Step |
Hyp |
Ref |
Expression |
1 |
|
ptrest.0 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
2 |
|
ptrest.1 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ Top ) |
3 |
|
ptrest.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑆 ∈ 𝑊 ) |
4 |
|
firest |
⊢ ( fi ‘ ( ( { ∪ ( ∏t ‘ 𝐹 ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ↾t X 𝑘 ∈ 𝐴 𝑆 ) ) = ( ( fi ‘ ( { ∪ ( ∏t ‘ 𝐹 ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ) ↾t X 𝑘 ∈ 𝐴 𝑆 ) |
5 |
|
snex |
⊢ { ∪ ( ∏t ‘ 𝐹 ) } ∈ V |
6 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑢 ) ∈ V |
7 |
6
|
rgenw |
⊢ ∀ 𝑢 ∈ 𝐴 ( 𝐹 ‘ 𝑢 ) ∈ V |
8 |
|
eqid |
⊢ ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) = ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) |
9 |
8
|
mpoexxg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑢 ∈ 𝐴 ( 𝐹 ‘ 𝑢 ) ∈ V ) → ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ∈ V ) |
10 |
1 7 9
|
sylancl |
⊢ ( 𝜑 → ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ∈ V ) |
11 |
|
rnexg |
⊢ ( ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ∈ V → ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ∈ V ) |
12 |
10 11
|
syl |
⊢ ( 𝜑 → ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ∈ V ) |
13 |
|
unexg |
⊢ ( ( { ∪ ( ∏t ‘ 𝐹 ) } ∈ V ∧ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ∈ V ) → ( { ∪ ( ∏t ‘ 𝐹 ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ∈ V ) |
14 |
5 12 13
|
sylancr |
⊢ ( 𝜑 → ( { ∪ ( ∏t ‘ 𝐹 ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ∈ V ) |
15 |
3
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝑆 ∈ 𝑊 ) |
16 |
|
ixpexg |
⊢ ( ∀ 𝑘 ∈ 𝐴 𝑆 ∈ 𝑊 → X 𝑘 ∈ 𝐴 𝑆 ∈ V ) |
17 |
15 16
|
syl |
⊢ ( 𝜑 → X 𝑘 ∈ 𝐴 𝑆 ∈ V ) |
18 |
|
restval |
⊢ ( ( ( { ∪ ( ∏t ‘ 𝐹 ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ∈ V ∧ X 𝑘 ∈ 𝐴 𝑆 ∈ V ) → ( ( { ∪ ( ∏t ‘ 𝐹 ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ↾t X 𝑘 ∈ 𝐴 𝑆 ) = ran ( 𝑥 ∈ ( { ∪ ( ∏t ‘ 𝐹 ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ↦ ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) ) |
19 |
14 17 18
|
syl2anc |
⊢ ( 𝜑 → ( ( { ∪ ( ∏t ‘ 𝐹 ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ↾t X 𝑘 ∈ 𝐴 𝑆 ) = ran ( 𝑥 ∈ ( { ∪ ( ∏t ‘ 𝐹 ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ↦ ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) ) |
20 |
|
mptun |
⊢ ( 𝑥 ∈ ( { ∪ ( ∏t ‘ 𝐹 ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ↦ ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) = ( ( 𝑥 ∈ { ∪ ( ∏t ‘ 𝐹 ) } ↦ ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) ∪ ( 𝑥 ∈ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ↦ ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) ) |
21 |
20
|
rneqi |
⊢ ran ( 𝑥 ∈ ( { ∪ ( ∏t ‘ 𝐹 ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ↦ ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) = ran ( ( 𝑥 ∈ { ∪ ( ∏t ‘ 𝐹 ) } ↦ ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) ∪ ( 𝑥 ∈ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ↦ ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) ) |
22 |
|
rnun |
⊢ ran ( ( 𝑥 ∈ { ∪ ( ∏t ‘ 𝐹 ) } ↦ ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) ∪ ( 𝑥 ∈ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ↦ ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) ) = ( ran ( 𝑥 ∈ { ∪ ( ∏t ‘ 𝐹 ) } ↦ ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) ∪ ran ( 𝑥 ∈ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ↦ ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) ) |
23 |
21 22
|
eqtri |
⊢ ran ( 𝑥 ∈ ( { ∪ ( ∏t ‘ 𝐹 ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ↦ ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) = ( ran ( 𝑥 ∈ { ∪ ( ∏t ‘ 𝐹 ) } ↦ ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) ∪ ran ( 𝑥 ∈ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ↦ ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) ) |
24 |
|
elsni |
⊢ ( 𝑥 ∈ { ∪ ( ∏t ‘ 𝐹 ) } → 𝑥 = ∪ ( ∏t ‘ 𝐹 ) ) |
25 |
24
|
ineq1d |
⊢ ( 𝑥 ∈ { ∪ ( ∏t ‘ 𝐹 ) } → ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) = ( ∪ ( ∏t ‘ 𝐹 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) |
26 |
25
|
mpteq2ia |
⊢ ( 𝑥 ∈ { ∪ ( ∏t ‘ 𝐹 ) } ↦ ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) = ( 𝑥 ∈ { ∪ ( ∏t ‘ 𝐹 ) } ↦ ( ∪ ( ∏t ‘ 𝐹 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) |
27 |
|
fvex |
⊢ ( ∏t ‘ 𝐹 ) ∈ V |
28 |
27
|
uniex |
⊢ ∪ ( ∏t ‘ 𝐹 ) ∈ V |
29 |
28
|
inex1 |
⊢ ( ∪ ( ∏t ‘ 𝐹 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ∈ V |
30 |
|
fmptsn |
⊢ ( ( ∪ ( ∏t ‘ 𝐹 ) ∈ V ∧ ( ∪ ( ∏t ‘ 𝐹 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ∈ V ) → { 〈 ∪ ( ∏t ‘ 𝐹 ) , ( ∪ ( ∏t ‘ 𝐹 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) 〉 } = ( 𝑥 ∈ { ∪ ( ∏t ‘ 𝐹 ) } ↦ ( ∪ ( ∏t ‘ 𝐹 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) ) |
31 |
28 29 30
|
mp2an |
⊢ { 〈 ∪ ( ∏t ‘ 𝐹 ) , ( ∪ ( ∏t ‘ 𝐹 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) 〉 } = ( 𝑥 ∈ { ∪ ( ∏t ‘ 𝐹 ) } ↦ ( ∪ ( ∏t ‘ 𝐹 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) |
32 |
26 31
|
eqtr4i |
⊢ ( 𝑥 ∈ { ∪ ( ∏t ‘ 𝐹 ) } ↦ ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) = { 〈 ∪ ( ∏t ‘ 𝐹 ) , ( ∪ ( ∏t ‘ 𝐹 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) 〉 } |
33 |
32
|
rneqi |
⊢ ran ( 𝑥 ∈ { ∪ ( ∏t ‘ 𝐹 ) } ↦ ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) = ran { 〈 ∪ ( ∏t ‘ 𝐹 ) , ( ∪ ( ∏t ‘ 𝐹 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) 〉 } |
34 |
28
|
rnsnop |
⊢ ran { 〈 ∪ ( ∏t ‘ 𝐹 ) , ( ∪ ( ∏t ‘ 𝐹 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) 〉 } = { ( ∪ ( ∏t ‘ 𝐹 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) } |
35 |
33 34
|
eqtri |
⊢ ran ( 𝑥 ∈ { ∪ ( ∏t ‘ 𝐹 ) } ↦ ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) = { ( ∪ ( ∏t ‘ 𝐹 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) } |
36 |
2
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) ∈ Top ) |
37 |
|
inss1 |
⊢ ( ∪ ( 𝐹 ‘ 𝑘 ) ∩ 𝑆 ) ⊆ ∪ ( 𝐹 ‘ 𝑘 ) |
38 |
|
eqid |
⊢ ∪ ( 𝐹 ‘ 𝑘 ) = ∪ ( 𝐹 ‘ 𝑘 ) |
39 |
38
|
restuni |
⊢ ( ( ( 𝐹 ‘ 𝑘 ) ∈ Top ∧ ( ∪ ( 𝐹 ‘ 𝑘 ) ∩ 𝑆 ) ⊆ ∪ ( 𝐹 ‘ 𝑘 ) ) → ( ∪ ( 𝐹 ‘ 𝑘 ) ∩ 𝑆 ) = ∪ ( ( 𝐹 ‘ 𝑘 ) ↾t ( ∪ ( 𝐹 ‘ 𝑘 ) ∩ 𝑆 ) ) ) |
40 |
36 37 39
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ∪ ( 𝐹 ‘ 𝑘 ) ∩ 𝑆 ) = ∪ ( ( 𝐹 ‘ 𝑘 ) ↾t ( ∪ ( 𝐹 ‘ 𝑘 ) ∩ 𝑆 ) ) ) |
41 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑘 ) ∈ V |
42 |
38
|
restin |
⊢ ( ( ( 𝐹 ‘ 𝑘 ) ∈ V ∧ 𝑆 ∈ 𝑊 ) → ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) = ( ( 𝐹 ‘ 𝑘 ) ↾t ( 𝑆 ∩ ∪ ( 𝐹 ‘ 𝑘 ) ) ) ) |
43 |
41 3 42
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) = ( ( 𝐹 ‘ 𝑘 ) ↾t ( 𝑆 ∩ ∪ ( 𝐹 ‘ 𝑘 ) ) ) ) |
44 |
|
incom |
⊢ ( 𝑆 ∩ ∪ ( 𝐹 ‘ 𝑘 ) ) = ( ∪ ( 𝐹 ‘ 𝑘 ) ∩ 𝑆 ) |
45 |
44
|
oveq2i |
⊢ ( ( 𝐹 ‘ 𝑘 ) ↾t ( 𝑆 ∩ ∪ ( 𝐹 ‘ 𝑘 ) ) ) = ( ( 𝐹 ‘ 𝑘 ) ↾t ( ∪ ( 𝐹 ‘ 𝑘 ) ∩ 𝑆 ) ) |
46 |
43 45
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) = ( ( 𝐹 ‘ 𝑘 ) ↾t ( ∪ ( 𝐹 ‘ 𝑘 ) ∩ 𝑆 ) ) ) |
47 |
46
|
unieqd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ∪ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) = ∪ ( ( 𝐹 ‘ 𝑘 ) ↾t ( ∪ ( 𝐹 ‘ 𝑘 ) ∩ 𝑆 ) ) ) |
48 |
40 47
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ∪ ( 𝐹 ‘ 𝑘 ) ∩ 𝑆 ) = ∪ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) |
49 |
48
|
ixpeq2dva |
⊢ ( 𝜑 → X 𝑘 ∈ 𝐴 ( ∪ ( 𝐹 ‘ 𝑘 ) ∩ 𝑆 ) = X 𝑘 ∈ 𝐴 ∪ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) |
50 |
|
ixpin |
⊢ X 𝑘 ∈ 𝐴 ( ∪ ( 𝐹 ‘ 𝑘 ) ∩ 𝑆 ) = ( X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) |
51 |
|
nfcv |
⊢ Ⅎ 𝑦 ∪ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) |
52 |
|
nfcv |
⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑦 ) |
53 |
|
nfcv |
⊢ Ⅎ 𝑘 ↾t |
54 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑦 / 𝑘 ⦌ 𝑆 |
55 |
52 53 54
|
nfov |
⊢ Ⅎ 𝑘 ( ( 𝐹 ‘ 𝑦 ) ↾t ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) |
56 |
55
|
nfuni |
⊢ Ⅎ 𝑘 ∪ ( ( 𝐹 ‘ 𝑦 ) ↾t ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) |
57 |
|
fveq2 |
⊢ ( 𝑘 = 𝑦 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑦 ) ) |
58 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑦 → 𝑆 = ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) |
59 |
57 58
|
oveq12d |
⊢ ( 𝑘 = 𝑦 → ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) = ( ( 𝐹 ‘ 𝑦 ) ↾t ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) ) |
60 |
59
|
unieqd |
⊢ ( 𝑘 = 𝑦 → ∪ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) = ∪ ( ( 𝐹 ‘ 𝑦 ) ↾t ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) ) |
61 |
51 56 60
|
cbvixp |
⊢ X 𝑘 ∈ 𝐴 ∪ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) = X 𝑦 ∈ 𝐴 ∪ ( ( 𝐹 ‘ 𝑦 ) ↾t ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) |
62 |
|
ixpeq2 |
⊢ ( ∀ 𝑦 ∈ 𝐴 ∪ ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑦 ) = ∪ ( ( 𝐹 ‘ 𝑦 ) ↾t ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) → X 𝑦 ∈ 𝐴 ∪ ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑦 ) = X 𝑦 ∈ 𝐴 ∪ ( ( 𝐹 ‘ 𝑦 ) ↾t ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) ) |
63 |
|
ovex |
⊢ ( ( 𝐹 ‘ 𝑦 ) ↾t ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) ∈ V |
64 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑦 |
65 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) = ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) |
66 |
64 55 59 65
|
fvmptf |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( ( 𝐹 ‘ 𝑦 ) ↾t ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) ∈ V ) → ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑦 ) = ( ( 𝐹 ‘ 𝑦 ) ↾t ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) ) |
67 |
63 66
|
mpan2 |
⊢ ( 𝑦 ∈ 𝐴 → ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑦 ) = ( ( 𝐹 ‘ 𝑦 ) ↾t ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) ) |
68 |
67
|
unieqd |
⊢ ( 𝑦 ∈ 𝐴 → ∪ ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑦 ) = ∪ ( ( 𝐹 ‘ 𝑦 ) ↾t ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) ) |
69 |
62 68
|
mprg |
⊢ X 𝑦 ∈ 𝐴 ∪ ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑦 ) = X 𝑦 ∈ 𝐴 ∪ ( ( 𝐹 ‘ 𝑦 ) ↾t ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) |
70 |
61 69
|
eqtr4i |
⊢ X 𝑘 ∈ 𝐴 ∪ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) = X 𝑦 ∈ 𝐴 ∪ ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑦 ) |
71 |
49 50 70
|
3eqtr3g |
⊢ ( 𝜑 → ( X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) = X 𝑦 ∈ 𝐴 ∪ ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑦 ) ) |
72 |
|
eqid |
⊢ ( ∏t ‘ 𝐹 ) = ( ∏t ‘ 𝐹 ) |
73 |
72
|
ptuni |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) = ∪ ( ∏t ‘ 𝐹 ) ) |
74 |
1 2 73
|
syl2anc |
⊢ ( 𝜑 → X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) = ∪ ( ∏t ‘ 𝐹 ) ) |
75 |
74
|
ineq1d |
⊢ ( 𝜑 → ( X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) = ( ∪ ( ∏t ‘ 𝐹 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) |
76 |
|
resttop |
⊢ ( ( ( 𝐹 ‘ 𝑘 ) ∈ Top ∧ 𝑆 ∈ 𝑊 ) → ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ∈ Top ) |
77 |
36 3 76
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ∈ Top ) |
78 |
77
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) : 𝐴 ⟶ Top ) |
79 |
|
eqid |
⊢ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) = ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) |
80 |
79
|
ptuni |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) : 𝐴 ⟶ Top ) → X 𝑦 ∈ 𝐴 ∪ ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑦 ) = ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ) |
81 |
1 78 80
|
syl2anc |
⊢ ( 𝜑 → X 𝑦 ∈ 𝐴 ∪ ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑦 ) = ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ) |
82 |
71 75 81
|
3eqtr3d |
⊢ ( 𝜑 → ( ∪ ( ∏t ‘ 𝐹 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) = ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ) |
83 |
82
|
sneqd |
⊢ ( 𝜑 → { ( ∪ ( ∏t ‘ 𝐹 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) } = { ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) } ) |
84 |
35 83
|
syl5eq |
⊢ ( 𝜑 → ran ( 𝑥 ∈ { ∪ ( ∏t ‘ 𝐹 ) } ↦ ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) = { ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) } ) |
85 |
|
vex |
⊢ 𝑤 ∈ V |
86 |
85
|
elixp |
⊢ ( 𝑤 ∈ X 𝑘 ∈ 𝐴 𝑆 ↔ ( 𝑤 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑤 ‘ 𝑘 ) ∈ 𝑆 ) ) |
87 |
86
|
simprbi |
⊢ ( 𝑤 ∈ X 𝑘 ∈ 𝐴 𝑆 → ∀ 𝑘 ∈ 𝐴 ( 𝑤 ‘ 𝑘 ) ∈ 𝑆 ) |
88 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑢 / 𝑘 ⦌ 𝑆 |
89 |
88
|
nfel2 |
⊢ Ⅎ 𝑘 ( 𝑤 ‘ 𝑢 ) ∈ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 |
90 |
|
fveq2 |
⊢ ( 𝑘 = 𝑢 → ( 𝑤 ‘ 𝑘 ) = ( 𝑤 ‘ 𝑢 ) ) |
91 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑢 → 𝑆 = ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) |
92 |
90 91
|
eleq12d |
⊢ ( 𝑘 = 𝑢 → ( ( 𝑤 ‘ 𝑘 ) ∈ 𝑆 ↔ ( 𝑤 ‘ 𝑢 ) ∈ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) |
93 |
89 92
|
rspc |
⊢ ( 𝑢 ∈ 𝐴 → ( ∀ 𝑘 ∈ 𝐴 ( 𝑤 ‘ 𝑘 ) ∈ 𝑆 → ( 𝑤 ‘ 𝑢 ) ∈ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) |
94 |
87 93
|
syl5 |
⊢ ( 𝑢 ∈ 𝐴 → ( 𝑤 ∈ X 𝑘 ∈ 𝐴 𝑆 → ( 𝑤 ‘ 𝑢 ) ∈ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) |
95 |
94
|
pm4.71d |
⊢ ( 𝑢 ∈ 𝐴 → ( 𝑤 ∈ X 𝑘 ∈ 𝐴 𝑆 ↔ ( 𝑤 ∈ X 𝑘 ∈ 𝐴 𝑆 ∧ ( 𝑤 ‘ 𝑢 ) ∈ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) ) |
96 |
95
|
anbi2d |
⊢ ( 𝑢 ∈ 𝐴 → ( ( ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ ( 𝑤 ‘ 𝑢 ) ∈ 𝑣 ) ∧ 𝑤 ∈ X 𝑘 ∈ 𝐴 𝑆 ) ↔ ( ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ ( 𝑤 ‘ 𝑢 ) ∈ 𝑣 ) ∧ ( 𝑤 ∈ X 𝑘 ∈ 𝐴 𝑆 ∧ ( 𝑤 ‘ 𝑢 ) ∈ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) ) ) |
97 |
|
an4 |
⊢ ( ( ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ ( 𝑤 ‘ 𝑢 ) ∈ 𝑣 ) ∧ ( 𝑤 ∈ X 𝑘 ∈ 𝐴 𝑆 ∧ ( 𝑤 ‘ 𝑢 ) ∈ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) ↔ ( ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑤 ∈ X 𝑘 ∈ 𝐴 𝑆 ) ∧ ( ( 𝑤 ‘ 𝑢 ) ∈ 𝑣 ∧ ( 𝑤 ‘ 𝑢 ) ∈ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) ) |
98 |
|
elin |
⊢ ( ( 𝑤 ‘ 𝑢 ) ∈ ( 𝑣 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ↔ ( ( 𝑤 ‘ 𝑢 ) ∈ 𝑣 ∧ ( 𝑤 ‘ 𝑢 ) ∈ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) |
99 |
98
|
anbi2i |
⊢ ( ( ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑤 ∈ X 𝑘 ∈ 𝐴 𝑆 ) ∧ ( 𝑤 ‘ 𝑢 ) ∈ ( 𝑣 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) ↔ ( ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑤 ∈ X 𝑘 ∈ 𝐴 𝑆 ) ∧ ( ( 𝑤 ‘ 𝑢 ) ∈ 𝑣 ∧ ( 𝑤 ‘ 𝑢 ) ∈ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) ) |
100 |
97 99
|
bitr4i |
⊢ ( ( ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ ( 𝑤 ‘ 𝑢 ) ∈ 𝑣 ) ∧ ( 𝑤 ∈ X 𝑘 ∈ 𝐴 𝑆 ∧ ( 𝑤 ‘ 𝑢 ) ∈ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) ↔ ( ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑤 ∈ X 𝑘 ∈ 𝐴 𝑆 ) ∧ ( 𝑤 ‘ 𝑢 ) ∈ ( 𝑣 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) ) |
101 |
96 100
|
bitrdi |
⊢ ( 𝑢 ∈ 𝐴 → ( ( ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ ( 𝑤 ‘ 𝑢 ) ∈ 𝑣 ) ∧ 𝑤 ∈ X 𝑘 ∈ 𝐴 𝑆 ) ↔ ( ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑤 ∈ X 𝑘 ∈ 𝐴 𝑆 ) ∧ ( 𝑤 ‘ 𝑢 ) ∈ ( 𝑣 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) ) ) |
102 |
|
elin |
⊢ ( 𝑤 ∈ ( ∪ ( ∏t ‘ 𝐹 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ↔ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑤 ∈ X 𝑘 ∈ 𝐴 𝑆 ) ) |
103 |
82
|
eleq2d |
⊢ ( 𝜑 → ( 𝑤 ∈ ( ∪ ( ∏t ‘ 𝐹 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ↔ 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ) ) |
104 |
102 103
|
bitr3id |
⊢ ( 𝜑 → ( ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑤 ∈ X 𝑘 ∈ 𝐴 𝑆 ) ↔ 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ) ) |
105 |
104
|
anbi1d |
⊢ ( 𝜑 → ( ( ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑤 ∈ X 𝑘 ∈ 𝐴 𝑆 ) ∧ ( 𝑤 ‘ 𝑢 ) ∈ ( 𝑣 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) ↔ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ∧ ( 𝑤 ‘ 𝑢 ) ∈ ( 𝑣 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) ) ) |
106 |
101 105
|
sylan9bbr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ) → ( ( ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ ( 𝑤 ‘ 𝑢 ) ∈ 𝑣 ) ∧ 𝑤 ∈ X 𝑘 ∈ 𝐴 𝑆 ) ↔ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ∧ ( 𝑤 ‘ 𝑢 ) ∈ ( 𝑣 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) ) ) |
107 |
106
|
abbidv |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ) → { 𝑤 ∣ ( ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ ( 𝑤 ‘ 𝑢 ) ∈ 𝑣 ) ∧ 𝑤 ∈ X 𝑘 ∈ 𝐴 𝑆 ) } = { 𝑤 ∣ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ∧ ( 𝑤 ‘ 𝑢 ) ∈ ( 𝑣 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) } ) |
108 |
|
eqid |
⊢ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) = ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) |
109 |
108
|
mptpreima |
⊢ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) = { 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ∣ ( 𝑤 ‘ 𝑢 ) ∈ 𝑣 } |
110 |
|
df-rab |
⊢ { 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ∣ ( 𝑤 ‘ 𝑢 ) ∈ 𝑣 } = { 𝑤 ∣ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ ( 𝑤 ‘ 𝑢 ) ∈ 𝑣 ) } |
111 |
109 110
|
eqtr2i |
⊢ { 𝑤 ∣ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ ( 𝑤 ‘ 𝑢 ) ∈ 𝑣 ) } = ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) |
112 |
|
abid2 |
⊢ { 𝑤 ∣ 𝑤 ∈ X 𝑘 ∈ 𝐴 𝑆 } = X 𝑘 ∈ 𝐴 𝑆 |
113 |
111 112
|
ineq12i |
⊢ ( { 𝑤 ∣ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ ( 𝑤 ‘ 𝑢 ) ∈ 𝑣 ) } ∩ { 𝑤 ∣ 𝑤 ∈ X 𝑘 ∈ 𝐴 𝑆 } ) = ( ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) |
114 |
|
inab |
⊢ ( { 𝑤 ∣ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ ( 𝑤 ‘ 𝑢 ) ∈ 𝑣 ) } ∩ { 𝑤 ∣ 𝑤 ∈ X 𝑘 ∈ 𝐴 𝑆 } ) = { 𝑤 ∣ ( ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ ( 𝑤 ‘ 𝑢 ) ∈ 𝑣 ) ∧ 𝑤 ∈ X 𝑘 ∈ 𝐴 𝑆 ) } |
115 |
113 114
|
eqtr3i |
⊢ ( ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) = { 𝑤 ∣ ( ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ ( 𝑤 ‘ 𝑢 ) ∈ 𝑣 ) ∧ 𝑤 ∈ X 𝑘 ∈ 𝐴 𝑆 ) } |
116 |
|
eqid |
⊢ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) = ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) |
117 |
116
|
mptpreima |
⊢ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ ( 𝑣 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) = { 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ∣ ( 𝑤 ‘ 𝑢 ) ∈ ( 𝑣 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) } |
118 |
|
df-rab |
⊢ { 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ∣ ( 𝑤 ‘ 𝑢 ) ∈ ( 𝑣 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) } = { 𝑤 ∣ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ∧ ( 𝑤 ‘ 𝑢 ) ∈ ( 𝑣 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) } |
119 |
117 118
|
eqtri |
⊢ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ ( 𝑣 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) = { 𝑤 ∣ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ∧ ( 𝑤 ‘ 𝑢 ) ∈ ( 𝑣 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) } |
120 |
107 115 119
|
3eqtr4g |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ) → ( ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) = ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ ( 𝑣 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) ) |
121 |
120
|
eqeq2d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ) → ( 𝑥 = ( ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ↔ 𝑥 = ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ ( 𝑣 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) ) ) |
122 |
121
|
rexbidv |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ) → ( ∃ 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) 𝑥 = ( ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ↔ ∃ 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) 𝑥 = ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ ( 𝑣 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) ) ) |
123 |
|
ineq1 |
⊢ ( 𝑣 = 𝑦 → ( 𝑣 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) = ( 𝑦 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) |
124 |
123
|
imaeq2d |
⊢ ( 𝑣 = 𝑦 → ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ ( 𝑣 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) = ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ ( 𝑦 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) ) |
125 |
124
|
eqeq2d |
⊢ ( 𝑣 = 𝑦 → ( 𝑥 = ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ ( 𝑣 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) ↔ 𝑥 = ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ ( 𝑦 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) ) ) |
126 |
125
|
cbvrexvw |
⊢ ( ∃ 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) 𝑥 = ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ ( 𝑣 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) ↔ ∃ 𝑦 ∈ ( 𝐹 ‘ 𝑢 ) 𝑥 = ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ ( 𝑦 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) ) |
127 |
122 126
|
bitrdi |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ) → ( ∃ 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) 𝑥 = ( ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ↔ ∃ 𝑦 ∈ ( 𝐹 ‘ 𝑢 ) 𝑥 = ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ ( 𝑦 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) ) ) |
128 |
|
vex |
⊢ 𝑦 ∈ V |
129 |
128
|
inex1 |
⊢ ( 𝑦 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ∈ V |
130 |
129
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑢 ) ) → ( 𝑦 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ∈ V ) |
131 |
|
ovex |
⊢ ( ( 𝐹 ‘ 𝑢 ) ↾t ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ∈ V |
132 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑢 |
133 |
|
nfcv |
⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑢 ) |
134 |
133 53 88
|
nfov |
⊢ Ⅎ 𝑘 ( ( 𝐹 ‘ 𝑢 ) ↾t ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) |
135 |
|
fveq2 |
⊢ ( 𝑘 = 𝑢 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑢 ) ) |
136 |
135 91
|
oveq12d |
⊢ ( 𝑘 = 𝑢 → ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) = ( ( 𝐹 ‘ 𝑢 ) ↾t ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) |
137 |
132 134 136 65
|
fvmptf |
⊢ ( ( 𝑢 ∈ 𝐴 ∧ ( ( 𝐹 ‘ 𝑢 ) ↾t ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ∈ V ) → ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) = ( ( 𝐹 ‘ 𝑢 ) ↾t ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) |
138 |
131 137
|
mpan2 |
⊢ ( 𝑢 ∈ 𝐴 → ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) = ( ( 𝐹 ‘ 𝑢 ) ↾t ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) |
139 |
138
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) = ( ( 𝐹 ‘ 𝑢 ) ↾t ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) |
140 |
139
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ) → ( 𝑣 ∈ ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) ↔ 𝑣 ∈ ( ( 𝐹 ‘ 𝑢 ) ↾t ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) ) |
141 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑢 ∈ 𝐴 ) |
142 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑢 / 𝑘 ⦌ 𝑊 |
143 |
88 142
|
nfel |
⊢ Ⅎ 𝑘 ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ∈ ⦋ 𝑢 / 𝑘 ⦌ 𝑊 |
144 |
141 143
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ) → ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ∈ ⦋ 𝑢 / 𝑘 ⦌ 𝑊 ) |
145 |
|
eleq1w |
⊢ ( 𝑘 = 𝑢 → ( 𝑘 ∈ 𝐴 ↔ 𝑢 ∈ 𝐴 ) ) |
146 |
145
|
anbi2d |
⊢ ( 𝑘 = 𝑢 → ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ↔ ( 𝜑 ∧ 𝑢 ∈ 𝐴 ) ) ) |
147 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑢 → 𝑊 = ⦋ 𝑢 / 𝑘 ⦌ 𝑊 ) |
148 |
91 147
|
eleq12d |
⊢ ( 𝑘 = 𝑢 → ( 𝑆 ∈ 𝑊 ↔ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ∈ ⦋ 𝑢 / 𝑘 ⦌ 𝑊 ) ) |
149 |
146 148
|
imbi12d |
⊢ ( 𝑘 = 𝑢 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑆 ∈ 𝑊 ) ↔ ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ) → ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ∈ ⦋ 𝑢 / 𝑘 ⦌ 𝑊 ) ) ) |
150 |
144 149 3
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ) → ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ∈ ⦋ 𝑢 / 𝑘 ⦌ 𝑊 ) |
151 |
|
elrest |
⊢ ( ( ( 𝐹 ‘ 𝑢 ) ∈ V ∧ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ∈ ⦋ 𝑢 / 𝑘 ⦌ 𝑊 ) → ( 𝑣 ∈ ( ( 𝐹 ‘ 𝑢 ) ↾t ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ↔ ∃ 𝑦 ∈ ( 𝐹 ‘ 𝑢 ) 𝑣 = ( 𝑦 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) ) |
152 |
6 150 151
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ) → ( 𝑣 ∈ ( ( 𝐹 ‘ 𝑢 ) ↾t ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ↔ ∃ 𝑦 ∈ ( 𝐹 ‘ 𝑢 ) 𝑣 = ( 𝑦 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) ) |
153 |
140 152
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ) → ( 𝑣 ∈ ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) ↔ ∃ 𝑦 ∈ ( 𝐹 ‘ 𝑢 ) 𝑣 = ( 𝑦 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) ) |
154 |
|
imaeq2 |
⊢ ( 𝑣 = ( 𝑦 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) → ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) = ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ ( 𝑦 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) ) |
155 |
154
|
eqeq2d |
⊢ ( 𝑣 = ( 𝑦 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) → ( 𝑥 = ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ↔ 𝑥 = ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ ( 𝑦 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) ) ) |
156 |
155
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑣 = ( 𝑦 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) → ( 𝑥 = ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ↔ 𝑥 = ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ ( 𝑦 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) ) ) |
157 |
130 153 156
|
rexxfr2d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ) → ( ∃ 𝑣 ∈ ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) 𝑥 = ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ↔ ∃ 𝑦 ∈ ( 𝐹 ‘ 𝑢 ) 𝑥 = ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ ( 𝑦 ∩ ⦋ 𝑢 / 𝑘 ⦌ 𝑆 ) ) ) ) |
158 |
127 157
|
bitr4d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ) → ( ∃ 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) 𝑥 = ( ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ↔ ∃ 𝑣 ∈ ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) 𝑥 = ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) |
159 |
158
|
rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑢 ∈ 𝐴 ∃ 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) 𝑥 = ( ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ↔ ∃ 𝑢 ∈ 𝐴 ∃ 𝑣 ∈ ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) 𝑥 = ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) |
160 |
159
|
abbidv |
⊢ ( 𝜑 → { 𝑥 ∣ ∃ 𝑢 ∈ 𝐴 ∃ 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) 𝑥 = ( ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) } = { 𝑥 ∣ ∃ 𝑢 ∈ 𝐴 ∃ 𝑣 ∈ ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) 𝑥 = ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) } ) |
161 |
|
eqid |
⊢ ( 𝑥 ∈ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ↦ ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) = ( 𝑥 ∈ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ↦ ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) |
162 |
161
|
rnmpt |
⊢ ran ( 𝑥 ∈ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ↦ ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) = { 𝑦 ∣ ∃ 𝑥 ∈ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) 𝑦 = ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) } |
163 |
|
nfre1 |
⊢ Ⅎ 𝑥 ∃ 𝑥 ∈ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) 𝑦 = ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) |
164 |
|
nfv |
⊢ Ⅎ 𝑦 ∃ 𝑢 ∈ 𝐴 ∃ 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) 𝑥 = ( ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) |
165 |
28
|
mptex |
⊢ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) ∈ V |
166 |
165
|
cnvex |
⊢ ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) ∈ V |
167 |
166
|
imaex |
⊢ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ∈ V |
168 |
167
|
rgen2w |
⊢ ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ∈ V |
169 |
|
ineq1 |
⊢ ( 𝑥 = ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) → ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) = ( ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) |
170 |
169
|
eqeq2d |
⊢ ( 𝑥 = ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) → ( 𝑦 = ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ↔ 𝑦 = ( ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) ) |
171 |
8 170
|
rexrnmpo |
⊢ ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ∈ V → ( ∃ 𝑥 ∈ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) 𝑦 = ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ↔ ∃ 𝑢 ∈ 𝐴 ∃ 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) 𝑦 = ( ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) ) |
172 |
168 171
|
ax-mp |
⊢ ( ∃ 𝑥 ∈ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) 𝑦 = ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ↔ ∃ 𝑢 ∈ 𝐴 ∃ 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) 𝑦 = ( ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) |
173 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 = ( ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ↔ 𝑥 = ( ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) ) |
174 |
173
|
2rexbidv |
⊢ ( 𝑦 = 𝑥 → ( ∃ 𝑢 ∈ 𝐴 ∃ 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) 𝑦 = ( ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ↔ ∃ 𝑢 ∈ 𝐴 ∃ 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) 𝑥 = ( ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) ) |
175 |
172 174
|
syl5bb |
⊢ ( 𝑦 = 𝑥 → ( ∃ 𝑥 ∈ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) 𝑦 = ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ↔ ∃ 𝑢 ∈ 𝐴 ∃ 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) 𝑥 = ( ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) ) |
176 |
163 164 175
|
cbvabw |
⊢ { 𝑦 ∣ ∃ 𝑥 ∈ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) 𝑦 = ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) } = { 𝑥 ∣ ∃ 𝑢 ∈ 𝐴 ∃ 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) 𝑥 = ( ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) } |
177 |
162 176
|
eqtri |
⊢ ran ( 𝑥 ∈ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ↦ ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) = { 𝑥 ∣ ∃ 𝑢 ∈ 𝐴 ∃ 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) 𝑥 = ( ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) } |
178 |
|
eqid |
⊢ ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) = ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) |
179 |
178
|
rnmpo |
⊢ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) = { 𝑥 ∣ ∃ 𝑢 ∈ 𝐴 ∃ 𝑣 ∈ ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) 𝑥 = ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) } |
180 |
160 177 179
|
3eqtr4g |
⊢ ( 𝜑 → ran ( 𝑥 ∈ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ↦ ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) = ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) |
181 |
84 180
|
uneq12d |
⊢ ( 𝜑 → ( ran ( 𝑥 ∈ { ∪ ( ∏t ‘ 𝐹 ) } ↦ ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) ∪ ran ( 𝑥 ∈ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ↦ ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) ) = ( { ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ) |
182 |
23 181
|
syl5eq |
⊢ ( 𝜑 → ran ( 𝑥 ∈ ( { ∪ ( ∏t ‘ 𝐹 ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ↦ ( 𝑥 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) = ( { ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ) |
183 |
19 182
|
eqtrd |
⊢ ( 𝜑 → ( ( { ∪ ( ∏t ‘ 𝐹 ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ↾t X 𝑘 ∈ 𝐴 𝑆 ) = ( { ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ) |
184 |
183
|
fveq2d |
⊢ ( 𝜑 → ( fi ‘ ( ( { ∪ ( ∏t ‘ 𝐹 ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ↾t X 𝑘 ∈ 𝐴 𝑆 ) ) = ( fi ‘ ( { ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ) ) |
185 |
4 184
|
eqtr3id |
⊢ ( 𝜑 → ( ( fi ‘ ( { ∪ ( ∏t ‘ 𝐹 ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ) ↾t X 𝑘 ∈ 𝐴 𝑆 ) = ( fi ‘ ( { ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ) ) |
186 |
185
|
fveq2d |
⊢ ( 𝜑 → ( topGen ‘ ( ( fi ‘ ( { ∪ ( ∏t ‘ 𝐹 ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ) ↾t X 𝑘 ∈ 𝐴 𝑆 ) ) = ( topGen ‘ ( fi ‘ ( { ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ) ) ) |
187 |
|
eqid |
⊢ ∪ ( ∏t ‘ 𝐹 ) = ∪ ( ∏t ‘ 𝐹 ) |
188 |
72 187 8
|
ptval2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → ( ∏t ‘ 𝐹 ) = ( topGen ‘ ( fi ‘ ( { ∪ ( ∏t ‘ 𝐹 ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ) ) ) |
189 |
1 2 188
|
syl2anc |
⊢ ( 𝜑 → ( ∏t ‘ 𝐹 ) = ( topGen ‘ ( fi ‘ ( { ∪ ( ∏t ‘ 𝐹 ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ) ) ) |
190 |
189
|
oveq1d |
⊢ ( 𝜑 → ( ( ∏t ‘ 𝐹 ) ↾t X 𝑘 ∈ 𝐴 𝑆 ) = ( ( topGen ‘ ( fi ‘ ( { ∪ ( ∏t ‘ 𝐹 ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ) ) ↾t X 𝑘 ∈ 𝐴 𝑆 ) ) |
191 |
|
fvex |
⊢ ( fi ‘ ( { ∪ ( ∏t ‘ 𝐹 ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ) ∈ V |
192 |
|
tgrest |
⊢ ( ( ( fi ‘ ( { ∪ ( ∏t ‘ 𝐹 ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ) ∈ V ∧ X 𝑘 ∈ 𝐴 𝑆 ∈ V ) → ( topGen ‘ ( ( fi ‘ ( { ∪ ( ∏t ‘ 𝐹 ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ) ↾t X 𝑘 ∈ 𝐴 𝑆 ) ) = ( ( topGen ‘ ( fi ‘ ( { ∪ ( ∏t ‘ 𝐹 ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ) ) ↾t X 𝑘 ∈ 𝐴 𝑆 ) ) |
193 |
191 17 192
|
sylancr |
⊢ ( 𝜑 → ( topGen ‘ ( ( fi ‘ ( { ∪ ( ∏t ‘ 𝐹 ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ) ↾t X 𝑘 ∈ 𝐴 𝑆 ) ) = ( ( topGen ‘ ( fi ‘ ( { ∪ ( ∏t ‘ 𝐹 ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ) ) ↾t X 𝑘 ∈ 𝐴 𝑆 ) ) |
194 |
190 193
|
eqtr4d |
⊢ ( 𝜑 → ( ( ∏t ‘ 𝐹 ) ↾t X 𝑘 ∈ 𝐴 𝑆 ) = ( topGen ‘ ( ( fi ‘ ( { ∪ ( ∏t ‘ 𝐹 ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ) ↾t X 𝑘 ∈ 𝐴 𝑆 ) ) ) |
195 |
|
eqid |
⊢ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) = ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) |
196 |
79 195 178
|
ptval2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) : 𝐴 ⟶ Top ) → ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) = ( topGen ‘ ( fi ‘ ( { ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ) ) ) |
197 |
1 78 196
|
syl2anc |
⊢ ( 𝜑 → ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) = ( topGen ‘ ( fi ‘ ( { ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) } ∪ ran ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ( ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ‘ 𝑢 ) ↦ ( ◡ ( 𝑤 ∈ ∪ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ↦ ( 𝑤 ‘ 𝑢 ) ) “ 𝑣 ) ) ) ) ) ) |
198 |
186 194 197
|
3eqtr4d |
⊢ ( 𝜑 → ( ( ∏t ‘ 𝐹 ) ↾t X 𝑘 ∈ 𝐴 𝑆 ) = ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ↾t 𝑆 ) ) ) ) |