| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
⊢ ( 𝐼 Mat 𝑅 ) = ( 𝐼 Mat 𝑅 ) |
| 2 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) = ( Base ‘ ( 𝐼 Mat 𝑅 ) ) |
| 3 |
1 2
|
matrcl |
⊢ ( 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) → ( 𝐼 ∈ Fin ∧ 𝑅 ∈ V ) ) |
| 4 |
3
|
simpld |
⊢ ( 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) → 𝐼 ∈ Fin ) |
| 5 |
4
|
ad3antlr |
⊢ ( ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ 𝐼 ≠ ∅ ) ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) → 𝐼 ∈ Fin ) |
| 6 |
|
isfld |
⊢ ( 𝑅 ∈ Field ↔ ( 𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing ) ) |
| 7 |
6
|
simplbi |
⊢ ( 𝑅 ∈ Field → 𝑅 ∈ DivRing ) |
| 8 |
7
|
anim1i |
⊢ ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( 𝑅 ∈ DivRing ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ) |
| 9 |
4
|
ad2antrl |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ∧ 𝐼 ≠ ∅ ) ) → 𝐼 ∈ Fin ) |
| 10 |
|
simpr |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) |
| 11 |
|
xpfi |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝐼 ∈ Fin ) → ( 𝐼 × 𝐼 ) ∈ Fin ) |
| 12 |
11
|
anidms |
⊢ ( 𝐼 ∈ Fin → ( 𝐼 × 𝐼 ) ∈ Fin ) |
| 13 |
|
eqid |
⊢ ( 𝑅 freeLMod ( 𝐼 × 𝐼 ) ) = ( 𝑅 freeLMod ( 𝐼 × 𝐼 ) ) |
| 14 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 15 |
13 14
|
frlmfibas |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( 𝐼 × 𝐼 ) ∈ Fin ) → ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) = ( Base ‘ ( 𝑅 freeLMod ( 𝐼 × 𝐼 ) ) ) ) |
| 16 |
12 15
|
sylan2 |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) → ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) = ( Base ‘ ( 𝑅 freeLMod ( 𝐼 × 𝐼 ) ) ) ) |
| 17 |
1 13
|
matbas |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing ) → ( Base ‘ ( 𝑅 freeLMod ( 𝐼 × 𝐼 ) ) ) = ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) |
| 18 |
17
|
ancoms |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) → ( Base ‘ ( 𝑅 freeLMod ( 𝐼 × 𝐼 ) ) ) = ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) |
| 19 |
16 18
|
eqtrd |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) → ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) = ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) |
| 20 |
19
|
eleq2d |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) → ( 𝑀 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) ↔ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ) |
| 21 |
4 20
|
sylan2 |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( 𝑀 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) ↔ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ) |
| 22 |
|
fvex |
⊢ ( Base ‘ 𝑅 ) ∈ V |
| 23 |
4 4 11
|
syl2anc |
⊢ ( 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) → ( 𝐼 × 𝐼 ) ∈ Fin ) |
| 24 |
|
elmapg |
⊢ ( ( ( Base ‘ 𝑅 ) ∈ V ∧ ( 𝐼 × 𝐼 ) ∈ Fin ) → ( 𝑀 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) ↔ 𝑀 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ) |
| 25 |
22 23 24
|
sylancr |
⊢ ( 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) → ( 𝑀 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) ↔ 𝑀 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ) |
| 26 |
25
|
adantl |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( 𝑀 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) ↔ 𝑀 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ) |
| 27 |
21 26
|
bitr3d |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ↔ 𝑀 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ) |
| 28 |
10 27
|
mpbid |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → 𝑀 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) |
| 29 |
28
|
adantrr |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ∧ 𝐼 ≠ ∅ ) ) → 𝑀 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) |
| 30 |
|
eldifsn |
⊢ ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ↔ ( 𝐼 ∈ Fin ∧ 𝐼 ≠ ∅ ) ) |
| 31 |
30
|
biimpri |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝐼 ≠ ∅ ) → 𝐼 ∈ ( Fin ∖ { ∅ } ) ) |
| 32 |
4 31
|
sylan |
⊢ ( ( 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ∧ 𝐼 ≠ ∅ ) → 𝐼 ∈ ( Fin ∖ { ∅ } ) ) |
| 33 |
32
|
adantl |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ∧ 𝐼 ≠ ∅ ) ) → 𝐼 ∈ ( Fin ∖ { ∅ } ) ) |
| 34 |
|
curf |
⊢ ( ( 𝑀 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ∧ 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ ( Base ‘ 𝑅 ) ∈ V ) → curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) |
| 35 |
22 34
|
mp3an3 |
⊢ ( ( 𝑀 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ∧ 𝐼 ∈ ( Fin ∖ { ∅ } ) ) → curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) |
| 36 |
29 33 35
|
syl2anc |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ∧ 𝐼 ≠ ∅ ) ) → curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) |
| 37 |
9 36
|
jca |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ∧ 𝐼 ≠ ∅ ) ) → ( 𝐼 ∈ Fin ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ) |
| 38 |
37
|
ex |
⊢ ( 𝑅 ∈ DivRing → ( ( 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ∧ 𝐼 ≠ ∅ ) → ( 𝐼 ∈ Fin ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ) ) |
| 39 |
38
|
imdistani |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ∧ 𝐼 ≠ ∅ ) ) → ( 𝑅 ∈ DivRing ∧ ( 𝐼 ∈ Fin ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ) ) |
| 40 |
39
|
anassrs |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ 𝐼 ≠ ∅ ) → ( 𝑅 ∈ DivRing ∧ ( 𝐼 ∈ Fin ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ) ) |
| 41 |
|
anass |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ↔ ( 𝑅 ∈ DivRing ∧ ( 𝐼 ∈ Fin ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ) ) |
| 42 |
40 41
|
sylibr |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ 𝐼 ≠ ∅ ) → ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ) |
| 43 |
|
drngring |
⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring ) |
| 44 |
|
eqid |
⊢ ( 𝑅 unitVec 𝐼 ) = ( 𝑅 unitVec 𝐼 ) |
| 45 |
|
eqid |
⊢ ( 𝑅 freeLMod 𝐼 ) = ( 𝑅 freeLMod 𝐼 ) |
| 46 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) = ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) |
| 47 |
44 45 46
|
uvcff |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) → ( 𝑅 unitVec 𝐼 ) : 𝐼 ⟶ ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
| 48 |
43 47
|
sylan |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) → ( 𝑅 unitVec 𝐼 ) : 𝐼 ⟶ ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
| 49 |
48
|
ffvelcdmda |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) ∈ ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
| 50 |
49
|
ad4ant14 |
⊢ ( ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) ∈ ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
| 51 |
|
ffn |
⊢ ( curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) → curry 𝑀 Fn 𝐼 ) |
| 52 |
|
fnima |
⊢ ( curry 𝑀 Fn 𝐼 → ( curry 𝑀 “ 𝐼 ) = ran curry 𝑀 ) |
| 53 |
51 52
|
syl |
⊢ ( curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) → ( curry 𝑀 “ 𝐼 ) = ran curry 𝑀 ) |
| 54 |
53
|
adantl |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) → ( curry 𝑀 “ 𝐼 ) = ran curry 𝑀 ) |
| 55 |
54
|
fveq2d |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) → ( ( LSpan ‘ ( 𝑅 freeLMod 𝐼 ) ) ‘ ( curry 𝑀 “ 𝐼 ) ) = ( ( LSpan ‘ ( 𝑅 freeLMod 𝐼 ) ) ‘ ran curry 𝑀 ) ) |
| 56 |
55
|
adantr |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) → ( ( LSpan ‘ ( 𝑅 freeLMod 𝐼 ) ) ‘ ( curry 𝑀 “ 𝐼 ) ) = ( ( LSpan ‘ ( 𝑅 freeLMod 𝐼 ) ) ‘ ran curry 𝑀 ) ) |
| 57 |
|
simplll |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) → 𝑅 ∈ DivRing ) |
| 58 |
|
simpllr |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) → 𝐼 ∈ Fin ) |
| 59 |
45
|
frlmlmod |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) → ( 𝑅 freeLMod 𝐼 ) ∈ LMod ) |
| 60 |
43 59
|
sylan |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) → ( 𝑅 freeLMod 𝐼 ) ∈ LMod ) |
| 61 |
60
|
adantr |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) → ( 𝑅 freeLMod 𝐼 ) ∈ LMod ) |
| 62 |
|
lindfrn |
⊢ ( ( ( 𝑅 freeLMod 𝐼 ) ∈ LMod ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) → ran curry 𝑀 ∈ ( LIndS ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
| 63 |
61 62
|
sylan |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) → ran curry 𝑀 ∈ ( LIndS ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
| 64 |
45
|
frlmsca |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) → 𝑅 = ( Scalar ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
| 65 |
|
drngnzr |
⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ NzRing ) |
| 66 |
65
|
adantr |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) → 𝑅 ∈ NzRing ) |
| 67 |
64 66
|
eqeltrrd |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) → ( Scalar ‘ ( 𝑅 freeLMod 𝐼 ) ) ∈ NzRing ) |
| 68 |
60 67
|
jca |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) → ( ( 𝑅 freeLMod 𝐼 ) ∈ LMod ∧ ( Scalar ‘ ( 𝑅 freeLMod 𝐼 ) ) ∈ NzRing ) ) |
| 69 |
|
eqid |
⊢ ( Scalar ‘ ( 𝑅 freeLMod 𝐼 ) ) = ( Scalar ‘ ( 𝑅 freeLMod 𝐼 ) ) |
| 70 |
46 69
|
lindff1 |
⊢ ( ( ( 𝑅 freeLMod 𝐼 ) ∈ LMod ∧ ( Scalar ‘ ( 𝑅 freeLMod 𝐼 ) ) ∈ NzRing ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) → curry 𝑀 : dom curry 𝑀 –1-1→ ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
| 71 |
70
|
3expa |
⊢ ( ( ( ( 𝑅 freeLMod 𝐼 ) ∈ LMod ∧ ( Scalar ‘ ( 𝑅 freeLMod 𝐼 ) ) ∈ NzRing ) ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) → curry 𝑀 : dom curry 𝑀 –1-1→ ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
| 72 |
68 71
|
sylan |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) → curry 𝑀 : dom curry 𝑀 –1-1→ ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
| 73 |
|
fdm |
⊢ ( curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) → dom curry 𝑀 = 𝐼 ) |
| 74 |
|
f1eq2 |
⊢ ( dom curry 𝑀 = 𝐼 → ( curry 𝑀 : dom curry 𝑀 –1-1→ ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ↔ curry 𝑀 : 𝐼 –1-1→ ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) ) |
| 75 |
74
|
biimpac |
⊢ ( ( curry 𝑀 : dom curry 𝑀 –1-1→ ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ∧ dom curry 𝑀 = 𝐼 ) → curry 𝑀 : 𝐼 –1-1→ ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
| 76 |
72 73 75
|
syl2an |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) → curry 𝑀 : 𝐼 –1-1→ ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
| 77 |
76
|
an32s |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) → curry 𝑀 : 𝐼 –1-1→ ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
| 78 |
|
f1f1orn |
⊢ ( curry 𝑀 : 𝐼 –1-1→ ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) → curry 𝑀 : 𝐼 –1-1-onto→ ran curry 𝑀 ) |
| 79 |
77 78
|
syl |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) → curry 𝑀 : 𝐼 –1-1-onto→ ran curry 𝑀 ) |
| 80 |
|
f1oeng |
⊢ ( ( 𝐼 ∈ Fin ∧ curry 𝑀 : 𝐼 –1-1-onto→ ran curry 𝑀 ) → 𝐼 ≈ ran curry 𝑀 ) |
| 81 |
58 79 80
|
syl2anc |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) → 𝐼 ≈ ran curry 𝑀 ) |
| 82 |
81
|
ensymd |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) → ran curry 𝑀 ≈ 𝐼 ) |
| 83 |
|
lindsenlbs |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ ran curry 𝑀 ∈ ( LIndS ‘ ( 𝑅 freeLMod 𝐼 ) ) ) ∧ ran curry 𝑀 ≈ 𝐼 ) → ran curry 𝑀 ∈ ( LBasis ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
| 84 |
57 58 63 82 83
|
syl31anc |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) → ran curry 𝑀 ∈ ( LBasis ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
| 85 |
|
eqid |
⊢ ( LBasis ‘ ( 𝑅 freeLMod 𝐼 ) ) = ( LBasis ‘ ( 𝑅 freeLMod 𝐼 ) ) |
| 86 |
|
eqid |
⊢ ( LSpan ‘ ( 𝑅 freeLMod 𝐼 ) ) = ( LSpan ‘ ( 𝑅 freeLMod 𝐼 ) ) |
| 87 |
46 85 86
|
lbssp |
⊢ ( ran curry 𝑀 ∈ ( LBasis ‘ ( 𝑅 freeLMod 𝐼 ) ) → ( ( LSpan ‘ ( 𝑅 freeLMod 𝐼 ) ) ‘ ran curry 𝑀 ) = ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
| 88 |
84 87
|
syl |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) → ( ( LSpan ‘ ( 𝑅 freeLMod 𝐼 ) ) ‘ ran curry 𝑀 ) = ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
| 89 |
56 88
|
eqtrd |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) → ( ( LSpan ‘ ( 𝑅 freeLMod 𝐼 ) ) ‘ ( curry 𝑀 “ 𝐼 ) ) = ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
| 90 |
89
|
adantr |
⊢ ( ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) → ( ( LSpan ‘ ( 𝑅 freeLMod 𝐼 ) ) ‘ ( curry 𝑀 “ 𝐼 ) ) = ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
| 91 |
50 90
|
eleqtrrd |
⊢ ( ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) ∈ ( ( LSpan ‘ ( 𝑅 freeLMod 𝐼 ) ) ‘ ( curry 𝑀 “ 𝐼 ) ) ) |
| 92 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ ( 𝑅 freeLMod 𝐼 ) ) ) = ( Base ‘ ( Scalar ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
| 93 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ ( 𝑅 freeLMod 𝐼 ) ) ) = ( 0g ‘ ( Scalar ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
| 94 |
|
eqid |
⊢ ( ·𝑠 ‘ ( 𝑅 freeLMod 𝐼 ) ) = ( ·𝑠 ‘ ( 𝑅 freeLMod 𝐼 ) ) |
| 95 |
45 14
|
frlmfibas |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) → ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) = ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
| 96 |
95
|
feq3d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) → ( curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ↔ curry 𝑀 : 𝐼 ⟶ ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) ) |
| 97 |
96
|
biimpa |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) → curry 𝑀 : 𝐼 ⟶ ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
| 98 |
59
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) → ( 𝑅 freeLMod 𝐼 ) ∈ LMod ) |
| 99 |
|
simplr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) → 𝐼 ∈ Fin ) |
| 100 |
86 46 92 69 93 94 97 98 99
|
elfilspd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) → ( ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) ∈ ( ( LSpan ‘ ( 𝑅 freeLMod 𝐼 ) ) ‘ ( curry 𝑀 “ 𝐼 ) ) ↔ ∃ 𝑛 ∈ ( ( Base ‘ ( Scalar ‘ ( 𝑅 freeLMod 𝐼 ) ) ) ↑m 𝐼 ) ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( ( 𝑅 freeLMod 𝐼 ) Σg ( 𝑛 ∘f ( ·𝑠 ‘ ( 𝑅 freeLMod 𝐼 ) ) curry 𝑀 ) ) ) ) |
| 101 |
45
|
frlmsca |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) → 𝑅 = ( Scalar ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
| 102 |
101
|
fveq2d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ ( 𝑅 freeLMod 𝐼 ) ) ) ) |
| 103 |
102
|
oveq1d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) → ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) = ( ( Base ‘ ( Scalar ‘ ( 𝑅 freeLMod 𝐼 ) ) ) ↑m 𝐼 ) ) |
| 104 |
103
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) → ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) = ( ( Base ‘ ( Scalar ‘ ( 𝑅 freeLMod 𝐼 ) ) ) ↑m 𝐼 ) ) |
| 105 |
|
elmapi |
⊢ ( 𝑛 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) → 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
| 106 |
|
ffn |
⊢ ( 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) → 𝑛 Fn 𝐼 ) |
| 107 |
106
|
adantl |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) → 𝑛 Fn 𝐼 ) |
| 108 |
51
|
ad2antlr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) → curry 𝑀 Fn 𝐼 ) |
| 109 |
|
simpllr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) → 𝐼 ∈ Fin ) |
| 110 |
|
inidm |
⊢ ( 𝐼 ∩ 𝐼 ) = 𝐼 |
| 111 |
|
eqidd |
⊢ ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝑛 ‘ 𝑘 ) = ( 𝑛 ‘ 𝑘 ) ) |
| 112 |
|
eqidd |
⊢ ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( curry 𝑀 ‘ 𝑘 ) = ( curry 𝑀 ‘ 𝑘 ) ) |
| 113 |
107 108 109 109 110 111 112
|
offval |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) → ( 𝑛 ∘f ( ·𝑠 ‘ ( 𝑅 freeLMod 𝐼 ) ) curry 𝑀 ) = ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( ·𝑠 ‘ ( 𝑅 freeLMod 𝐼 ) ) ( curry 𝑀 ‘ 𝑘 ) ) ) ) |
| 114 |
|
simp-4r |
⊢ ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → 𝐼 ∈ Fin ) |
| 115 |
|
ffvelcdm |
⊢ ( ( 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝑛 ‘ 𝑘 ) ∈ ( Base ‘ 𝑅 ) ) |
| 116 |
115
|
adantll |
⊢ ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝑛 ‘ 𝑘 ) ∈ ( Base ‘ 𝑅 ) ) |
| 117 |
|
ffvelcdm |
⊢ ( ( curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ∧ 𝑘 ∈ 𝐼 ) → ( curry 𝑀 ‘ 𝑘 ) ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) |
| 118 |
117
|
ad4ant24 |
⊢ ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( curry 𝑀 ‘ 𝑘 ) ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) |
| 119 |
95
|
ad3antrrr |
⊢ ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) = ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
| 120 |
118 119
|
eleqtrd |
⊢ ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( curry 𝑀 ‘ 𝑘 ) ∈ ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
| 121 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 122 |
45 46 14 114 116 120 94 121
|
frlmvscafval |
⊢ ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝑛 ‘ 𝑘 ) ( ·𝑠 ‘ ( 𝑅 freeLMod 𝐼 ) ) ( curry 𝑀 ‘ 𝑘 ) ) = ( ( 𝐼 × { ( 𝑛 ‘ 𝑘 ) } ) ∘f ( .r ‘ 𝑅 ) ( curry 𝑀 ‘ 𝑘 ) ) ) |
| 123 |
|
fvex |
⊢ ( 𝑛 ‘ 𝑘 ) ∈ V |
| 124 |
|
fnconstg |
⊢ ( ( 𝑛 ‘ 𝑘 ) ∈ V → ( 𝐼 × { ( 𝑛 ‘ 𝑘 ) } ) Fn 𝐼 ) |
| 125 |
123 124
|
mp1i |
⊢ ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝐼 × { ( 𝑛 ‘ 𝑘 ) } ) Fn 𝐼 ) |
| 126 |
|
elmapfn |
⊢ ( ( curry 𝑀 ‘ 𝑘 ) ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) → ( curry 𝑀 ‘ 𝑘 ) Fn 𝐼 ) |
| 127 |
117 126
|
syl |
⊢ ( ( curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ∧ 𝑘 ∈ 𝐼 ) → ( curry 𝑀 ‘ 𝑘 ) Fn 𝐼 ) |
| 128 |
127
|
ad4ant24 |
⊢ ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( curry 𝑀 ‘ 𝑘 ) Fn 𝐼 ) |
| 129 |
123
|
fvconst2 |
⊢ ( 𝑗 ∈ 𝐼 → ( ( 𝐼 × { ( 𝑛 ‘ 𝑘 ) } ) ‘ 𝑗 ) = ( 𝑛 ‘ 𝑘 ) ) |
| 130 |
129
|
adantl |
⊢ ( ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) → ( ( 𝐼 × { ( 𝑛 ‘ 𝑘 ) } ) ‘ 𝑗 ) = ( 𝑛 ‘ 𝑘 ) ) |
| 131 |
|
eqidd |
⊢ ( ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) → ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) = ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) |
| 132 |
125 128 114 114 110 130 131
|
offval |
⊢ ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝐼 × { ( 𝑛 ‘ 𝑘 ) } ) ∘f ( .r ‘ 𝑅 ) ( curry 𝑀 ‘ 𝑘 ) ) = ( 𝑗 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ) |
| 133 |
122 132
|
eqtrd |
⊢ ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝑛 ‘ 𝑘 ) ( ·𝑠 ‘ ( 𝑅 freeLMod 𝐼 ) ) ( curry 𝑀 ‘ 𝑘 ) ) = ( 𝑗 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ) |
| 134 |
133
|
mpteq2dva |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) → ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( ·𝑠 ‘ ( 𝑅 freeLMod 𝐼 ) ) ( curry 𝑀 ‘ 𝑘 ) ) ) = ( 𝑘 ∈ 𝐼 ↦ ( 𝑗 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ) ) |
| 135 |
113 134
|
eqtrd |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) → ( 𝑛 ∘f ( ·𝑠 ‘ ( 𝑅 freeLMod 𝐼 ) ) curry 𝑀 ) = ( 𝑘 ∈ 𝐼 ↦ ( 𝑗 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ) ) |
| 136 |
135
|
oveq2d |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) → ( ( 𝑅 freeLMod 𝐼 ) Σg ( 𝑛 ∘f ( ·𝑠 ‘ ( 𝑅 freeLMod 𝐼 ) ) curry 𝑀 ) ) = ( ( 𝑅 freeLMod 𝐼 ) Σg ( 𝑘 ∈ 𝐼 ↦ ( 𝑗 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ) ) ) |
| 137 |
|
eqid |
⊢ ( 0g ‘ ( 𝑅 freeLMod 𝐼 ) ) = ( 0g ‘ ( 𝑅 freeLMod 𝐼 ) ) |
| 138 |
|
simplll |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) → 𝑅 ∈ Ring ) |
| 139 |
|
simp-5l |
⊢ ( ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) → 𝑅 ∈ Ring ) |
| 140 |
115
|
ad4ant23 |
⊢ ( ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) → ( 𝑛 ‘ 𝑘 ) ∈ ( Base ‘ 𝑅 ) ) |
| 141 |
|
simplr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) → curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) |
| 142 |
|
elmapi |
⊢ ( ( curry 𝑀 ‘ 𝑘 ) ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) → ( curry 𝑀 ‘ 𝑘 ) : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
| 143 |
117 142
|
syl |
⊢ ( ( curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ∧ 𝑘 ∈ 𝐼 ) → ( curry 𝑀 ‘ 𝑘 ) : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
| 144 |
143
|
ffvelcdmda |
⊢ ( ( ( curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ∧ 𝑘 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) → ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ∈ ( Base ‘ 𝑅 ) ) |
| 145 |
141 144
|
sylanl1 |
⊢ ( ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) → ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ∈ ( Base ‘ 𝑅 ) ) |
| 146 |
14 121
|
ringcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑛 ‘ 𝑘 ) ∈ ( Base ‘ 𝑅 ) ∧ ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 147 |
139 140 145 146
|
syl3anc |
⊢ ( ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) → ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 148 |
147
|
fmpttd |
⊢ ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝑗 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
| 149 |
|
elmapg |
⊢ ( ( ( Base ‘ 𝑅 ) ∈ V ∧ 𝐼 ∈ Fin ) → ( ( 𝑗 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ↔ ( 𝑗 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) ) |
| 150 |
22 149
|
mpan |
⊢ ( 𝐼 ∈ Fin → ( ( 𝑗 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ↔ ( 𝑗 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) ) |
| 151 |
150
|
adantl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) → ( ( 𝑗 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ↔ ( 𝑗 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) ) |
| 152 |
95
|
eleq2d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) → ( ( 𝑗 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ↔ ( 𝑗 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ∈ ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) ) |
| 153 |
151 152
|
bitr3d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) → ( ( 𝑗 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) : 𝐼 ⟶ ( Base ‘ 𝑅 ) ↔ ( 𝑗 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ∈ ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) ) |
| 154 |
153
|
ad3antrrr |
⊢ ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝑗 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) : 𝐼 ⟶ ( Base ‘ 𝑅 ) ↔ ( 𝑗 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ∈ ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) ) |
| 155 |
148 154
|
mpbid |
⊢ ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝑗 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ∈ ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
| 156 |
|
mptexg |
⊢ ( 𝐼 ∈ Fin → ( 𝑗 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ∈ V ) |
| 157 |
156
|
ralrimivw |
⊢ ( 𝐼 ∈ Fin → ∀ 𝑘 ∈ 𝐼 ( 𝑗 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ∈ V ) |
| 158 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐼 ↦ ( 𝑗 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ) = ( 𝑘 ∈ 𝐼 ↦ ( 𝑗 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ) |
| 159 |
158
|
fnmpt |
⊢ ( ∀ 𝑘 ∈ 𝐼 ( 𝑗 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ∈ V → ( 𝑘 ∈ 𝐼 ↦ ( 𝑗 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ) Fn 𝐼 ) |
| 160 |
157 159
|
syl |
⊢ ( 𝐼 ∈ Fin → ( 𝑘 ∈ 𝐼 ↦ ( 𝑗 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ) Fn 𝐼 ) |
| 161 |
|
id |
⊢ ( 𝐼 ∈ Fin → 𝐼 ∈ Fin ) |
| 162 |
|
fvexd |
⊢ ( 𝐼 ∈ Fin → ( 0g ‘ ( 𝑅 freeLMod 𝐼 ) ) ∈ V ) |
| 163 |
160 161 162
|
fndmfifsupp |
⊢ ( 𝐼 ∈ Fin → ( 𝑘 ∈ 𝐼 ↦ ( 𝑗 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ) finSupp ( 0g ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
| 164 |
163
|
ad3antlr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) → ( 𝑘 ∈ 𝐼 ↦ ( 𝑗 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ) finSupp ( 0g ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
| 165 |
45 46 137 109 109 138 155 164
|
frlmgsum |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) → ( ( 𝑅 freeLMod 𝐼 ) Σg ( 𝑘 ∈ 𝐼 ↦ ( 𝑗 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ) ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ) ) ) |
| 166 |
136 165
|
eqtr2d |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) → ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ) ) = ( ( 𝑅 freeLMod 𝐼 ) Σg ( 𝑛 ∘f ( ·𝑠 ‘ ( 𝑅 freeLMod 𝐼 ) ) curry 𝑀 ) ) ) |
| 167 |
105 166
|
sylan2 |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) → ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ) ) = ( ( 𝑅 freeLMod 𝐼 ) Σg ( 𝑛 ∘f ( ·𝑠 ‘ ( 𝑅 freeLMod 𝐼 ) ) curry 𝑀 ) ) ) |
| 168 |
167
|
eqeq2d |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) → ( ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ) ) ↔ ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( ( 𝑅 freeLMod 𝐼 ) Σg ( 𝑛 ∘f ( ·𝑠 ‘ ( 𝑅 freeLMod 𝐼 ) ) curry 𝑀 ) ) ) ) |
| 169 |
104 168
|
rexeqbidva |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) → ( ∃ 𝑛 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ) ) ↔ ∃ 𝑛 ∈ ( ( Base ‘ ( Scalar ‘ ( 𝑅 freeLMod 𝐼 ) ) ) ↑m 𝐼 ) ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( ( 𝑅 freeLMod 𝐼 ) Σg ( 𝑛 ∘f ( ·𝑠 ‘ ( 𝑅 freeLMod 𝐼 ) ) curry 𝑀 ) ) ) ) |
| 170 |
100 169
|
bitr4d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) → ( ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) ∈ ( ( LSpan ‘ ( 𝑅 freeLMod 𝐼 ) ) ‘ ( curry 𝑀 “ 𝐼 ) ) ↔ ∃ 𝑛 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ) ) ) ) |
| 171 |
43 170
|
sylanl1 |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) → ( ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) ∈ ( ( LSpan ‘ ( 𝑅 freeLMod 𝐼 ) ) ‘ ( curry 𝑀 “ 𝐼 ) ) ↔ ∃ 𝑛 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ) ) ) ) |
| 172 |
171
|
ad2antrr |
⊢ ( ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) → ( ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) ∈ ( ( LSpan ‘ ( 𝑅 freeLMod 𝐼 ) ) ‘ ( curry 𝑀 “ 𝐼 ) ) ↔ ∃ 𝑛 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ) ) ) ) |
| 173 |
91 172
|
mpbid |
⊢ ( ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) → ∃ 𝑛 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ) ) ) |
| 174 |
173
|
ralrimiva |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) → ∀ 𝑖 ∈ 𝐼 ∃ 𝑛 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ) ) ) |
| 175 |
42 174
|
sylan |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ 𝐼 ≠ ∅ ) ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) → ∀ 𝑖 ∈ 𝐼 ∃ 𝑛 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ) ) ) |
| 176 |
10 21
|
mpbird |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → 𝑀 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) ) |
| 177 |
|
elmapfn |
⊢ ( 𝑀 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) → 𝑀 Fn ( 𝐼 × 𝐼 ) ) |
| 178 |
176 177
|
syl |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → 𝑀 Fn ( 𝐼 × 𝐼 ) ) |
| 179 |
4
|
adantl |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → 𝐼 ∈ Fin ) |
| 180 |
|
an32 |
⊢ ( ( ( 𝑀 Fn ( 𝐼 × 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) ∧ 𝑘 ∈ 𝐼 ) ↔ ( ( 𝑀 Fn ( 𝐼 × 𝐼 ) ∧ 𝑘 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) ) |
| 181 |
|
df-3an |
⊢ ( ( 𝑀 Fn ( 𝐼 × 𝐼 ) ∧ 𝑘 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼 ) ↔ ( ( 𝑀 Fn ( 𝐼 × 𝐼 ) ∧ 𝑘 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) ) |
| 182 |
180 181
|
bitr4i |
⊢ ( ( ( 𝑀 Fn ( 𝐼 × 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) ∧ 𝑘 ∈ 𝐼 ) ↔ ( 𝑀 Fn ( 𝐼 × 𝐼 ) ∧ 𝑘 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼 ) ) |
| 183 |
|
curfv |
⊢ ( ( ( 𝑀 Fn ( 𝐼 × 𝐼 ) ∧ 𝑘 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼 ) ∧ 𝐼 ∈ Fin ) → ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) = ( 𝑘 𝑀 𝑗 ) ) |
| 184 |
182 183
|
sylanb |
⊢ ( ( ( ( 𝑀 Fn ( 𝐼 × 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) ∧ 𝑘 ∈ 𝐼 ) ∧ 𝐼 ∈ Fin ) → ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) = ( 𝑘 𝑀 𝑗 ) ) |
| 185 |
184
|
an32s |
⊢ ( ( ( ( 𝑀 Fn ( 𝐼 × 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) ∧ 𝐼 ∈ Fin ) ∧ 𝑘 ∈ 𝐼 ) → ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) = ( 𝑘 𝑀 𝑗 ) ) |
| 186 |
185
|
oveq2d |
⊢ ( ( ( ( 𝑀 Fn ( 𝐼 × 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) ∧ 𝐼 ∈ Fin ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) = ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) |
| 187 |
186
|
mpteq2dva |
⊢ ( ( ( 𝑀 Fn ( 𝐼 × 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) ∧ 𝐼 ∈ Fin ) → ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) = ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) |
| 188 |
187
|
an32s |
⊢ ( ( ( 𝑀 Fn ( 𝐼 × 𝐼 ) ∧ 𝐼 ∈ Fin ) ∧ 𝑗 ∈ 𝐼 ) → ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) = ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) |
| 189 |
188
|
oveq2d |
⊢ ( ( ( 𝑀 Fn ( 𝐼 × 𝐼 ) ∧ 𝐼 ∈ Fin ) ∧ 𝑗 ∈ 𝐼 ) → ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ) = ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) |
| 190 |
189
|
mpteq2dva |
⊢ ( ( 𝑀 Fn ( 𝐼 × 𝐼 ) ∧ 𝐼 ∈ Fin ) → ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ) ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) ) |
| 191 |
190
|
eqeq2d |
⊢ ( ( 𝑀 Fn ( 𝐼 × 𝐼 ) ∧ 𝐼 ∈ Fin ) → ( ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ) ) ↔ ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) ) ) |
| 192 |
191
|
rexbidv |
⊢ ( ( 𝑀 Fn ( 𝐼 × 𝐼 ) ∧ 𝐼 ∈ Fin ) → ( ∃ 𝑛 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ) ) ↔ ∃ 𝑛 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) ) ) |
| 193 |
192
|
ralbidv |
⊢ ( ( 𝑀 Fn ( 𝐼 × 𝐼 ) ∧ 𝐼 ∈ Fin ) → ( ∀ 𝑖 ∈ 𝐼 ∃ 𝑛 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ) ) ↔ ∀ 𝑖 ∈ 𝐼 ∃ 𝑛 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) ) ) |
| 194 |
178 179 193
|
syl2anc |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( ∀ 𝑖 ∈ 𝐼 ∃ 𝑛 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ) ) ↔ ∀ 𝑖 ∈ 𝐼 ∃ 𝑛 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) ) ) |
| 195 |
194
|
ad2antrr |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ 𝐼 ≠ ∅ ) ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) → ( ∀ 𝑖 ∈ 𝐼 ∃ 𝑛 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ) ) ↔ ∀ 𝑖 ∈ 𝐼 ∃ 𝑛 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) ) ) |
| 196 |
175 195
|
mpbid |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ 𝐼 ≠ ∅ ) ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) → ∀ 𝑖 ∈ 𝐼 ∃ 𝑛 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) ) |
| 197 |
8 196
|
sylanl1 |
⊢ ( ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ 𝐼 ≠ ∅ ) ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) → ∀ 𝑖 ∈ 𝐼 ∃ 𝑛 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) ) |
| 198 |
|
fveq1 |
⊢ ( 𝑛 = ( 𝑓 ‘ 𝑖 ) → ( 𝑛 ‘ 𝑘 ) = ( ( 𝑓 ‘ 𝑖 ) ‘ 𝑘 ) ) |
| 199 |
|
uncov |
⊢ ( ( 𝑖 ∈ V ∧ 𝑘 ∈ V ) → ( 𝑖 uncurry 𝑓 𝑘 ) = ( ( 𝑓 ‘ 𝑖 ) ‘ 𝑘 ) ) |
| 200 |
199
|
el2v |
⊢ ( 𝑖 uncurry 𝑓 𝑘 ) = ( ( 𝑓 ‘ 𝑖 ) ‘ 𝑘 ) |
| 201 |
198 200
|
eqtr4di |
⊢ ( 𝑛 = ( 𝑓 ‘ 𝑖 ) → ( 𝑛 ‘ 𝑘 ) = ( 𝑖 uncurry 𝑓 𝑘 ) ) |
| 202 |
201
|
oveq1d |
⊢ ( 𝑛 = ( 𝑓 ‘ 𝑖 ) → ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) = ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) |
| 203 |
202
|
mpteq2dv |
⊢ ( 𝑛 = ( 𝑓 ‘ 𝑖 ) → ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) = ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) |
| 204 |
203
|
oveq2d |
⊢ ( 𝑛 = ( 𝑓 ‘ 𝑖 ) → ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) = ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) |
| 205 |
204
|
mpteq2dv |
⊢ ( 𝑛 = ( 𝑓 ‘ 𝑖 ) → ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) ) |
| 206 |
205
|
eqeq2d |
⊢ ( 𝑛 = ( 𝑓 ‘ 𝑖 ) → ( ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) ↔ ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) ) ) |
| 207 |
206
|
ac6sfi |
⊢ ( ( 𝐼 ∈ Fin ∧ ∀ 𝑖 ∈ 𝐼 ∃ 𝑛 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) ) → ∃ 𝑓 ( 𝑓 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ∧ ∀ 𝑖 ∈ 𝐼 ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) ) ) |
| 208 |
5 197 207
|
syl2anc |
⊢ ( ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ 𝐼 ≠ ∅ ) ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) → ∃ 𝑓 ( 𝑓 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ∧ ∀ 𝑖 ∈ 𝐼 ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) ) ) |
| 209 |
|
uncf |
⊢ ( 𝑓 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) → uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) |
| 210 |
13 14
|
frlmfibas |
⊢ ( ( 𝑅 ∈ Field ∧ ( 𝐼 × 𝐼 ) ∈ Fin ) → ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) = ( Base ‘ ( 𝑅 freeLMod ( 𝐼 × 𝐼 ) ) ) ) |
| 211 |
12 210
|
sylan2 |
⊢ ( ( 𝑅 ∈ Field ∧ 𝐼 ∈ Fin ) → ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) = ( Base ‘ ( 𝑅 freeLMod ( 𝐼 × 𝐼 ) ) ) ) |
| 212 |
1 13
|
matbas |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝑅 ∈ Field ) → ( Base ‘ ( 𝑅 freeLMod ( 𝐼 × 𝐼 ) ) ) = ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) |
| 213 |
212
|
ancoms |
⊢ ( ( 𝑅 ∈ Field ∧ 𝐼 ∈ Fin ) → ( Base ‘ ( 𝑅 freeLMod ( 𝐼 × 𝐼 ) ) ) = ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) |
| 214 |
211 213
|
eqtrd |
⊢ ( ( 𝑅 ∈ Field ∧ 𝐼 ∈ Fin ) → ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) = ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) |
| 215 |
4 214
|
sylan2 |
⊢ ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) = ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) |
| 216 |
215
|
eleq2d |
⊢ ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( uncurry 𝑓 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) ↔ uncurry 𝑓 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ) |
| 217 |
|
elmapg |
⊢ ( ( ( Base ‘ 𝑅 ) ∈ V ∧ ( 𝐼 × 𝐼 ) ∈ Fin ) → ( uncurry 𝑓 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) ↔ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ) |
| 218 |
22 23 217
|
sylancr |
⊢ ( 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) → ( uncurry 𝑓 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) ↔ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ) |
| 219 |
218
|
adantl |
⊢ ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( uncurry 𝑓 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) ↔ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ) |
| 220 |
216 219
|
bitr3d |
⊢ ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( uncurry 𝑓 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ↔ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ) |
| 221 |
220
|
biimpar |
⊢ ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) → uncurry 𝑓 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) |
| 222 |
221
|
adantr |
⊢ ( ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ∧ ∀ 𝑖 ∈ 𝐼 ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) ) → uncurry 𝑓 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) |
| 223 |
|
nfv |
⊢ Ⅎ 𝑗 ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑖 ∈ 𝐼 ) |
| 224 |
|
nfmpt1 |
⊢ Ⅎ 𝑗 ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) |
| 225 |
224
|
nfeq2 |
⊢ Ⅎ 𝑗 ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) |
| 226 |
|
fveq1 |
⊢ ( ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) → ( ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) ‘ 𝑗 ) = ( ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) ‘ 𝑗 ) ) |
| 227 |
7 43
|
syl |
⊢ ( 𝑅 ∈ Field → 𝑅 ∈ Ring ) |
| 228 |
227 4
|
anim12i |
⊢ ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ) |
| 229 |
228
|
adantr |
⊢ ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) → ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ) |
| 230 |
|
equcom |
⊢ ( 𝑖 = 𝑗 ↔ 𝑗 = 𝑖 ) |
| 231 |
|
ifbi |
⊢ ( ( 𝑖 = 𝑗 ↔ 𝑗 = 𝑖 ) → if ( 𝑖 = 𝑗 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) = if ( 𝑗 = 𝑖 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
| 232 |
230 231
|
ax-mp |
⊢ if ( 𝑖 = 𝑗 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) = if ( 𝑗 = 𝑖 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) |
| 233 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 234 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 235 |
|
simpllr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) → 𝐼 ∈ Fin ) |
| 236 |
|
simplll |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) → 𝑅 ∈ Ring ) |
| 237 |
|
simplr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) → 𝑖 ∈ 𝐼 ) |
| 238 |
|
simpr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) → 𝑗 ∈ 𝐼 ) |
| 239 |
|
eqid |
⊢ ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) = ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) |
| 240 |
1 233 234 235 236 237 238 239
|
mat1ov |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) → ( 𝑖 ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑗 ) = if ( 𝑖 = 𝑗 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
| 241 |
|
df-3an |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ∧ 𝑖 ∈ 𝐼 ) ↔ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ 𝑖 ∈ 𝐼 ) ) |
| 242 |
44 233 234
|
uvcvval |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) → ( ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) ‘ 𝑗 ) = if ( 𝑗 = 𝑖 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
| 243 |
241 242
|
sylanbr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) → ( ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) ‘ 𝑗 ) = if ( 𝑗 = 𝑖 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
| 244 |
232 240 243
|
3eqtr4a |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) → ( 𝑖 ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑗 ) = ( ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) ‘ 𝑗 ) ) |
| 245 |
229 244
|
sylanl1 |
⊢ ( ( ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) → ( 𝑖 ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑗 ) = ( ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) ‘ 𝑗 ) ) |
| 246 |
|
ovex |
⊢ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ∈ V |
| 247 |
|
eqid |
⊢ ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) |
| 248 |
247
|
fvmpt2 |
⊢ ( ( 𝑗 ∈ 𝐼 ∧ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ∈ V ) → ( ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) ‘ 𝑗 ) = ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) |
| 249 |
246 248
|
mpan2 |
⊢ ( 𝑗 ∈ 𝐼 → ( ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) ‘ 𝑗 ) = ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) |
| 250 |
249
|
adantl |
⊢ ( ( ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) → ( ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) ‘ 𝑗 ) = ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) |
| 251 |
|
eqid |
⊢ ( 𝑅 maMul 〈 𝐼 , 𝐼 , 𝐼 〉 ) = ( 𝑅 maMul 〈 𝐼 , 𝐼 , 𝐼 〉 ) |
| 252 |
|
simp-4l |
⊢ ( ( ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) → 𝑅 ∈ Field ) |
| 253 |
4
|
ad4antlr |
⊢ ( ( ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) → 𝐼 ∈ Fin ) |
| 254 |
218
|
biimpar |
⊢ ( ( 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) → uncurry 𝑓 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) ) |
| 255 |
254
|
ad5ant23 |
⊢ ( ( ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) → uncurry 𝑓 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) ) |
| 256 |
|
simpr |
⊢ ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) |
| 257 |
256 215
|
eleqtrrd |
⊢ ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → 𝑀 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) ) |
| 258 |
257
|
ad3antrrr |
⊢ ( ( ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) → 𝑀 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) ) |
| 259 |
|
simplr |
⊢ ( ( ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) → 𝑖 ∈ 𝐼 ) |
| 260 |
|
simpr |
⊢ ( ( ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) → 𝑗 ∈ 𝐼 ) |
| 261 |
251 14 121 252 253 253 253 255 258 259 260
|
mamufv |
⊢ ( ( ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) → ( 𝑖 ( uncurry 𝑓 ( 𝑅 maMul 〈 𝐼 , 𝐼 , 𝐼 〉 ) 𝑀 ) 𝑗 ) = ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) |
| 262 |
1 251
|
matmulr |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝑅 ∈ Field ) → ( 𝑅 maMul 〈 𝐼 , 𝐼 , 𝐼 〉 ) = ( .r ‘ ( 𝐼 Mat 𝑅 ) ) ) |
| 263 |
262
|
ancoms |
⊢ ( ( 𝑅 ∈ Field ∧ 𝐼 ∈ Fin ) → ( 𝑅 maMul 〈 𝐼 , 𝐼 , 𝐼 〉 ) = ( .r ‘ ( 𝐼 Mat 𝑅 ) ) ) |
| 264 |
263
|
oveqd |
⊢ ( ( 𝑅 ∈ Field ∧ 𝐼 ∈ Fin ) → ( uncurry 𝑓 ( 𝑅 maMul 〈 𝐼 , 𝐼 , 𝐼 〉 ) 𝑀 ) = ( uncurry 𝑓 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) ) |
| 265 |
264
|
oveqd |
⊢ ( ( 𝑅 ∈ Field ∧ 𝐼 ∈ Fin ) → ( 𝑖 ( uncurry 𝑓 ( 𝑅 maMul 〈 𝐼 , 𝐼 , 𝐼 〉 ) 𝑀 ) 𝑗 ) = ( 𝑖 ( uncurry 𝑓 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) 𝑗 ) ) |
| 266 |
4 265
|
sylan2 |
⊢ ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( 𝑖 ( uncurry 𝑓 ( 𝑅 maMul 〈 𝐼 , 𝐼 , 𝐼 〉 ) 𝑀 ) 𝑗 ) = ( 𝑖 ( uncurry 𝑓 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) 𝑗 ) ) |
| 267 |
266
|
ad3antrrr |
⊢ ( ( ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) → ( 𝑖 ( uncurry 𝑓 ( 𝑅 maMul 〈 𝐼 , 𝐼 , 𝐼 〉 ) 𝑀 ) 𝑗 ) = ( 𝑖 ( uncurry 𝑓 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) 𝑗 ) ) |
| 268 |
250 261 267
|
3eqtr2rd |
⊢ ( ( ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) → ( 𝑖 ( uncurry 𝑓 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) 𝑗 ) = ( ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) ‘ 𝑗 ) ) |
| 269 |
245 268
|
eqeq12d |
⊢ ( ( ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) → ( ( 𝑖 ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑗 ) = ( 𝑖 ( uncurry 𝑓 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) 𝑗 ) ↔ ( ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) ‘ 𝑗 ) = ( ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) ‘ 𝑗 ) ) ) |
| 270 |
226 269
|
imbitrrid |
⊢ ( ( ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) → ( ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) → ( 𝑖 ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑗 ) = ( 𝑖 ( uncurry 𝑓 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) 𝑗 ) ) ) |
| 271 |
270
|
ex |
⊢ ( ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑗 ∈ 𝐼 → ( ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) → ( 𝑖 ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑗 ) = ( 𝑖 ( uncurry 𝑓 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) 𝑗 ) ) ) ) |
| 272 |
271
|
com23 |
⊢ ( ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑖 ∈ 𝐼 ) → ( ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) → ( 𝑗 ∈ 𝐼 → ( 𝑖 ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑗 ) = ( 𝑖 ( uncurry 𝑓 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) 𝑗 ) ) ) ) |
| 273 |
223 225 272
|
ralrimd |
⊢ ( ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑖 ∈ 𝐼 ) → ( ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) → ∀ 𝑗 ∈ 𝐼 ( 𝑖 ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑗 ) = ( 𝑖 ( uncurry 𝑓 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) 𝑗 ) ) ) |
| 274 |
273
|
ralimdva |
⊢ ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) → ( ∀ 𝑖 ∈ 𝐼 ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) → ∀ 𝑖 ∈ 𝐼 ∀ 𝑗 ∈ 𝐼 ( 𝑖 ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑗 ) = ( 𝑖 ( uncurry 𝑓 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) 𝑗 ) ) ) |
| 275 |
1 2 239
|
mat1bas |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) → ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) |
| 276 |
13 14
|
frlmfibas |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐼 × 𝐼 ) ∈ Fin ) → ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) = ( Base ‘ ( 𝑅 freeLMod ( 𝐼 × 𝐼 ) ) ) ) |
| 277 |
12 276
|
sylan2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) → ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) = ( Base ‘ ( 𝑅 freeLMod ( 𝐼 × 𝐼 ) ) ) ) |
| 278 |
1 13
|
matbas |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( Base ‘ ( 𝑅 freeLMod ( 𝐼 × 𝐼 ) ) ) = ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) |
| 279 |
278
|
ancoms |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) → ( Base ‘ ( 𝑅 freeLMod ( 𝐼 × 𝐼 ) ) ) = ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) |
| 280 |
277 279
|
eqtrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) → ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) = ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) |
| 281 |
275 280
|
eleqtrrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) → ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) ) |
| 282 |
|
elmapfn |
⊢ ( ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) → ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) Fn ( 𝐼 × 𝐼 ) ) |
| 283 |
281 282
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) → ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) Fn ( 𝐼 × 𝐼 ) ) |
| 284 |
227 4 283
|
syl2an |
⊢ ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) Fn ( 𝐼 × 𝐼 ) ) |
| 285 |
284
|
adantr |
⊢ ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) → ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) Fn ( 𝐼 × 𝐼 ) ) |
| 286 |
1
|
matring |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝐼 Mat 𝑅 ) ∈ Ring ) |
| 287 |
4 227 286
|
syl2anr |
⊢ ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( 𝐼 Mat 𝑅 ) ∈ Ring ) |
| 288 |
287
|
adantr |
⊢ ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) → ( 𝐼 Mat 𝑅 ) ∈ Ring ) |
| 289 |
|
simplr |
⊢ ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) → 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) |
| 290 |
|
eqid |
⊢ ( .r ‘ ( 𝐼 Mat 𝑅 ) ) = ( .r ‘ ( 𝐼 Mat 𝑅 ) ) |
| 291 |
2 290
|
ringcl |
⊢ ( ( ( 𝐼 Mat 𝑅 ) ∈ Ring ∧ uncurry 𝑓 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( uncurry 𝑓 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) |
| 292 |
288 221 289 291
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) → ( uncurry 𝑓 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) |
| 293 |
215
|
adantr |
⊢ ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) → ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) = ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) |
| 294 |
292 293
|
eleqtrrd |
⊢ ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) → ( uncurry 𝑓 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) ) |
| 295 |
|
elmapfn |
⊢ ( ( uncurry 𝑓 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) → ( uncurry 𝑓 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) Fn ( 𝐼 × 𝐼 ) ) |
| 296 |
294 295
|
syl |
⊢ ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) → ( uncurry 𝑓 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) Fn ( 𝐼 × 𝐼 ) ) |
| 297 |
|
eqfnov2 |
⊢ ( ( ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) Fn ( 𝐼 × 𝐼 ) ∧ ( uncurry 𝑓 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) Fn ( 𝐼 × 𝐼 ) ) → ( ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) = ( uncurry 𝑓 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) ↔ ∀ 𝑖 ∈ 𝐼 ∀ 𝑗 ∈ 𝐼 ( 𝑖 ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑗 ) = ( 𝑖 ( uncurry 𝑓 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) 𝑗 ) ) ) |
| 298 |
285 296 297
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) → ( ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) = ( uncurry 𝑓 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) ↔ ∀ 𝑖 ∈ 𝐼 ∀ 𝑗 ∈ 𝐼 ( 𝑖 ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑗 ) = ( 𝑖 ( uncurry 𝑓 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) 𝑗 ) ) ) |
| 299 |
274 298
|
sylibrd |
⊢ ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) → ( ∀ 𝑖 ∈ 𝐼 ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) → ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) = ( uncurry 𝑓 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) ) ) |
| 300 |
299
|
imp |
⊢ ( ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ∧ ∀ 𝑖 ∈ 𝐼 ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) ) → ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) = ( uncurry 𝑓 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) ) |
| 301 |
300
|
eqcomd |
⊢ ( ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ∧ ∀ 𝑖 ∈ 𝐼 ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) ) → ( uncurry 𝑓 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) = ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) ) |
| 302 |
|
oveq1 |
⊢ ( 𝑛 = uncurry 𝑓 → ( 𝑛 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) = ( uncurry 𝑓 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) ) |
| 303 |
302
|
eqeq1d |
⊢ ( 𝑛 = uncurry 𝑓 → ( ( 𝑛 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) = ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) ↔ ( uncurry 𝑓 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) = ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) ) ) |
| 304 |
303
|
rspcev |
⊢ ( ( uncurry 𝑓 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ∧ ( uncurry 𝑓 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) = ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) ) → ∃ 𝑛 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ( 𝑛 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) = ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) ) |
| 305 |
222 301 304
|
syl2anc |
⊢ ( ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ∧ ∀ 𝑖 ∈ 𝐼 ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) ) → ∃ 𝑛 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ( 𝑛 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) = ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) ) |
| 306 |
305
|
expl |
⊢ ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( ( uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ∧ ∀ 𝑖 ∈ 𝐼 ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) ) → ∃ 𝑛 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ( 𝑛 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) = ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) ) ) |
| 307 |
209 306
|
sylani |
⊢ ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( ( 𝑓 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ∧ ∀ 𝑖 ∈ 𝐼 ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) ) → ∃ 𝑛 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ( 𝑛 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) = ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) ) ) |
| 308 |
307
|
exlimdv |
⊢ ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( ∃ 𝑓 ( 𝑓 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ∧ ∀ 𝑖 ∈ 𝐼 ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) ) → ∃ 𝑛 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ( 𝑛 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) = ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) ) ) |
| 309 |
308
|
imp |
⊢ ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ ∃ 𝑓 ( 𝑓 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ∧ ∀ 𝑖 ∈ 𝐼 ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) ) ) → ∃ 𝑛 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ( 𝑛 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) = ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) ) |
| 310 |
309
|
adantlr |
⊢ ( ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ 𝐼 ≠ ∅ ) ∧ ∃ 𝑓 ( 𝑓 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ∧ ∀ 𝑖 ∈ 𝐼 ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) ) ) → ∃ 𝑛 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ( 𝑛 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) = ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) ) |
| 311 |
208 310
|
syldan |
⊢ ( ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ 𝐼 ≠ ∅ ) ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) → ∃ 𝑛 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ( 𝑛 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) = ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) ) |
| 312 |
6
|
simprbi |
⊢ ( 𝑅 ∈ Field → 𝑅 ∈ CRing ) |
| 313 |
|
eqid |
⊢ ( 𝐼 maDet 𝑅 ) = ( 𝐼 maDet 𝑅 ) |
| 314 |
313 1 2 14
|
mdetcl |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ∈ ( Base ‘ 𝑅 ) ) |
| 315 |
313 1 2 14
|
mdetcl |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( ( 𝐼 maDet 𝑅 ) ‘ 𝑛 ) ∈ ( Base ‘ 𝑅 ) ) |
| 316 |
|
eqid |
⊢ ( ∥r ‘ 𝑅 ) = ( ∥r ‘ 𝑅 ) |
| 317 |
14 316 121
|
dvdsrmul |
⊢ ( ( ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝐼 maDet 𝑅 ) ‘ 𝑛 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ( ∥r ‘ 𝑅 ) ( ( ( 𝐼 maDet 𝑅 ) ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ) ) |
| 318 |
314 315 317
|
syl2an |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ) → ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ( ∥r ‘ 𝑅 ) ( ( ( 𝐼 maDet 𝑅 ) ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ) ) |
| 319 |
318
|
anandis |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ∧ 𝑛 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ) → ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ( ∥r ‘ 𝑅 ) ( ( ( 𝐼 maDet 𝑅 ) ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ) ) |
| 320 |
319
|
anassrs |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ 𝑛 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ( ∥r ‘ 𝑅 ) ( ( ( 𝐼 maDet 𝑅 ) ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ) ) |
| 321 |
320
|
adantrr |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ ( 𝑛 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ∧ ( 𝑛 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) = ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) ) ) → ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ( ∥r ‘ 𝑅 ) ( ( ( 𝐼 maDet 𝑅 ) ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ) ) |
| 322 |
|
fveq2 |
⊢ ( ( 𝑛 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) = ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) → ( ( 𝐼 maDet 𝑅 ) ‘ ( 𝑛 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) ) = ( ( 𝐼 maDet 𝑅 ) ‘ ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) ) ) |
| 323 |
1 2 313 121 290
|
mdetmul |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( ( 𝐼 maDet 𝑅 ) ‘ ( 𝑛 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) ) = ( ( ( 𝐼 maDet 𝑅 ) ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ) ) |
| 324 |
323
|
3expa |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( ( 𝐼 maDet 𝑅 ) ‘ ( 𝑛 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) ) = ( ( ( 𝐼 maDet 𝑅 ) ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ) ) |
| 325 |
324
|
an32s |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ 𝑛 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( ( 𝐼 maDet 𝑅 ) ‘ ( 𝑛 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) ) = ( ( ( 𝐼 maDet 𝑅 ) ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ) ) |
| 326 |
313 1 239 233
|
mdet1 |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ Fin ) → ( ( 𝐼 maDet 𝑅 ) ‘ ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) ) = ( 1r ‘ 𝑅 ) ) |
| 327 |
4 326
|
sylan2 |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( ( 𝐼 maDet 𝑅 ) ‘ ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) ) = ( 1r ‘ 𝑅 ) ) |
| 328 |
327
|
adantr |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ 𝑛 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( ( 𝐼 maDet 𝑅 ) ‘ ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) ) = ( 1r ‘ 𝑅 ) ) |
| 329 |
325 328
|
eqeq12d |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ 𝑛 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( ( ( 𝐼 maDet 𝑅 ) ‘ ( 𝑛 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) ) = ( ( 𝐼 maDet 𝑅 ) ‘ ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) ) ↔ ( ( ( 𝐼 maDet 𝑅 ) ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ) = ( 1r ‘ 𝑅 ) ) ) |
| 330 |
322 329
|
imbitrid |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ 𝑛 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( ( 𝑛 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) = ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) → ( ( ( 𝐼 maDet 𝑅 ) ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ) = ( 1r ‘ 𝑅 ) ) ) |
| 331 |
330
|
impr |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ ( 𝑛 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ∧ ( 𝑛 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) = ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) ) ) → ( ( ( 𝐼 maDet 𝑅 ) ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ) = ( 1r ‘ 𝑅 ) ) |
| 332 |
331
|
breq2d |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ ( 𝑛 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ∧ ( 𝑛 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) = ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) ) ) → ( ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ( ∥r ‘ 𝑅 ) ( ( ( 𝐼 maDet 𝑅 ) ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ) ↔ ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) |
| 333 |
|
eqid |
⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) |
| 334 |
333 233 316
|
crngunit |
⊢ ( 𝑅 ∈ CRing → ( ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ∈ ( Unit ‘ 𝑅 ) ↔ ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) |
| 335 |
334
|
ad2antrr |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ ( 𝑛 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ∧ ( 𝑛 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) = ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) ) ) → ( ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ∈ ( Unit ‘ 𝑅 ) ↔ ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) |
| 336 |
332 335
|
bitr4d |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ ( 𝑛 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ∧ ( 𝑛 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) = ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) ) ) → ( ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ( ∥r ‘ 𝑅 ) ( ( ( 𝐼 maDet 𝑅 ) ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ) ↔ ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ∈ ( Unit ‘ 𝑅 ) ) ) |
| 337 |
321 336
|
mpbid |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ ( 𝑛 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ∧ ( 𝑛 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) = ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) ) ) → ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ∈ ( Unit ‘ 𝑅 ) ) |
| 338 |
312 337
|
sylanl1 |
⊢ ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ ( 𝑛 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ∧ ( 𝑛 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) = ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) ) ) → ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ∈ ( Unit ‘ 𝑅 ) ) |
| 339 |
338
|
ad4ant14 |
⊢ ( ( ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ 𝐼 ≠ ∅ ) ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) ∧ ( 𝑛 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ∧ ( 𝑛 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) = ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) ) ) → ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ∈ ( Unit ‘ 𝑅 ) ) |
| 340 |
311 339
|
rexlimddv |
⊢ ( ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ 𝐼 ≠ ∅ ) ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) → ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ∈ ( Unit ‘ 𝑅 ) ) |