝐹𝑘 ) ↾t ( ( 𝐹𝑘 ) ∩ 𝑆 ) ) )
41 fvex ( 𝐹𝑘 ) ∈ V
42 38 restin ( ( ( 𝐹𝑘 ) ∈ V ∧ 𝑆𝑊 ) → ( ( 𝐹𝑘 ) ↾t 𝑆 ) = ( ( 𝐹𝑘 ) ↾t ( 𝑆 ( 𝐹𝑘 ) ) ) )
43 41 3 42 sylancr ( ( 𝜑𝑘𝐴 ) → ( ( 𝐹𝑘 ) ↾t 𝑆 ) = ( ( 𝐹𝑘 ) ↾t ( 𝑆 ( 𝐹𝑘 ) ) ) )
44 incom ( 𝑆 ( 𝐹𝑘 ) ) = ( ( 𝐹𝑘 ) ∩ 𝑆 )
45 44 oveq2i ( ( 𝐹𝑘 ) ↾t ( 𝑆 ( 𝐹𝑘 ) ) ) = ( ( 𝐹𝑘 ) ↾t ( ( 𝐹𝑘 ) ∩ 𝑆 ) )
46 43 45 eqtrdi ( ( 𝜑𝑘𝐴 ) → ( ( 𝐹𝑘 ) ↾t 𝑆 ) = ( ( 𝐹𝑘 ) ↾t ( ( 𝐹𝑘 ) ∩ 𝑆 ) ) )
47 46 unieqd ( ( 𝜑𝑘𝐴 ) → ( ( 𝐹𝑘 ) ↾t 𝑆 ) = ( ( 𝐹𝑘 ) ↾t ( ( 𝐹𝑘 ) ∩ 𝑆 ) ) )
48 40 47 eqtr4d ( ( 𝜑𝑘𝐴 ) → ( ( 𝐹𝑘 ) ∩ 𝑆 ) = ( ( 𝐹𝑘 ) ↾t 𝑆 ) )
49 48 ixpeq2dva ( 𝜑X 𝑘𝐴 ( ( 𝐹𝑘 ) ∩ 𝑆 ) = X 𝑘𝐴 ( ( 𝐹𝑘 ) ↾t 𝑆 ) )
50 ixpin X 𝑘𝐴 ( ( 𝐹𝑘 ) ∩ 𝑆 ) = ( X 𝑘𝐴 ( 𝐹𝑘 ) ∩ X 𝑘𝐴 𝑆 )
51 nfcv 𝑦 ( ( 𝐹𝑘 ) ↾t 𝑆 )
52 nfcv 𝑘 ( 𝐹𝑦 )
53 nfcv 𝑘t
54 nfcsb1v 𝑘 𝑦 / 𝑘 𝑆
55 52 53 54 nfov 𝑘 ( ( 𝐹𝑦 ) ↾t 𝑦 / 𝑘 𝑆 )
56 55 nfuni 𝑘 ( ( 𝐹𝑦 ) ↾t 𝑦 / 𝑘 𝑆 )
57 fveq2 ( 𝑘 = 𝑦 → ( 𝐹𝑘 ) = ( 𝐹𝑦 ) )
58 csbeq1a ( 𝑘 = 𝑦𝑆 = 𝑦 / 𝑘 𝑆 )
59 57 58 oveq12d ( 𝑘 = 𝑦 → ( ( 𝐹𝑘 ) ↾t 𝑆 ) = ( ( 𝐹𝑦 ) ↾t 𝑦 / 𝑘 𝑆 ) )
60 59 unieqd ( 𝑘 = 𝑦 ( ( 𝐹𝑘 ) ↾t 𝑆 ) = ( ( 𝐹𝑦 ) ↾t 𝑦 / 𝑘 𝑆 ) )
61 51 56 60 cbvixp X 𝑘𝐴 ( ( 𝐹𝑘 ) ↾t 𝑆 ) = X 𝑦𝐴 ( ( 𝐹𝑦 ) ↾t 𝑦 / 𝑘 𝑆 )
62 ixpeq2 ( ∀ 𝑦𝐴 ( ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ‘ 𝑦 ) = ( ( 𝐹𝑦 ) ↾t 𝑦 / 𝑘 𝑆 ) → X 𝑦𝐴 ( ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ‘ 𝑦 ) = X 𝑦𝐴 ( ( 𝐹𝑦 ) ↾t 𝑦 / 𝑘 𝑆 ) )
63 ovex ( ( 𝐹𝑦 ) ↾t 𝑦 / 𝑘 𝑆 ) ∈ V
64 nfcv 𝑘 𝑦
65 eqid ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) = ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) )
66 64 55 59 65 fvmptf ( ( 𝑦𝐴 ∧ ( ( 𝐹𝑦 ) ↾t 𝑦 / 𝑘 𝑆 ) ∈ V ) → ( ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ‘ 𝑦 ) = ( ( 𝐹𝑦 ) ↾t 𝑦 / 𝑘 𝑆 ) )
67 63 66 mpan2 ( 𝑦𝐴 → ( ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ‘ 𝑦 ) = ( ( 𝐹𝑦 ) ↾t 𝑦 / 𝑘 𝑆 ) )
68 67 unieqd ( 𝑦𝐴 ( ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ‘ 𝑦 ) = ( ( 𝐹𝑦 ) ↾t 𝑦 / 𝑘 𝑆 ) )
69 62 68 mprg X 𝑦𝐴 ( ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ‘ 𝑦 ) = X 𝑦𝐴 ( ( 𝐹𝑦 ) ↾t 𝑦 / 𝑘 𝑆 )
70 61 69 eqtr4i X 𝑘𝐴 ( ( 𝐹𝑘 ) ↾t 𝑆 ) = X 𝑦𝐴 ( ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ‘ 𝑦 )
71 49 50 70 3eqtr3g ( 𝜑 → ( X 𝑘𝐴 ( 𝐹𝑘 ) ∩ X 𝑘𝐴 𝑆 ) = X 𝑦𝐴 ( ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ‘ 𝑦 ) )
72 eqid ( ∏t𝐹 ) = ( ∏t𝐹 )
73 72 ptuni ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) → X 𝑘𝐴 ( 𝐹𝑘 ) = ( ∏t𝐹 ) )
74 1 2 73 syl2anc ( 𝜑X 𝑘𝐴 ( 𝐹𝑘 ) = ( ∏t𝐹 ) )
75 74 ineq1d ( 𝜑 → ( X 𝑘𝐴 ( 𝐹𝑘 ) ∩ X 𝑘𝐴 𝑆 ) = ( ( ∏t𝐹 ) ∩ X 𝑘𝐴 𝑆 ) )
76 resttop ( ( ( 𝐹𝑘 ) ∈ Top ∧ 𝑆𝑊 ) → ( ( 𝐹𝑘 ) ↾t 𝑆 ) ∈ Top )
77 36 3 76 syl2anc ( ( 𝜑𝑘𝐴 ) → ( ( 𝐹𝑘 ) ↾t 𝑆 ) ∈ Top )
78 77 fmpttd ( 𝜑 → ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) : 𝐴 ⟶ Top )
79 eqid ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) = ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) )
80 79 ptuni ( ( 𝐴𝑉 ∧ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) : 𝐴 ⟶ Top ) → X 𝑦𝐴 ( ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ‘ 𝑦 ) = ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) )
81 1 78 80 syl2anc ( 𝜑X 𝑦𝐴 ( ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ‘ 𝑦 ) = ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) )
82 71 75 81 3eqtr3d ( 𝜑 → ( ( ∏t𝐹 ) ∩ X 𝑘𝐴 𝑆 ) = ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) )
83 82 sneqd ( 𝜑 → { ( ( ∏t𝐹 ) ∩ X 𝑘𝐴 𝑆 ) } = { ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) } )
84 35 83 syl5eq ( 𝜑 → ran ( 𝑥 ∈ { ( ∏t𝐹 ) } ↦ ( 𝑥X 𝑘𝐴 𝑆 ) ) = { ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) } )
85 vex 𝑤 ∈ V
86 85 elixp ( 𝑤X 𝑘𝐴 𝑆 ↔ ( 𝑤 Fn 𝐴 ∧ ∀ 𝑘𝐴 ( 𝑤𝑘 ) ∈ 𝑆 ) )
87 86 simprbi ( 𝑤X 𝑘𝐴 𝑆 → ∀ 𝑘𝐴 ( 𝑤𝑘 ) ∈ 𝑆 )
88 nfcsb1v 𝑘 𝑢 / 𝑘 𝑆
89 88 nfel2 𝑘 ( 𝑤𝑢 ) ∈ 𝑢 / 𝑘 𝑆
90 fveq2 ( 𝑘 = 𝑢 → ( 𝑤𝑘 ) = ( 𝑤𝑢 ) )
91 csbeq1a ( 𝑘 = 𝑢𝑆 = 𝑢 / 𝑘 𝑆 )
92 90 91 eleq12d ( 𝑘 = 𝑢 → ( ( 𝑤𝑘 ) ∈ 𝑆 ↔ ( 𝑤𝑢 ) ∈ 𝑢 / 𝑘 𝑆 ) )
93 89 92 rspc ( 𝑢𝐴 → ( ∀ 𝑘𝐴 ( 𝑤𝑘 ) ∈ 𝑆 → ( 𝑤𝑢 ) ∈ 𝑢 / 𝑘 𝑆 ) )
94 87 93 syl5 ( 𝑢𝐴 → ( 𝑤X 𝑘𝐴 𝑆 → ( 𝑤𝑢 ) ∈ 𝑢 / 𝑘 𝑆 ) )
95 94 pm4.71d ( 𝑢𝐴 → ( 𝑤X 𝑘𝐴 𝑆 ↔ ( 𝑤X 𝑘𝐴 𝑆 ∧ ( 𝑤𝑢 ) ∈ 𝑢 / 𝑘 𝑆 ) ) )
96 95 anbi2d ( 𝑢𝐴 → ( ( ( 𝑤 ( ∏t𝐹 ) ∧ ( 𝑤𝑢 ) ∈ 𝑣 ) ∧ 𝑤X 𝑘𝐴 𝑆 ) ↔ ( ( 𝑤 ( ∏t𝐹 ) ∧ ( 𝑤𝑢 ) ∈ 𝑣 ) ∧ ( 𝑤X 𝑘𝐴 𝑆 ∧ ( 𝑤𝑢 ) ∈ 𝑢 / 𝑘 𝑆 ) ) ) )
97 an4 ( ( ( 𝑤 ( ∏t𝐹 ) ∧ ( 𝑤𝑢 ) ∈ 𝑣 ) ∧ ( 𝑤X 𝑘𝐴 𝑆 ∧ ( 𝑤𝑢 ) ∈ 𝑢 / 𝑘 𝑆 ) ) ↔ ( ( 𝑤 ( ∏t𝐹 ) ∧ 𝑤X 𝑘𝐴 𝑆 ) ∧ ( ( 𝑤𝑢 ) ∈ 𝑣 ∧ ( 𝑤𝑢 ) ∈ 𝑢 / 𝑘 𝑆 ) ) )
98 elin ( ( 𝑤𝑢 ) ∈ ( 𝑣 𝑢 / 𝑘 𝑆 ) ↔ ( ( 𝑤𝑢 ) ∈ 𝑣 ∧ ( 𝑤𝑢 ) ∈ 𝑢 / 𝑘 𝑆 ) )
99 98 anbi2i ( ( ( 𝑤 ( ∏t𝐹 ) ∧ 𝑤X 𝑘𝐴 𝑆 ) ∧ ( 𝑤𝑢 ) ∈ ( 𝑣 𝑢 / 𝑘 𝑆 ) ) ↔ ( ( 𝑤 ( ∏t𝐹 ) ∧ 𝑤X 𝑘𝐴 𝑆 ) ∧ ( ( 𝑤𝑢 ) ∈ 𝑣 ∧ ( 𝑤𝑢 ) ∈ 𝑢 / 𝑘 𝑆 ) ) )
100 97 99 bitr4i ( ( ( 𝑤 ( ∏t𝐹 ) ∧ ( 𝑤𝑢 ) ∈ 𝑣 ) ∧ ( 𝑤X 𝑘𝐴 𝑆 ∧ ( 𝑤𝑢 ) ∈ 𝑢 / 𝑘 𝑆 ) ) ↔ ( ( 𝑤 ( ∏t𝐹 ) ∧ 𝑤X 𝑘𝐴 𝑆 ) ∧ ( 𝑤𝑢 ) ∈ ( 𝑣 𝑢 / 𝑘 𝑆 ) ) )
101 96 100 bitrdi ( 𝑢𝐴 → ( ( ( 𝑤 ( ∏t𝐹 ) ∧ ( 𝑤𝑢 ) ∈ 𝑣 ) ∧ 𝑤X 𝑘𝐴 𝑆 ) ↔ ( ( 𝑤 ( ∏t𝐹 ) ∧ 𝑤X 𝑘𝐴 𝑆 ) ∧ ( 𝑤𝑢 ) ∈ ( 𝑣 𝑢 / 𝑘 𝑆 ) ) ) )
102 elin ( 𝑤 ∈ ( ( ∏t𝐹 ) ∩ X 𝑘𝐴 𝑆 ) ↔ ( 𝑤 ( ∏t𝐹 ) ∧ 𝑤X 𝑘𝐴 𝑆 ) )
103 82 eleq2d ( 𝜑 → ( 𝑤 ∈ ( ( ∏t𝐹 ) ∩ X 𝑘𝐴 𝑆 ) ↔ 𝑤 ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) ) )
104 102 103 bitr3id ( 𝜑 → ( ( 𝑤 ( ∏t𝐹 ) ∧ 𝑤X 𝑘𝐴 𝑆 ) ↔ 𝑤 ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) ) )
105 104 anbi1d ( 𝜑 → ( ( ( 𝑤 ( ∏t𝐹 ) ∧ 𝑤X 𝑘𝐴 𝑆 ) ∧ ( 𝑤𝑢 ) ∈ ( 𝑣 𝑢 / 𝑘 𝑆 ) ) ↔ ( 𝑤 ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) ∧ ( 𝑤𝑢 ) ∈ ( 𝑣 𝑢 / 𝑘 𝑆 ) ) ) )
106 101 105 sylan9bbr ( ( 𝜑𝑢𝐴 ) → ( ( ( 𝑤 ( ∏t𝐹 ) ∧ ( 𝑤𝑢 ) ∈ 𝑣 ) ∧ 𝑤X 𝑘𝐴 𝑆 ) ↔ ( 𝑤 ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) ∧ ( 𝑤𝑢 ) ∈ ( 𝑣 𝑢 / 𝑘 𝑆 ) ) ) )
107 106 abbidv ( ( 𝜑𝑢𝐴 ) → { 𝑤 ∣ ( ( 𝑤 ( ∏t𝐹 ) ∧ ( 𝑤𝑢 ) ∈ 𝑣 ) ∧ 𝑤X 𝑘𝐴 𝑆 ) } = { 𝑤 ∣ ( 𝑤 ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) ∧ ( 𝑤𝑢 ) ∈ ( 𝑣 𝑢 / 𝑘 𝑆 ) ) } )
108 eqid ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) = ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) )
109 108 mptpreima ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) = { 𝑤 ( ∏t𝐹 ) ∣ ( 𝑤𝑢 ) ∈ 𝑣 }
110 df-rab { 𝑤 ( ∏t𝐹 ) ∣ ( 𝑤𝑢 ) ∈ 𝑣 } = { 𝑤 ∣ ( 𝑤 ( ∏t𝐹 ) ∧ ( 𝑤𝑢 ) ∈ 𝑣 ) }
111 109 110 eqtr2i { 𝑤 ∣ ( 𝑤 ( ∏t𝐹 ) ∧ ( 𝑤𝑢 ) ∈ 𝑣 ) } = ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 )
112 abid2 { 𝑤𝑤X 𝑘𝐴 𝑆 } = X 𝑘𝐴 𝑆
113 111 112 ineq12i ( { 𝑤 ∣ ( 𝑤 ( ∏t𝐹 ) ∧ ( 𝑤𝑢 ) ∈ 𝑣 ) } ∩ { 𝑤𝑤X 𝑘𝐴 𝑆 } ) = ( ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ∩ X 𝑘𝐴 𝑆 )
114 inab ( { 𝑤 ∣ ( 𝑤 ( ∏t𝐹 ) ∧ ( 𝑤𝑢 ) ∈ 𝑣 ) } ∩ { 𝑤𝑤X 𝑘𝐴 𝑆 } ) = { 𝑤 ∣ ( ( 𝑤 ( ∏t𝐹 ) ∧ ( 𝑤𝑢 ) ∈ 𝑣 ) ∧ 𝑤X 𝑘𝐴 𝑆 ) }
115 113 114 eqtr3i ( ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ∩ X 𝑘𝐴 𝑆 ) = { 𝑤 ∣ ( ( 𝑤 ( ∏t𝐹 ) ∧ ( 𝑤𝑢 ) ∈ 𝑣 ) ∧ 𝑤X 𝑘𝐴 𝑆 ) }
116 eqid ( 𝑤 ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤𝑢 ) ) = ( 𝑤 ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤𝑢 ) )
117 116 mptpreima ( ( 𝑤 ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤𝑢 ) ) “ ( 𝑣 𝑢 / 𝑘 𝑆 ) ) = { 𝑤 ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) ∣ ( 𝑤𝑢 ) ∈ ( 𝑣 𝑢 / 𝑘 𝑆 ) }
118 df-rab { 𝑤 ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) ∣ ( 𝑤𝑢 ) ∈ ( 𝑣 𝑢 / 𝑘 𝑆 ) } = { 𝑤 ∣ ( 𝑤 ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) ∧ ( 𝑤𝑢 ) ∈ ( 𝑣 𝑢 / 𝑘 𝑆 ) ) }
119 117 118 eqtri ( ( 𝑤 ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤𝑢 ) ) “ ( 𝑣 𝑢 / 𝑘 𝑆 ) ) = { 𝑤 ∣ ( 𝑤 ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) ∧ ( 𝑤𝑢 ) ∈ ( 𝑣 𝑢 / 𝑘 𝑆 ) ) }
120 107 115 119 3eqtr4g ( ( 𝜑𝑢𝐴 ) → ( ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ∩ X 𝑘𝐴 𝑆 ) = ( ( 𝑤 ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤𝑢 ) ) “ ( 𝑣 𝑢 / 𝑘 𝑆 ) ) )
121 120 eqeq2d ( ( 𝜑𝑢𝐴 ) → ( 𝑥 = ( ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ∩ X 𝑘𝐴 𝑆 ) ↔ 𝑥 = ( ( 𝑤 ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤𝑢 ) ) “ ( 𝑣 𝑢 / 𝑘 𝑆 ) ) ) )
122 121 rexbidv ( ( 𝜑𝑢𝐴 ) → ( ∃ 𝑣 ∈ ( 𝐹𝑢 ) 𝑥 = ( ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ∩ X 𝑘𝐴 𝑆 ) ↔ ∃ 𝑣 ∈ ( 𝐹𝑢 ) 𝑥 = ( ( 𝑤 ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤𝑢 ) ) “ ( 𝑣 𝑢 / 𝑘 𝑆 ) ) ) )
123 ineq1 ( 𝑣 = 𝑦 → ( 𝑣 𝑢 / 𝑘 𝑆 ) = ( 𝑦 𝑢 / 𝑘 𝑆 ) )
124 123 imaeq2d ( 𝑣 = 𝑦 → ( ( 𝑤 ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤𝑢 ) ) “ ( 𝑣 𝑢 / 𝑘 𝑆 ) ) = ( ( 𝑤 ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤𝑢 ) ) “ ( 𝑦 𝑢 / 𝑘 𝑆 ) ) )
125 124 eqeq2d ( 𝑣 = 𝑦 → ( 𝑥 = ( ( 𝑤 ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤𝑢 ) ) “ ( 𝑣 𝑢 / 𝑘 𝑆 ) ) ↔ 𝑥 = ( ( 𝑤 ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤𝑢 ) ) “ ( 𝑦 𝑢 / 𝑘 𝑆 ) ) ) )
126 125 cbvrexvw ( ∃ 𝑣 ∈ ( 𝐹𝑢 ) 𝑥 = ( ( 𝑤 ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤𝑢 ) ) “ ( 𝑣 𝑢 / 𝑘 𝑆 ) ) ↔ ∃ 𝑦 ∈ ( 𝐹𝑢 ) 𝑥 = ( ( 𝑤 ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤𝑢 ) ) “ ( 𝑦 𝑢 / 𝑘 𝑆 ) ) )
127 122 126 bitrdi ( ( 𝜑𝑢𝐴 ) → ( ∃ 𝑣 ∈ ( 𝐹𝑢 ) 𝑥 = ( ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ∩ X 𝑘𝐴 𝑆 ) ↔ ∃ 𝑦 ∈ ( 𝐹𝑢 ) 𝑥 = ( ( 𝑤 ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤𝑢 ) ) “ ( 𝑦 𝑢 / 𝑘 𝑆 ) ) ) )
128 vex 𝑦 ∈ V
129 128 inex1 ( 𝑦 𝑢 / 𝑘 𝑆 ) ∈ V
130 129 a1i ( ( ( 𝜑𝑢𝐴 ) ∧ 𝑦 ∈ ( 𝐹𝑢 ) ) → ( 𝑦 𝑢 / 𝑘 𝑆 ) ∈ V )
131 ovex ( ( 𝐹𝑢 ) ↾t 𝑢 / 𝑘 𝑆 ) ∈ V
132 nfcv 𝑘 𝑢
133 nfcv 𝑘 ( 𝐹𝑢 )
134 133 53 88 nfov 𝑘 ( ( 𝐹𝑢 ) ↾t 𝑢 / 𝑘 𝑆 )
135 fveq2 ( 𝑘 = 𝑢 → ( 𝐹𝑘 ) = ( 𝐹𝑢 ) )
136 135 91 oveq12d ( 𝑘 = 𝑢 → ( ( 𝐹𝑘 ) ↾t 𝑆 ) = ( ( 𝐹𝑢 ) ↾t 𝑢 / 𝑘 𝑆 ) )
137 132 134 136 65 fvmptf ( ( 𝑢𝐴 ∧ ( ( 𝐹𝑢 ) ↾t 𝑢 / 𝑘 𝑆 ) ∈ V ) → ( ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) = ( ( 𝐹𝑢 ) ↾t 𝑢 / 𝑘 𝑆 ) )
138 131 137 mpan2 ( 𝑢𝐴 → ( ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) = ( ( 𝐹𝑢 ) ↾t 𝑢 / 𝑘 𝑆 ) )
139 138 adantl ( ( 𝜑𝑢𝐴 ) → ( ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) = ( ( 𝐹𝑢 ) ↾t 𝑢 / 𝑘 𝑆 ) )
140 139 eleq2d ( ( 𝜑𝑢𝐴 ) → ( 𝑣 ∈ ( ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) ↔ 𝑣 ∈ ( ( 𝐹𝑢 ) ↾t 𝑢 / 𝑘 𝑆 ) ) )
141 nfv 𝑘 ( 𝜑𝑢𝐴 )
142 nfcsb1v 𝑘 𝑢 / 𝑘 𝑊
143 88 142 nfel 𝑘 𝑢 / 𝑘 𝑆 𝑢 / 𝑘 𝑊
144 141 143 nfim 𝑘 ( ( 𝜑𝑢𝐴 ) → 𝑢 / 𝑘 𝑆 𝑢 / 𝑘 𝑊 )
145 eleq1w ( 𝑘 = 𝑢 → ( 𝑘𝐴𝑢𝐴 ) )
146 145 anbi2d ( 𝑘 = 𝑢 → ( ( 𝜑𝑘𝐴 ) ↔ ( 𝜑𝑢𝐴 ) ) )
147 csbeq1a ( 𝑘 = 𝑢𝑊 = 𝑢 / 𝑘 𝑊 )
148 91 147 eleq12d ( 𝑘 = 𝑢 → ( 𝑆𝑊 𝑢 / 𝑘 𝑆 𝑢 / 𝑘 𝑊 ) )
149 146 148 imbi12d ( 𝑘 = 𝑢 → ( ( ( 𝜑𝑘𝐴 ) → 𝑆𝑊 ) ↔ ( ( 𝜑𝑢𝐴 ) → 𝑢 / 𝑘 𝑆 𝑢 / 𝑘 𝑊 ) ) )
150 144 149 3 chvarfv ( ( 𝜑𝑢𝐴 ) → 𝑢 / 𝑘 𝑆 𝑢 / 𝑘 𝑊 )
151 elrest ( ( ( 𝐹𝑢 ) ∈ V ∧ 𝑢 / 𝑘 𝑆 𝑢 / 𝑘 𝑊 ) → ( 𝑣 ∈ ( ( 𝐹𝑢 ) ↾t 𝑢 / 𝑘 𝑆 ) ↔ ∃ 𝑦 ∈ ( 𝐹𝑢 ) 𝑣 = ( 𝑦 𝑢 / 𝑘 𝑆 ) ) )
152 6 150 151 sylancr ( ( 𝜑𝑢𝐴 ) → ( 𝑣 ∈ ( ( 𝐹𝑢 ) ↾t 𝑢 / 𝑘 𝑆 ) ↔ ∃ 𝑦 ∈ ( 𝐹𝑢 ) 𝑣 = ( 𝑦 𝑢 / 𝑘 𝑆 ) ) )
153 140 152 bitrd ( ( 𝜑𝑢𝐴 ) → ( 𝑣 ∈ ( ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) ↔ ∃ 𝑦 ∈ ( 𝐹𝑢 ) 𝑣 = ( 𝑦 𝑢 / 𝑘 𝑆 ) ) )
154 imaeq2 ( 𝑣 = ( 𝑦 𝑢 / 𝑘 𝑆 ) → ( ( 𝑤 ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) = ( ( 𝑤 ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤𝑢 ) ) “ ( 𝑦 𝑢 / 𝑘 𝑆 ) ) )
155 154 eqeq2d ( 𝑣 = ( 𝑦 𝑢 / 𝑘 𝑆 ) → ( 𝑥 = ( ( 𝑤 ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ↔ 𝑥 = ( ( 𝑤 ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤𝑢 ) ) “ ( 𝑦 𝑢 / 𝑘 𝑆 ) ) ) )
156 155 adantl ( ( ( 𝜑𝑢𝐴 ) ∧ 𝑣 = ( 𝑦 𝑢 / 𝑘 𝑆 ) ) → ( 𝑥 = ( ( 𝑤 ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ↔ 𝑥 = ( ( 𝑤 ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤𝑢 ) ) “ ( 𝑦 𝑢 / 𝑘 𝑆 ) ) ) )
157 130 153 156 rexxfr2d ( ( 𝜑𝑢𝐴 ) → ( ∃ 𝑣 ∈ ( ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) 𝑥 = ( ( 𝑤 ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ↔ ∃ 𝑦 ∈ ( 𝐹𝑢 ) 𝑥 = ( ( 𝑤 ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤𝑢 ) ) “ ( 𝑦 𝑢 / 𝑘 𝑆 ) ) ) )
158 127 157 bitr4d ( ( 𝜑𝑢𝐴 ) → ( ∃ 𝑣 ∈ ( 𝐹𝑢 ) 𝑥 = ( ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ∩ X 𝑘𝐴 𝑆 ) ↔ ∃ 𝑣 ∈ ( ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) 𝑥 = ( ( 𝑤 ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) )
159 158 rexbidva ( 𝜑 → ( ∃ 𝑢𝐴𝑣 ∈ ( 𝐹𝑢 ) 𝑥 = ( ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ∩ X 𝑘𝐴 𝑆 ) ↔ ∃ 𝑢𝐴𝑣 ∈ ( ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) 𝑥 = ( ( 𝑤 ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) )
160 159 abbidv ( 𝜑 → { 𝑥 ∣ ∃ 𝑢𝐴𝑣 ∈ ( 𝐹𝑢 ) 𝑥 = ( ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ∩ X 𝑘𝐴 𝑆 ) } = { 𝑥 ∣ ∃ 𝑢𝐴𝑣 ∈ ( ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) 𝑥 = ( ( 𝑤 ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) } )
161 eqid ( 𝑥 ∈ ran ( 𝑢𝐴 , 𝑣 ∈ ( 𝐹𝑢 ) ↦ ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) ↦ ( 𝑥X 𝑘𝐴 𝑆 ) ) = ( 𝑥 ∈ ran ( 𝑢𝐴 , 𝑣 ∈ ( 𝐹𝑢 ) ↦ ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) ↦ ( 𝑥X 𝑘𝐴 𝑆 ) )
162 161 rnmpt ran ( 𝑥 ∈ ran ( 𝑢𝐴 , 𝑣 ∈ ( 𝐹𝑢 ) ↦ ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) ↦ ( 𝑥X 𝑘𝐴 𝑆 ) ) = { 𝑦 ∣ ∃ 𝑥 ∈ ran ( 𝑢𝐴 , 𝑣 ∈ ( 𝐹𝑢 ) ↦ ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) 𝑦 = ( 𝑥X 𝑘𝐴 𝑆 ) }
163 nfre1 𝑥𝑥 ∈ ran ( 𝑢𝐴 , 𝑣 ∈ ( 𝐹𝑢 ) ↦ ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) 𝑦 = ( 𝑥X 𝑘𝐴 𝑆 )
164 nfv 𝑦𝑢𝐴𝑣 ∈ ( 𝐹𝑢 ) 𝑥 = ( ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ∩ X 𝑘𝐴 𝑆 )
165 28 mptex ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) ∈ V
166 165 cnvex ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) ∈ V
167 166 imaex ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ∈ V
168 167 rgen2w 𝑢𝐴𝑣 ∈ ( 𝐹𝑢 ) ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ∈ V
169 ineq1 ( 𝑥 = ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) → ( 𝑥X 𝑘𝐴 𝑆 ) = ( ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ∩ X 𝑘𝐴 𝑆 ) )
170 169 eqeq2d ( 𝑥 = ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) → ( 𝑦 = ( 𝑥X 𝑘𝐴 𝑆 ) ↔ 𝑦 = ( ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ∩ X 𝑘𝐴 𝑆 ) ) )
171 8 170 rexrnmpo ( ∀ 𝑢𝐴𝑣 ∈ ( 𝐹𝑢 ) ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ∈ V → ( ∃ 𝑥 ∈ ran ( 𝑢𝐴 , 𝑣 ∈ ( 𝐹𝑢 ) ↦ ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) 𝑦 = ( 𝑥X 𝑘𝐴 𝑆 ) ↔ ∃ 𝑢𝐴𝑣 ∈ ( 𝐹𝑢 ) 𝑦 = ( ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ∩ X 𝑘𝐴 𝑆 ) ) )
172 168 171 ax-mp ( ∃ 𝑥 ∈ ran ( 𝑢𝐴 , 𝑣 ∈ ( 𝐹𝑢 ) ↦ ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) 𝑦 = ( 𝑥X 𝑘𝐴 𝑆 ) ↔ ∃ 𝑢𝐴𝑣 ∈ ( 𝐹𝑢 ) 𝑦 = ( ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ∩ X 𝑘𝐴 𝑆 ) )
173 eqeq1 ( 𝑦 = 𝑥 → ( 𝑦 = ( ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ∩ X 𝑘𝐴 𝑆 ) ↔ 𝑥 = ( ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ∩ X 𝑘𝐴 𝑆 ) ) )
174 173 2rexbidv ( 𝑦 = 𝑥 → ( ∃ 𝑢𝐴𝑣 ∈ ( 𝐹𝑢 ) 𝑦 = ( ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ∩ X 𝑘𝐴 𝑆 ) ↔ ∃ 𝑢𝐴𝑣 ∈ ( 𝐹𝑢 ) 𝑥 = ( ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ∩ X 𝑘𝐴 𝑆 ) ) )
175 172 174 syl5bb ( 𝑦 = 𝑥 → ( ∃ 𝑥 ∈ ran ( 𝑢𝐴 , 𝑣 ∈ ( 𝐹𝑢 ) ↦ ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) 𝑦 = ( 𝑥X 𝑘𝐴 𝑆 ) ↔ ∃ 𝑢𝐴𝑣 ∈ ( 𝐹𝑢 ) 𝑥 = ( ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ∩ X 𝑘𝐴 𝑆 ) ) )
176 163 164 175 cbvabw { 𝑦 ∣ ∃ 𝑥 ∈ ran ( 𝑢𝐴 , 𝑣 ∈ ( 𝐹𝑢 ) ↦ ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) 𝑦 = ( 𝑥X 𝑘𝐴 𝑆 ) } = { 𝑥 ∣ ∃ 𝑢𝐴𝑣 ∈ ( 𝐹𝑢 ) 𝑥 = ( ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ∩ X 𝑘𝐴 𝑆 ) }
177 162 176 eqtri ran ( 𝑥 ∈ ran ( 𝑢𝐴 , 𝑣 ∈ ( 𝐹𝑢 ) ↦ ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) ↦ ( 𝑥X 𝑘𝐴 𝑆 ) ) = { 𝑥 ∣ ∃ 𝑢𝐴𝑣 ∈ ( 𝐹𝑢 ) 𝑥 = ( ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ∩ X 𝑘𝐴 𝑆 ) }
178 eqid ( 𝑢𝐴 , 𝑣 ∈ ( ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) ↦ ( ( 𝑤 ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) = ( 𝑢𝐴 , 𝑣 ∈ ( ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) ↦ ( ( 𝑤 ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) )
179 178 rnmpo ran ( 𝑢𝐴 , 𝑣 ∈ ( ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) ↦ ( ( 𝑤 ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) = { 𝑥 ∣ ∃ 𝑢𝐴𝑣 ∈ ( ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) 𝑥 = ( ( 𝑤 ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) }
180 160 177 179 3eqtr4g ( 𝜑 → ran ( 𝑥 ∈ ran ( 𝑢𝐴 , 𝑣 ∈ ( 𝐹𝑢 ) ↦ ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) ↦ ( 𝑥X 𝑘𝐴 𝑆 ) ) = ran ( 𝑢𝐴 , 𝑣 ∈ ( ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) ↦ ( ( 𝑤 ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) )
181 84 180 uneq12d ( 𝜑 → ( ran ( 𝑥 ∈ { ( ∏t𝐹 ) } ↦ ( 𝑥X 𝑘𝐴 𝑆 ) ) ∪ ran ( 𝑥 ∈ ran ( 𝑢𝐴 , 𝑣 ∈ ( 𝐹𝑢 ) ↦ ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) ↦ ( 𝑥X 𝑘𝐴 𝑆 ) ) ) = ( { ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) } ∪ ran ( 𝑢𝐴 , 𝑣 ∈ ( ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) ↦ ( ( 𝑤 ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) ) )
182 23 181 syl5eq ( 𝜑 → ran ( 𝑥 ∈ ( { ( ∏t𝐹 ) } ∪ ran ( 𝑢𝐴 , 𝑣 ∈ ( 𝐹𝑢 ) ↦ ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) ) ↦ ( 𝑥X 𝑘𝐴 𝑆 ) ) = ( { ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) } ∪ ran ( 𝑢𝐴 , 𝑣 ∈ ( ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) ↦ ( ( 𝑤 ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) ) )
183 19 182 eqtrd ( 𝜑 → ( ( { ( ∏t𝐹 ) } ∪ ran ( 𝑢𝐴 , 𝑣 ∈ ( 𝐹𝑢 ) ↦ ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) ) ↾t X 𝑘𝐴 𝑆 ) = ( { ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) } ∪ ran ( 𝑢𝐴 , 𝑣 ∈ ( ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) ↦ ( ( 𝑤 ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) ) )
184 183 fveq2d ( 𝜑 → ( fi ‘ ( ( { ( ∏t𝐹 ) } ∪ ran ( 𝑢𝐴 , 𝑣 ∈ ( 𝐹𝑢 ) ↦ ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) ) ↾t X 𝑘𝐴 𝑆 ) ) = ( fi ‘ ( { ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) } ∪ ran ( 𝑢𝐴 , 𝑣 ∈ ( ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) ↦ ( ( 𝑤 ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) ) ) )
185 4 184 eqtr3id ( 𝜑 → ( ( fi ‘ ( { ( ∏t𝐹 ) } ∪ ran ( 𝑢𝐴 , 𝑣 ∈ ( 𝐹𝑢 ) ↦ ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) ) ) ↾t X 𝑘𝐴 𝑆 ) = ( fi ‘ ( { ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) } ∪ ran ( 𝑢𝐴 , 𝑣 ∈ ( ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) ↦ ( ( 𝑤 ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) ) ) )
186 185 fveq2d ( 𝜑 → ( topGen ‘ ( ( fi ‘ ( { ( ∏t𝐹 ) } ∪ ran ( 𝑢𝐴 , 𝑣 ∈ ( 𝐹𝑢 ) ↦ ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) ) ) ↾t X 𝑘𝐴 𝑆 ) ) = ( topGen ‘ ( fi ‘ ( { ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) } ∪ ran ( 𝑢𝐴 , 𝑣 ∈ ( ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) ↦ ( ( 𝑤 ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) ) ) ) )
187 eqid ( ∏t𝐹 ) = ( ∏t𝐹 )
188 72 187 8 ptval2 ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) → ( ∏t𝐹 ) = ( topGen ‘ ( fi ‘ ( { ( ∏t𝐹 ) } ∪ ran ( 𝑢𝐴 , 𝑣 ∈ ( 𝐹𝑢 ) ↦ ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) ) ) ) )
189 1 2 188 syl2anc ( 𝜑 → ( ∏t𝐹 ) = ( topGen ‘ ( fi ‘ ( { ( ∏t𝐹 ) } ∪ ran ( 𝑢𝐴 , 𝑣 ∈ ( 𝐹𝑢 ) ↦ ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) ) ) ) )
190 189 oveq1d ( 𝜑 → ( ( ∏t𝐹 ) ↾t X 𝑘𝐴 𝑆 ) = ( ( topGen ‘ ( fi ‘ ( { ( ∏t𝐹 ) } ∪ ran ( 𝑢𝐴 , 𝑣 ∈ ( 𝐹𝑢 ) ↦ ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) ) ) ) ↾t X 𝑘𝐴 𝑆 ) )
191 fvex ( fi ‘ ( { ( ∏t𝐹 ) } ∪ ran ( 𝑢𝐴 , 𝑣 ∈ ( 𝐹𝑢 ) ↦ ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) ) ) ∈ V
192 tgrest ( ( ( fi ‘ ( { ( ∏t𝐹 ) } ∪ ran ( 𝑢𝐴 , 𝑣 ∈ ( 𝐹𝑢 ) ↦ ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) ) ) ∈ V ∧ X 𝑘𝐴 𝑆 ∈ V ) → ( topGen ‘ ( ( fi ‘ ( { ( ∏t𝐹 ) } ∪ ran ( 𝑢𝐴 , 𝑣 ∈ ( 𝐹𝑢 ) ↦ ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) ) ) ↾t X 𝑘𝐴 𝑆 ) ) = ( ( topGen ‘ ( fi ‘ ( { ( ∏t𝐹 ) } ∪ ran ( 𝑢𝐴 , 𝑣 ∈ ( 𝐹𝑢 ) ↦ ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) ) ) ) ↾t X 𝑘𝐴 𝑆 ) )
193 191 17 192 sylancr ( 𝜑 → ( topGen ‘ ( ( fi ‘ ( { ( ∏t𝐹 ) } ∪ ran ( 𝑢𝐴 , 𝑣 ∈ ( 𝐹𝑢 ) ↦ ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) ) ) ↾t X 𝑘𝐴 𝑆 ) ) = ( ( topGen ‘ ( fi ‘ ( { ( ∏t𝐹 ) } ∪ ran ( 𝑢𝐴 , 𝑣 ∈ ( 𝐹𝑢 ) ↦ ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) ) ) ) ↾t X 𝑘𝐴 𝑆 ) )
194 190 193 eqtr4d ( 𝜑 → ( ( ∏t𝐹 ) ↾t X 𝑘𝐴 𝑆 ) = ( topGen ‘ ( ( fi ‘ ( { ( ∏t𝐹 ) } ∪ ran ( 𝑢𝐴 , 𝑣 ∈ ( 𝐹𝑢 ) ↦ ( ( 𝑤 ( ∏t𝐹 ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) ) ) ↾t X 𝑘𝐴 𝑆 ) ) )
195 eqid ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) = ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) )
196 79 195 178 ptval2 ( ( 𝐴𝑉 ∧ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) : 𝐴 ⟶ Top ) → ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) = ( topGen ‘ ( fi ‘ ( { ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) } ∪ ran ( 𝑢𝐴 , 𝑣 ∈ ( ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) ↦ ( ( 𝑤 ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) ) ) ) )
197 1 78 196 syl2anc ( 𝜑 → ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) = ( topGen ‘ ( fi ‘ ( { ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) } ∪ ran ( 𝑢𝐴 , 𝑣 ∈ ( ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) ↦ ( ( 𝑤 ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤𝑢 ) ) “ 𝑣 ) ) ) ) ) )
198 186 194 197 3eqtr4d ( 𝜑 → ( ( ∏t𝐹 ) ↾t X 𝑘𝐴 𝑆 ) = ( ∏t ‘ ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ↾t 𝑆 ) ) ) )