Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( 𝐼 Mat 𝑅 ) = ( 𝐼 Mat 𝑅 ) |
2 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) = ( Base ‘ ( 𝐼 Mat 𝑅 ) ) |
3 |
1 2
|
matrcl |
⊢ ( 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) → ( 𝐼 ∈ Fin ∧ 𝑅 ∈ V ) ) |
4 |
3
|
simpld |
⊢ ( 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) → 𝐼 ∈ Fin ) |
5 |
4
|
ad3antlr |
⊢ ( ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ 𝐼 ≠ ∅ ) ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) → 𝐼 ∈ Fin ) |
6 |
|
isfld |
⊢ ( 𝑅 ∈ Field ↔ ( 𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing ) ) |
7 |
6
|
simplbi |
⊢ ( 𝑅 ∈ Field → 𝑅 ∈ DivRing ) |
8 |
7
|
anim1i |
⊢ ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( 𝑅 ∈ DivRing ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ) |
9 |
4
|
ad2antrl |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ∧ 𝐼 ≠ ∅ ) ) → 𝐼 ∈ Fin ) |
10 |
|
simpr |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) |
11 |
|
xpfi |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝐼 ∈ Fin ) → ( 𝐼 × 𝐼 ) ∈ Fin ) |
12 |
11
|
anidms |
⊢ ( 𝐼 ∈ Fin → ( 𝐼 × 𝐼 ) ∈ Fin ) |
13 |
|
eqid |
⊢ ( 𝑅 freeLMod ( 𝐼 × 𝐼 ) ) = ( 𝑅 freeLMod ( 𝐼 × 𝐼 ) ) |
14 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
15 |
13 14
|
frlmfibas |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( 𝐼 × 𝐼 ) ∈ Fin ) → ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) = ( Base ‘ ( 𝑅 freeLMod ( 𝐼 × 𝐼 ) ) ) ) |
16 |
12 15
|
sylan2 |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) → ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) = ( Base ‘ ( 𝑅 freeLMod ( 𝐼 × 𝐼 ) ) ) ) |
17 |
1 13
|
matbas |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing ) → ( Base ‘ ( 𝑅 freeLMod ( 𝐼 × 𝐼 ) ) ) = ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) |
18 |
17
|
ancoms |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) → ( Base ‘ ( 𝑅 freeLMod ( 𝐼 × 𝐼 ) ) ) = ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) |
19 |
16 18
|
eqtrd |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) → ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) = ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) |
20 |
19
|
eleq2d |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) → ( 𝑀 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) ↔ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ) |
21 |
4 20
|
sylan2 |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( 𝑀 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) ↔ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ) |
22 |
|
fvex |
⊢ ( Base ‘ 𝑅 ) ∈ V |
23 |
4 4 11
|
syl2anc |
⊢ ( 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) → ( 𝐼 × 𝐼 ) ∈ Fin ) |
24 |
|
elmapg |
⊢ ( ( ( Base ‘ 𝑅 ) ∈ V ∧ ( 𝐼 × 𝐼 ) ∈ Fin ) → ( 𝑀 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) ↔ 𝑀 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ) |
25 |
22 23 24
|
sylancr |
⊢ ( 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) → ( 𝑀 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) ↔ 𝑀 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ) |
26 |
25
|
adantl |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( 𝑀 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) ↔ 𝑀 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ) |
27 |
21 26
|
bitr3d |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ↔ 𝑀 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ) |
28 |
10 27
|
mpbid |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → 𝑀 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) |
29 |
28
|
adantrr |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ∧ 𝐼 ≠ ∅ ) ) → 𝑀 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) |
30 |
|
eldifsn |
⊢ ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ↔ ( 𝐼 ∈ Fin ∧ 𝐼 ≠ ∅ ) ) |
31 |
30
|
biimpri |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝐼 ≠ ∅ ) → 𝐼 ∈ ( Fin ∖ { ∅ } ) ) |
32 |
4 31
|
sylan |
⊢ ( ( 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ∧ 𝐼 ≠ ∅ ) → 𝐼 ∈ ( Fin ∖ { ∅ } ) ) |
33 |
32
|
adantl |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ∧ 𝐼 ≠ ∅ ) ) → 𝐼 ∈ ( Fin ∖ { ∅ } ) ) |
34 |
|
curf |
⊢ ( ( 𝑀 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ∧ 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ ( Base ‘ 𝑅 ) ∈ V ) → curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) |
35 |
22 34
|
mp3an3 |
⊢ ( ( 𝑀 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ∧ 𝐼 ∈ ( Fin ∖ { ∅ } ) ) → curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) |
36 |
29 33 35
|
syl2anc |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ∧ 𝐼 ≠ ∅ ) ) → curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) |
37 |
9 36
|
jca |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ∧ 𝐼 ≠ ∅ ) ) → ( 𝐼 ∈ Fin ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ) |
38 |
37
|
ex |
⊢ ( 𝑅 ∈ DivRing → ( ( 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ∧ 𝐼 ≠ ∅ ) → ( 𝐼 ∈ Fin ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ) ) |
39 |
38
|
imdistani |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ∧ 𝐼 ≠ ∅ ) ) → ( 𝑅 ∈ DivRing ∧ ( 𝐼 ∈ Fin ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ) ) |
40 |
39
|
anassrs |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ 𝐼 ≠ ∅ ) → ( 𝑅 ∈ DivRing ∧ ( 𝐼 ∈ Fin ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ) ) |
41 |
|
anass |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ↔ ( 𝑅 ∈ DivRing ∧ ( 𝐼 ∈ Fin ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ) ) |
42 |
40 41
|
sylibr |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ 𝐼 ≠ ∅ ) → ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ) |
43 |
|
drngring |
⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring ) |
44 |
|
eqid |
⊢ ( 𝑅 unitVec 𝐼 ) = ( 𝑅 unitVec 𝐼 ) |
45 |
|
eqid |
⊢ ( 𝑅 freeLMod 𝐼 ) = ( 𝑅 freeLMod 𝐼 ) |
46 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) = ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) |
47 |
44 45 46
|
uvcff |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) → ( 𝑅 unitVec 𝐼 ) : 𝐼 ⟶ ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
48 |
43 47
|
sylan |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) → ( 𝑅 unitVec 𝐼 ) : 𝐼 ⟶ ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
49 |
48
|
ffvelrnda |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) ∈ ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
50 |
49
|
ad4ant14 |
⊢ ( ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) ∈ ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
51 |
|
ffn |
⊢ ( curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) → curry 𝑀 Fn 𝐼 ) |
52 |
|
fnima |
⊢ ( curry 𝑀 Fn 𝐼 → ( curry 𝑀 “ 𝐼 ) = ran curry 𝑀 ) |
53 |
51 52
|
syl |
⊢ ( curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) → ( curry 𝑀 “ 𝐼 ) = ran curry 𝑀 ) |
54 |
53
|
adantl |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) → ( curry 𝑀 “ 𝐼 ) = ran curry 𝑀 ) |
55 |
54
|
fveq2d |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) → ( ( LSpan ‘ ( 𝑅 freeLMod 𝐼 ) ) ‘ ( curry 𝑀 “ 𝐼 ) ) = ( ( LSpan ‘ ( 𝑅 freeLMod 𝐼 ) ) ‘ ran curry 𝑀 ) ) |
56 |
55
|
adantr |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) → ( ( LSpan ‘ ( 𝑅 freeLMod 𝐼 ) ) ‘ ( curry 𝑀 “ 𝐼 ) ) = ( ( LSpan ‘ ( 𝑅 freeLMod 𝐼 ) ) ‘ ran curry 𝑀 ) ) |
57 |
|
simplll |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) → 𝑅 ∈ DivRing ) |
58 |
|
simpllr |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) → 𝐼 ∈ Fin ) |
59 |
45
|
frlmlmod |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) → ( 𝑅 freeLMod 𝐼 ) ∈ LMod ) |
60 |
43 59
|
sylan |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) → ( 𝑅 freeLMod 𝐼 ) ∈ LMod ) |
61 |
60
|
adantr |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) → ( 𝑅 freeLMod 𝐼 ) ∈ LMod ) |
62 |
|
lindfrn |
⊢ ( ( ( 𝑅 freeLMod 𝐼 ) ∈ LMod ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) → ran curry 𝑀 ∈ ( LIndS ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
63 |
61 62
|
sylan |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) → ran curry 𝑀 ∈ ( LIndS ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
64 |
45
|
frlmsca |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) → 𝑅 = ( Scalar ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
65 |
|
drngnzr |
⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ NzRing ) |
66 |
65
|
adantr |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) → 𝑅 ∈ NzRing ) |
67 |
64 66
|
eqeltrrd |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) → ( Scalar ‘ ( 𝑅 freeLMod 𝐼 ) ) ∈ NzRing ) |
68 |
60 67
|
jca |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) → ( ( 𝑅 freeLMod 𝐼 ) ∈ LMod ∧ ( Scalar ‘ ( 𝑅 freeLMod 𝐼 ) ) ∈ NzRing ) ) |
69 |
|
eqid |
⊢ ( Scalar ‘ ( 𝑅 freeLMod 𝐼 ) ) = ( Scalar ‘ ( 𝑅 freeLMod 𝐼 ) ) |
70 |
46 69
|
lindff1 |
⊢ ( ( ( 𝑅 freeLMod 𝐼 ) ∈ LMod ∧ ( Scalar ‘ ( 𝑅 freeLMod 𝐼 ) ) ∈ NzRing ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) → curry 𝑀 : dom curry 𝑀 –1-1→ ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
71 |
70
|
3expa |
⊢ ( ( ( ( 𝑅 freeLMod 𝐼 ) ∈ LMod ∧ ( Scalar ‘ ( 𝑅 freeLMod 𝐼 ) ) ∈ NzRing ) ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) → curry 𝑀 : dom curry 𝑀 –1-1→ ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
72 |
68 71
|
sylan |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) → curry 𝑀 : dom curry 𝑀 –1-1→ ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
73 |
|
fdm |
⊢ ( curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) → dom curry 𝑀 = 𝐼 ) |
74 |
|
f1eq2 |
⊢ ( dom curry 𝑀 = 𝐼 → ( curry 𝑀 : dom curry 𝑀 –1-1→ ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ↔ curry 𝑀 : 𝐼 –1-1→ ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) ) |
75 |
74
|
biimpac |
⊢ ( ( curry 𝑀 : dom curry 𝑀 –1-1→ ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ∧ dom curry 𝑀 = 𝐼 ) → curry 𝑀 : 𝐼 –1-1→ ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
76 |
72 73 75
|
syl2an |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) → curry 𝑀 : 𝐼 –1-1→ ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
77 |
76
|
an32s |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) → curry 𝑀 : 𝐼 –1-1→ ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
78 |
|
f1f1orn |
⊢ ( curry 𝑀 : 𝐼 –1-1→ ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) → curry 𝑀 : 𝐼 –1-1-onto→ ran curry 𝑀 ) |
79 |
77 78
|
syl |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) → curry 𝑀 : 𝐼 –1-1-onto→ ran curry 𝑀 ) |
80 |
|
f1oeng |
⊢ ( ( 𝐼 ∈ Fin ∧ curry 𝑀 : 𝐼 –1-1-onto→ ran curry 𝑀 ) → 𝐼 ≈ ran curry 𝑀 ) |
81 |
58 79 80
|
syl2anc |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) → 𝐼 ≈ ran curry 𝑀 ) |
82 |
81
|
ensymd |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) → ran curry 𝑀 ≈ 𝐼 ) |
83 |
|
lindsenlbs |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ ran curry 𝑀 ∈ ( LIndS ‘ ( 𝑅 freeLMod 𝐼 ) ) ) ∧ ran curry 𝑀 ≈ 𝐼 ) → ran curry 𝑀 ∈ ( LBasis ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
84 |
57 58 63 82 83
|
syl31anc |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) → ran curry 𝑀 ∈ ( LBasis ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
85 |
|
eqid |
⊢ ( LBasis ‘ ( 𝑅 freeLMod 𝐼 ) ) = ( LBasis ‘ ( 𝑅 freeLMod 𝐼 ) ) |
86 |
|
eqid |
⊢ ( LSpan ‘ ( 𝑅 freeLMod 𝐼 ) ) = ( LSpan ‘ ( 𝑅 freeLMod 𝐼 ) ) |
87 |
46 85 86
|
lbssp |
⊢ ( ran curry 𝑀 ∈ ( LBasis ‘ ( 𝑅 freeLMod 𝐼 ) ) → ( ( LSpan ‘ ( 𝑅 freeLMod 𝐼 ) ) ‘ ran curry 𝑀 ) = ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
88 |
84 87
|
syl |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) → ( ( LSpan ‘ ( 𝑅 freeLMod 𝐼 ) ) ‘ ran curry 𝑀 ) = ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
89 |
56 88
|
eqtrd |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) → ( ( LSpan ‘ ( 𝑅 freeLMod 𝐼 ) ) ‘ ( curry 𝑀 “ 𝐼 ) ) = ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
90 |
89
|
adantr |
⊢ ( ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) → ( ( LSpan ‘ ( 𝑅 freeLMod 𝐼 ) ) ‘ ( curry 𝑀 “ 𝐼 ) ) = ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
91 |
50 90
|
eleqtrrd |
⊢ ( ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) ∈ ( ( LSpan ‘ ( 𝑅 freeLMod 𝐼 ) ) ‘ ( curry 𝑀 “ 𝐼 ) ) ) |
92 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ ( 𝑅 freeLMod 𝐼 ) ) ) = ( Base ‘ ( Scalar ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
93 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ ( 𝑅 freeLMod 𝐼 ) ) ) = ( 0g ‘ ( Scalar ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
94 |
|
eqid |
⊢ ( ·𝑠 ‘ ( 𝑅 freeLMod 𝐼 ) ) = ( ·𝑠 ‘ ( 𝑅 freeLMod 𝐼 ) ) |
95 |
45 14
|
frlmfibas |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) → ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) = ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
96 |
95
|
feq3d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) → ( curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ↔ curry 𝑀 : 𝐼 ⟶ ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) ) |
97 |
96
|
biimpa |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) → curry 𝑀 : 𝐼 ⟶ ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
98 |
59
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) → ( 𝑅 freeLMod 𝐼 ) ∈ LMod ) |
99 |
|
simplr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) → 𝐼 ∈ Fin ) |
100 |
86 46 92 69 93 94 97 98 99
|
elfilspd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) → ( ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) ∈ ( ( LSpan ‘ ( 𝑅 freeLMod 𝐼 ) ) ‘ ( curry 𝑀 “ 𝐼 ) ) ↔ ∃ 𝑛 ∈ ( ( Base ‘ ( Scalar ‘ ( 𝑅 freeLMod 𝐼 ) ) ) ↑m 𝐼 ) ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( ( 𝑅 freeLMod 𝐼 ) Σg ( 𝑛 ∘f ( ·𝑠 ‘ ( 𝑅 freeLMod 𝐼 ) ) curry 𝑀 ) ) ) ) |
101 |
45
|
frlmsca |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) → 𝑅 = ( Scalar ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
102 |
101
|
fveq2d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ ( 𝑅 freeLMod 𝐼 ) ) ) ) |
103 |
102
|
oveq1d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) → ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) = ( ( Base ‘ ( Scalar ‘ ( 𝑅 freeLMod 𝐼 ) ) ) ↑m 𝐼 ) ) |
104 |
103
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) → ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) = ( ( Base ‘ ( Scalar ‘ ( 𝑅 freeLMod 𝐼 ) ) ) ↑m 𝐼 ) ) |
105 |
|
elmapi |
⊢ ( 𝑛 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) → 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
106 |
|
ffn |
⊢ ( 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) → 𝑛 Fn 𝐼 ) |
107 |
106
|
adantl |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) → 𝑛 Fn 𝐼 ) |
108 |
51
|
ad2antlr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) → curry 𝑀 Fn 𝐼 ) |
109 |
|
simpllr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) → 𝐼 ∈ Fin ) |
110 |
|
inidm |
⊢ ( 𝐼 ∩ 𝐼 ) = 𝐼 |
111 |
|
eqidd |
⊢ ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝑛 ‘ 𝑘 ) = ( 𝑛 ‘ 𝑘 ) ) |
112 |
|
eqidd |
⊢ ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( curry 𝑀 ‘ 𝑘 ) = ( curry 𝑀 ‘ 𝑘 ) ) |
113 |
107 108 109 109 110 111 112
|
offval |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) → ( 𝑛 ∘f ( ·𝑠 ‘ ( 𝑅 freeLMod 𝐼 ) ) curry 𝑀 ) = ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( ·𝑠 ‘ ( 𝑅 freeLMod 𝐼 ) ) ( curry 𝑀 ‘ 𝑘 ) ) ) ) |
114 |
|
simp-4r |
⊢ ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → 𝐼 ∈ Fin ) |
115 |
|
ffvelrn |
⊢ ( ( 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝑛 ‘ 𝑘 ) ∈ ( Base ‘ 𝑅 ) ) |
116 |
115
|
adantll |
⊢ ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝑛 ‘ 𝑘 ) ∈ ( Base ‘ 𝑅 ) ) |
117 |
|
ffvelrn |
⊢ ( ( curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ∧ 𝑘 ∈ 𝐼 ) → ( curry 𝑀 ‘ 𝑘 ) ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) |
118 |
117
|
ad4ant24 |
⊢ ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( curry 𝑀 ‘ 𝑘 ) ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) |
119 |
95
|
ad3antrrr |
⊢ ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) = ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
120 |
118 119
|
eleqtrd |
⊢ ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( curry 𝑀 ‘ 𝑘 ) ∈ ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
121 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
122 |
45 46 14 114 116 120 94 121
|
frlmvscafval |
⊢ ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝑛 ‘ 𝑘 ) ( ·𝑠 ‘ ( 𝑅 freeLMod 𝐼 ) ) ( curry 𝑀 ‘ 𝑘 ) ) = ( ( 𝐼 × { ( 𝑛 ‘ 𝑘 ) } ) ∘f ( .r ‘ 𝑅 ) ( curry 𝑀 ‘ 𝑘 ) ) ) |
123 |
|
fvex |
⊢ ( 𝑛 ‘ 𝑘 ) ∈ V |
124 |
|
fnconstg |
⊢ ( ( 𝑛 ‘ 𝑘 ) ∈ V → ( 𝐼 × { ( 𝑛 ‘ 𝑘 ) } ) Fn 𝐼 ) |
125 |
123 124
|
mp1i |
⊢ ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝐼 × { ( 𝑛 ‘ 𝑘 ) } ) Fn 𝐼 ) |
126 |
|
elmapfn |
⊢ ( ( curry 𝑀 ‘ 𝑘 ) ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) → ( curry 𝑀 ‘ 𝑘 ) Fn 𝐼 ) |
127 |
117 126
|
syl |
⊢ ( ( curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ∧ 𝑘 ∈ 𝐼 ) → ( curry 𝑀 ‘ 𝑘 ) Fn 𝐼 ) |
128 |
127
|
ad4ant24 |
⊢ ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( curry 𝑀 ‘ 𝑘 ) Fn 𝐼 ) |
129 |
123
|
fvconst2 |
⊢ ( 𝑗 ∈ 𝐼 → ( ( 𝐼 × { ( 𝑛 ‘ 𝑘 ) } ) ‘ 𝑗 ) = ( 𝑛 ‘ 𝑘 ) ) |
130 |
129
|
adantl |
⊢ ( ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) → ( ( 𝐼 × { ( 𝑛 ‘ 𝑘 ) } ) ‘ 𝑗 ) = ( 𝑛 ‘ 𝑘 ) ) |
131 |
|
eqidd |
⊢ ( ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) → ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) = ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) |
132 |
125 128 114 114 110 130 131
|
offval |
⊢ ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝐼 × { ( 𝑛 ‘ 𝑘 ) } ) ∘f ( .r ‘ 𝑅 ) ( curry 𝑀 ‘ 𝑘 ) ) = ( 𝑗 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ) |
133 |
122 132
|
eqtrd |
⊢ ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝑛 ‘ 𝑘 ) ( ·𝑠 ‘ ( 𝑅 freeLMod 𝐼 ) ) ( curry 𝑀 ‘ 𝑘 ) ) = ( 𝑗 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ) |
134 |
133
|
mpteq2dva |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) → ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( ·𝑠 ‘ ( 𝑅 freeLMod 𝐼 ) ) ( curry 𝑀 ‘ 𝑘 ) ) ) = ( 𝑘 ∈ 𝐼 ↦ ( 𝑗 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ) ) |
135 |
113 134
|
eqtrd |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) → ( 𝑛 ∘f ( ·𝑠 ‘ ( 𝑅 freeLMod 𝐼 ) ) curry 𝑀 ) = ( 𝑘 ∈ 𝐼 ↦ ( 𝑗 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ) ) |
136 |
135
|
oveq2d |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) → ( ( 𝑅 freeLMod 𝐼 ) Σg ( 𝑛 ∘f ( ·𝑠 ‘ ( 𝑅 freeLMod 𝐼 ) ) curry 𝑀 ) ) = ( ( 𝑅 freeLMod 𝐼 ) Σg ( 𝑘 ∈ 𝐼 ↦ ( 𝑗 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ) ) ) |
137 |
|
eqid |
⊢ ( 0g ‘ ( 𝑅 freeLMod 𝐼 ) ) = ( 0g ‘ ( 𝑅 freeLMod 𝐼 ) ) |
138 |
|
simplll |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) → 𝑅 ∈ Ring ) |
139 |
|
simp-5l |
⊢ ( ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) → 𝑅 ∈ Ring ) |
140 |
115
|
ad4ant23 |
⊢ ( ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) → ( 𝑛 ‘ 𝑘 ) ∈ ( Base ‘ 𝑅 ) ) |
141 |
|
simplr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) → curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) |
142 |
|
elmapi |
⊢ ( ( curry 𝑀 ‘ 𝑘 ) ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) → ( curry 𝑀 ‘ 𝑘 ) : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
143 |
117 142
|
syl |
⊢ ( ( curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ∧ 𝑘 ∈ 𝐼 ) → ( curry 𝑀 ‘ 𝑘 ) : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
144 |
143
|
ffvelrnda |
⊢ ( ( ( curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ∧ 𝑘 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) → ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ∈ ( Base ‘ 𝑅 ) ) |
145 |
141 144
|
sylanl1 |
⊢ ( ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) → ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ∈ ( Base ‘ 𝑅 ) ) |
146 |
14 121
|
ringcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑛 ‘ 𝑘 ) ∈ ( Base ‘ 𝑅 ) ∧ ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ∈ ( Base ‘ 𝑅 ) ) |
147 |
139 140 145 146
|
syl3anc |
⊢ ( ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) → ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ∈ ( Base ‘ 𝑅 ) ) |
148 |
147
|
fmpttd |
⊢ ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝑗 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
149 |
|
elmapg |
⊢ ( ( ( Base ‘ 𝑅 ) ∈ V ∧ 𝐼 ∈ Fin ) → ( ( 𝑗 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ↔ ( 𝑗 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) ) |
150 |
22 149
|
mpan |
⊢ ( 𝐼 ∈ Fin → ( ( 𝑗 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ↔ ( 𝑗 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) ) |
151 |
150
|
adantl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) → ( ( 𝑗 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ↔ ( 𝑗 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) ) |
152 |
95
|
eleq2d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) → ( ( 𝑗 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ↔ ( 𝑗 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ∈ ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) ) |
153 |
151 152
|
bitr3d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) → ( ( 𝑗 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) : 𝐼 ⟶ ( Base ‘ 𝑅 ) ↔ ( 𝑗 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ∈ ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) ) |
154 |
153
|
ad3antrrr |
⊢ ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝑗 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) : 𝐼 ⟶ ( Base ‘ 𝑅 ) ↔ ( 𝑗 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ∈ ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) ) |
155 |
148 154
|
mpbid |
⊢ ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝑗 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ∈ ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
156 |
|
mptexg |
⊢ ( 𝐼 ∈ Fin → ( 𝑗 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ∈ V ) |
157 |
156
|
ralrimivw |
⊢ ( 𝐼 ∈ Fin → ∀ 𝑘 ∈ 𝐼 ( 𝑗 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ∈ V ) |
158 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐼 ↦ ( 𝑗 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ) = ( 𝑘 ∈ 𝐼 ↦ ( 𝑗 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ) |
159 |
158
|
fnmpt |
⊢ ( ∀ 𝑘 ∈ 𝐼 ( 𝑗 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ∈ V → ( 𝑘 ∈ 𝐼 ↦ ( 𝑗 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ) Fn 𝐼 ) |
160 |
157 159
|
syl |
⊢ ( 𝐼 ∈ Fin → ( 𝑘 ∈ 𝐼 ↦ ( 𝑗 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ) Fn 𝐼 ) |
161 |
|
id |
⊢ ( 𝐼 ∈ Fin → 𝐼 ∈ Fin ) |
162 |
|
fvexd |
⊢ ( 𝐼 ∈ Fin → ( 0g ‘ ( 𝑅 freeLMod 𝐼 ) ) ∈ V ) |
163 |
160 161 162
|
fndmfifsupp |
⊢ ( 𝐼 ∈ Fin → ( 𝑘 ∈ 𝐼 ↦ ( 𝑗 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ) finSupp ( 0g ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
164 |
163
|
ad3antlr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) → ( 𝑘 ∈ 𝐼 ↦ ( 𝑗 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ) finSupp ( 0g ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
165 |
45 46 137 109 109 138 155 164
|
frlmgsum |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) → ( ( 𝑅 freeLMod 𝐼 ) Σg ( 𝑘 ∈ 𝐼 ↦ ( 𝑗 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ) ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ) ) ) |
166 |
136 165
|
eqtr2d |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) → ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ) ) = ( ( 𝑅 freeLMod 𝐼 ) Σg ( 𝑛 ∘f ( ·𝑠 ‘ ( 𝑅 freeLMod 𝐼 ) ) curry 𝑀 ) ) ) |
167 |
105 166
|
sylan2 |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) → ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ) ) = ( ( 𝑅 freeLMod 𝐼 ) Σg ( 𝑛 ∘f ( ·𝑠 ‘ ( 𝑅 freeLMod 𝐼 ) ) curry 𝑀 ) ) ) |
168 |
167
|
eqeq2d |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ 𝑛 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) → ( ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ) ) ↔ ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( ( 𝑅 freeLMod 𝐼 ) Σg ( 𝑛 ∘f ( ·𝑠 ‘ ( 𝑅 freeLMod 𝐼 ) ) curry 𝑀 ) ) ) ) |
169 |
104 168
|
rexeqbidva |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) → ( ∃ 𝑛 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ) ) ↔ ∃ 𝑛 ∈ ( ( Base ‘ ( Scalar ‘ ( 𝑅 freeLMod 𝐼 ) ) ) ↑m 𝐼 ) ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( ( 𝑅 freeLMod 𝐼 ) Σg ( 𝑛 ∘f ( ·𝑠 ‘ ( 𝑅 freeLMod 𝐼 ) ) curry 𝑀 ) ) ) ) |
170 |
100 169
|
bitr4d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) → ( ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) ∈ ( ( LSpan ‘ ( 𝑅 freeLMod 𝐼 ) ) ‘ ( curry 𝑀 “ 𝐼 ) ) ↔ ∃ 𝑛 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ) ) ) ) |
171 |
43 170
|
sylanl1 |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) → ( ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) ∈ ( ( LSpan ‘ ( 𝑅 freeLMod 𝐼 ) ) ‘ ( curry 𝑀 “ 𝐼 ) ) ↔ ∃ 𝑛 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ) ) ) ) |
172 |
171
|
ad2antrr |
⊢ ( ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) → ( ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) ∈ ( ( LSpan ‘ ( 𝑅 freeLMod 𝐼 ) ) ‘ ( curry 𝑀 “ 𝐼 ) ) ↔ ∃ 𝑛 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ) ) ) ) |
173 |
91 172
|
mpbid |
⊢ ( ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) → ∃ 𝑛 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ) ) ) |
174 |
173
|
ralrimiva |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ) ∧ curry 𝑀 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) → ∀ 𝑖 ∈ 𝐼 ∃ 𝑛 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ) ) ) |
175 |
42 174
|
sylan |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ 𝐼 ≠ ∅ ) ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) → ∀ 𝑖 ∈ 𝐼 ∃ 𝑛 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ) ) ) |
176 |
10 21
|
mpbird |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → 𝑀 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) ) |
177 |
|
elmapfn |
⊢ ( 𝑀 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) → 𝑀 Fn ( 𝐼 × 𝐼 ) ) |
178 |
176 177
|
syl |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → 𝑀 Fn ( 𝐼 × 𝐼 ) ) |
179 |
4
|
adantl |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → 𝐼 ∈ Fin ) |
180 |
|
an32 |
⊢ ( ( ( 𝑀 Fn ( 𝐼 × 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) ∧ 𝑘 ∈ 𝐼 ) ↔ ( ( 𝑀 Fn ( 𝐼 × 𝐼 ) ∧ 𝑘 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) ) |
181 |
|
df-3an |
⊢ ( ( 𝑀 Fn ( 𝐼 × 𝐼 ) ∧ 𝑘 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼 ) ↔ ( ( 𝑀 Fn ( 𝐼 × 𝐼 ) ∧ 𝑘 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) ) |
182 |
180 181
|
bitr4i |
⊢ ( ( ( 𝑀 Fn ( 𝐼 × 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) ∧ 𝑘 ∈ 𝐼 ) ↔ ( 𝑀 Fn ( 𝐼 × 𝐼 ) ∧ 𝑘 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼 ) ) |
183 |
|
curfv |
⊢ ( ( ( 𝑀 Fn ( 𝐼 × 𝐼 ) ∧ 𝑘 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼 ) ∧ 𝐼 ∈ Fin ) → ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) = ( 𝑘 𝑀 𝑗 ) ) |
184 |
182 183
|
sylanb |
⊢ ( ( ( ( 𝑀 Fn ( 𝐼 × 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) ∧ 𝑘 ∈ 𝐼 ) ∧ 𝐼 ∈ Fin ) → ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) = ( 𝑘 𝑀 𝑗 ) ) |
185 |
184
|
an32s |
⊢ ( ( ( ( 𝑀 Fn ( 𝐼 × 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) ∧ 𝐼 ∈ Fin ) ∧ 𝑘 ∈ 𝐼 ) → ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) = ( 𝑘 𝑀 𝑗 ) ) |
186 |
185
|
oveq2d |
⊢ ( ( ( ( 𝑀 Fn ( 𝐼 × 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) ∧ 𝐼 ∈ Fin ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) = ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) |
187 |
186
|
mpteq2dva |
⊢ ( ( ( 𝑀 Fn ( 𝐼 × 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) ∧ 𝐼 ∈ Fin ) → ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) = ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) |
188 |
187
|
an32s |
⊢ ( ( ( 𝑀 Fn ( 𝐼 × 𝐼 ) ∧ 𝐼 ∈ Fin ) ∧ 𝑗 ∈ 𝐼 ) → ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) = ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) |
189 |
188
|
oveq2d |
⊢ ( ( ( 𝑀 Fn ( 𝐼 × 𝐼 ) ∧ 𝐼 ∈ Fin ) ∧ 𝑗 ∈ 𝐼 ) → ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ) = ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) |
190 |
189
|
mpteq2dva |
⊢ ( ( 𝑀 Fn ( 𝐼 × 𝐼 ) ∧ 𝐼 ∈ Fin ) → ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ) ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) ) |
191 |
190
|
eqeq2d |
⊢ ( ( 𝑀 Fn ( 𝐼 × 𝐼 ) ∧ 𝐼 ∈ Fin ) → ( ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ) ) ↔ ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) ) ) |
192 |
191
|
rexbidv |
⊢ ( ( 𝑀 Fn ( 𝐼 × 𝐼 ) ∧ 𝐼 ∈ Fin ) → ( ∃ 𝑛 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ) ) ↔ ∃ 𝑛 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) ) ) |
193 |
192
|
ralbidv |
⊢ ( ( 𝑀 Fn ( 𝐼 × 𝐼 ) ∧ 𝐼 ∈ Fin ) → ( ∀ 𝑖 ∈ 𝐼 ∃ 𝑛 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ) ) ↔ ∀ 𝑖 ∈ 𝐼 ∃ 𝑛 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) ) ) |
194 |
178 179 193
|
syl2anc |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( ∀ 𝑖 ∈ 𝐼 ∃ 𝑛 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ) ) ↔ ∀ 𝑖 ∈ 𝐼 ∃ 𝑛 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) ) ) |
195 |
194
|
ad2antrr |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ 𝐼 ≠ ∅ ) ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) → ( ∀ 𝑖 ∈ 𝐼 ∃ 𝑛 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( curry 𝑀 ‘ 𝑘 ) ‘ 𝑗 ) ) ) ) ) ↔ ∀ 𝑖 ∈ 𝐼 ∃ 𝑛 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) ) ) |
196 |
175 195
|
mpbid |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ 𝐼 ≠ ∅ ) ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) → ∀ 𝑖 ∈ 𝐼 ∃ 𝑛 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) ) |
197 |
8 196
|
sylanl1 |
⊢ ( ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ 𝐼 ≠ ∅ ) ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) → ∀ 𝑖 ∈ 𝐼 ∃ 𝑛 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) ) |
198 |
|
fveq1 |
⊢ ( 𝑛 = ( 𝑓 ‘ 𝑖 ) → ( 𝑛 ‘ 𝑘 ) = ( ( 𝑓 ‘ 𝑖 ) ‘ 𝑘 ) ) |
199 |
|
uncov |
⊢ ( ( 𝑖 ∈ V ∧ 𝑘 ∈ V ) → ( 𝑖 uncurry 𝑓 𝑘 ) = ( ( 𝑓 ‘ 𝑖 ) ‘ 𝑘 ) ) |
200 |
199
|
el2v |
⊢ ( 𝑖 uncurry 𝑓 𝑘 ) = ( ( 𝑓 ‘ 𝑖 ) ‘ 𝑘 ) |
201 |
198 200
|
eqtr4di |
⊢ ( 𝑛 = ( 𝑓 ‘ 𝑖 ) → ( 𝑛 ‘ 𝑘 ) = ( 𝑖 uncurry 𝑓 𝑘 ) ) |
202 |
201
|
oveq1d |
⊢ ( 𝑛 = ( 𝑓 ‘ 𝑖 ) → ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) = ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) |
203 |
202
|
mpteq2dv |
⊢ ( 𝑛 = ( 𝑓 ‘ 𝑖 ) → ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) = ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) |
204 |
203
|
oveq2d |
⊢ ( 𝑛 = ( 𝑓 ‘ 𝑖 ) → ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) = ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) |
205 |
204
|
mpteq2dv |
⊢ ( 𝑛 = ( 𝑓 ‘ 𝑖 ) → ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) ) |
206 |
205
|
eqeq2d |
⊢ ( 𝑛 = ( 𝑓 ‘ 𝑖 ) → ( ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) ↔ ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) ) ) |
207 |
206
|
ac6sfi |
⊢ ( ( 𝐼 ∈ Fin ∧ ∀ 𝑖 ∈ 𝐼 ∃ 𝑛 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑛 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) ) → ∃ 𝑓 ( 𝑓 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ∧ ∀ 𝑖 ∈ 𝐼 ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) ) ) |
208 |
5 197 207
|
syl2anc |
⊢ ( ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ 𝐼 ≠ ∅ ) ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) → ∃ 𝑓 ( 𝑓 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ∧ ∀ 𝑖 ∈ 𝐼 ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) ) ) |
209 |
|
uncf |
⊢ ( 𝑓 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) → uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) |
210 |
13 14
|
frlmfibas |
⊢ ( ( 𝑅 ∈ Field ∧ ( 𝐼 × 𝐼 ) ∈ Fin ) → ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) = ( Base ‘ ( 𝑅 freeLMod ( 𝐼 × 𝐼 ) ) ) ) |
211 |
12 210
|
sylan2 |
⊢ ( ( 𝑅 ∈ Field ∧ 𝐼 ∈ Fin ) → ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) = ( Base ‘ ( 𝑅 freeLMod ( 𝐼 × 𝐼 ) ) ) ) |
212 |
1 13
|
matbas |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝑅 ∈ Field ) → ( Base ‘ ( 𝑅 freeLMod ( 𝐼 × 𝐼 ) ) ) = ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) |
213 |
212
|
ancoms |
⊢ ( ( 𝑅 ∈ Field ∧ 𝐼 ∈ Fin ) → ( Base ‘ ( 𝑅 freeLMod ( 𝐼 × 𝐼 ) ) ) = ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) |
214 |
211 213
|
eqtrd |
⊢ ( ( 𝑅 ∈ Field ∧ 𝐼 ∈ Fin ) → ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) = ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) |
215 |
4 214
|
sylan2 |
⊢ ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) = ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) |
216 |
215
|
eleq2d |
⊢ ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( uncurry 𝑓 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) ↔ uncurry 𝑓 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ) |
217 |
|
elmapg |
⊢ ( ( ( Base ‘ 𝑅 ) ∈ V ∧ ( 𝐼 × 𝐼 ) ∈ Fin ) → ( uncurry 𝑓 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) ↔ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ) |
218 |
22 23 217
|
sylancr |
⊢ ( 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) → ( uncurry 𝑓 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) ↔ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ) |
219 |
218
|
adantl |
⊢ ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( uncurry 𝑓 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) ↔ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ) |
220 |
216 219
|
bitr3d |
⊢ ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( uncurry 𝑓 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ↔ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ) |
221 |
220
|
biimpar |
⊢ ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) → uncurry 𝑓 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) |
222 |
221
|
adantr |
⊢ ( ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ∧ ∀ 𝑖 ∈ 𝐼 ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) ) → uncurry 𝑓 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) |
223 |
|
nfv |
⊢ Ⅎ 𝑗 ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑖 ∈ 𝐼 ) |
224 |
|
nfmpt1 |
⊢ Ⅎ 𝑗 ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) |
225 |
224
|
nfeq2 |
⊢ Ⅎ 𝑗 ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) |
226 |
|
fveq1 |
⊢ ( ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) → ( ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) ‘ 𝑗 ) = ( ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) ‘ 𝑗 ) ) |
227 |
7 43
|
syl |
⊢ ( 𝑅 ∈ Field → 𝑅 ∈ Ring ) |
228 |
227 4
|
anim12i |
⊢ ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ) |
229 |
228
|
adantr |
⊢ ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) → ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ) |
230 |
|
equcom |
⊢ ( 𝑖 = 𝑗 ↔ 𝑗 = 𝑖 ) |
231 |
|
ifbi |
⊢ ( ( 𝑖 = 𝑗 ↔ 𝑗 = 𝑖 ) → if ( 𝑖 = 𝑗 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) = if ( 𝑗 = 𝑖 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
232 |
230 231
|
ax-mp |
⊢ if ( 𝑖 = 𝑗 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) = if ( 𝑗 = 𝑖 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) |
233 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
234 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
235 |
|
simpllr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) → 𝐼 ∈ Fin ) |
236 |
|
simplll |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) → 𝑅 ∈ Ring ) |
237 |
|
simplr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) → 𝑖 ∈ 𝐼 ) |
238 |
|
simpr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) → 𝑗 ∈ 𝐼 ) |
239 |
|
eqid |
⊢ ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) = ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) |
240 |
1 233 234 235 236 237 238 239
|
mat1ov |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) → ( 𝑖 ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑗 ) = if ( 𝑖 = 𝑗 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
241 |
|
df-3an |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ∧ 𝑖 ∈ 𝐼 ) ↔ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ 𝑖 ∈ 𝐼 ) ) |
242 |
44 233 234
|
uvcvval |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) → ( ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) ‘ 𝑗 ) = if ( 𝑗 = 𝑖 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
243 |
241 242
|
sylanbr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) → ( ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) ‘ 𝑗 ) = if ( 𝑗 = 𝑖 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
244 |
232 240 243
|
3eqtr4a |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) → ( 𝑖 ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑗 ) = ( ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) ‘ 𝑗 ) ) |
245 |
229 244
|
sylanl1 |
⊢ ( ( ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) → ( 𝑖 ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑗 ) = ( ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) ‘ 𝑗 ) ) |
246 |
|
ovex |
⊢ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ∈ V |
247 |
|
eqid |
⊢ ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) |
248 |
247
|
fvmpt2 |
⊢ ( ( 𝑗 ∈ 𝐼 ∧ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ∈ V ) → ( ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) ‘ 𝑗 ) = ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) |
249 |
246 248
|
mpan2 |
⊢ ( 𝑗 ∈ 𝐼 → ( ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) ‘ 𝑗 ) = ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) |
250 |
249
|
adantl |
⊢ ( ( ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) → ( ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) ‘ 𝑗 ) = ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) |
251 |
|
eqid |
⊢ ( 𝑅 maMul 〈 𝐼 , 𝐼 , 𝐼 〉 ) = ( 𝑅 maMul 〈 𝐼 , 𝐼 , 𝐼 〉 ) |
252 |
|
simp-4l |
⊢ ( ( ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) → 𝑅 ∈ Field ) |
253 |
4
|
ad4antlr |
⊢ ( ( ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) → 𝐼 ∈ Fin ) |
254 |
218
|
biimpar |
⊢ ( ( 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) → uncurry 𝑓 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) ) |
255 |
254
|
ad5ant23 |
⊢ ( ( ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) → uncurry 𝑓 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) ) |
256 |
|
simpr |
⊢ ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) |
257 |
256 215
|
eleqtrrd |
⊢ ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → 𝑀 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) ) |
258 |
257
|
ad3antrrr |
⊢ ( ( ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) → 𝑀 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) ) |
259 |
|
simplr |
⊢ ( ( ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) → 𝑖 ∈ 𝐼 ) |
260 |
|
simpr |
⊢ ( ( ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) → 𝑗 ∈ 𝐼 ) |
261 |
251 14 121 252 253 253 253 255 258 259 260
|
mamufv |
⊢ ( ( ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) → ( 𝑖 ( uncurry 𝑓 ( 𝑅 maMul 〈 𝐼 , 𝐼 , 𝐼 〉 ) 𝑀 ) 𝑗 ) = ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) |
262 |
1 251
|
matmulr |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝑅 ∈ Field ) → ( 𝑅 maMul 〈 𝐼 , 𝐼 , 𝐼 〉 ) = ( .r ‘ ( 𝐼 Mat 𝑅 ) ) ) |
263 |
262
|
ancoms |
⊢ ( ( 𝑅 ∈ Field ∧ 𝐼 ∈ Fin ) → ( 𝑅 maMul 〈 𝐼 , 𝐼 , 𝐼 〉 ) = ( .r ‘ ( 𝐼 Mat 𝑅 ) ) ) |
264 |
263
|
oveqd |
⊢ ( ( 𝑅 ∈ Field ∧ 𝐼 ∈ Fin ) → ( uncurry 𝑓 ( 𝑅 maMul 〈 𝐼 , 𝐼 , 𝐼 〉 ) 𝑀 ) = ( uncurry 𝑓 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) ) |
265 |
264
|
oveqd |
⊢ ( ( 𝑅 ∈ Field ∧ 𝐼 ∈ Fin ) → ( 𝑖 ( uncurry 𝑓 ( 𝑅 maMul 〈 𝐼 , 𝐼 , 𝐼 〉 ) 𝑀 ) 𝑗 ) = ( 𝑖 ( uncurry 𝑓 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) 𝑗 ) ) |
266 |
4 265
|
sylan2 |
⊢ ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( 𝑖 ( uncurry 𝑓 ( 𝑅 maMul 〈 𝐼 , 𝐼 , 𝐼 〉 ) 𝑀 ) 𝑗 ) = ( 𝑖 ( uncurry 𝑓 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) 𝑗 ) ) |
267 |
266
|
ad3antrrr |
⊢ ( ( ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) → ( 𝑖 ( uncurry 𝑓 ( 𝑅 maMul 〈 𝐼 , 𝐼 , 𝐼 〉 ) 𝑀 ) 𝑗 ) = ( 𝑖 ( uncurry 𝑓 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) 𝑗 ) ) |
268 |
250 261 267
|
3eqtr2rd |
⊢ ( ( ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) → ( 𝑖 ( uncurry 𝑓 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) 𝑗 ) = ( ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) ‘ 𝑗 ) ) |
269 |
245 268
|
eqeq12d |
⊢ ( ( ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) → ( ( 𝑖 ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑗 ) = ( 𝑖 ( uncurry 𝑓 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) 𝑗 ) ↔ ( ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) ‘ 𝑗 ) = ( ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) ‘ 𝑗 ) ) ) |
270 |
226 269
|
syl5ibr |
⊢ ( ( ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑗 ∈ 𝐼 ) → ( ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) → ( 𝑖 ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑗 ) = ( 𝑖 ( uncurry 𝑓 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) 𝑗 ) ) ) |
271 |
270
|
ex |
⊢ ( ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑗 ∈ 𝐼 → ( ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) → ( 𝑖 ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑗 ) = ( 𝑖 ( uncurry 𝑓 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) 𝑗 ) ) ) ) |
272 |
271
|
com23 |
⊢ ( ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑖 ∈ 𝐼 ) → ( ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) → ( 𝑗 ∈ 𝐼 → ( 𝑖 ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑗 ) = ( 𝑖 ( uncurry 𝑓 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) 𝑗 ) ) ) ) |
273 |
223 225 272
|
ralrimd |
⊢ ( ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ∧ 𝑖 ∈ 𝐼 ) → ( ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) → ∀ 𝑗 ∈ 𝐼 ( 𝑖 ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑗 ) = ( 𝑖 ( uncurry 𝑓 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) 𝑗 ) ) ) |
274 |
273
|
ralimdva |
⊢ ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) → ( ∀ 𝑖 ∈ 𝐼 ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) → ∀ 𝑖 ∈ 𝐼 ∀ 𝑗 ∈ 𝐼 ( 𝑖 ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑗 ) = ( 𝑖 ( uncurry 𝑓 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) 𝑗 ) ) ) |
275 |
1 2 239
|
mat1bas |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) → ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) |
276 |
13 14
|
frlmfibas |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐼 × 𝐼 ) ∈ Fin ) → ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) = ( Base ‘ ( 𝑅 freeLMod ( 𝐼 × 𝐼 ) ) ) ) |
277 |
12 276
|
sylan2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) → ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) = ( Base ‘ ( 𝑅 freeLMod ( 𝐼 × 𝐼 ) ) ) ) |
278 |
1 13
|
matbas |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( Base ‘ ( 𝑅 freeLMod ( 𝐼 × 𝐼 ) ) ) = ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) |
279 |
278
|
ancoms |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) → ( Base ‘ ( 𝑅 freeLMod ( 𝐼 × 𝐼 ) ) ) = ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) |
280 |
277 279
|
eqtrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) → ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) = ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) |
281 |
275 280
|
eleqtrrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) → ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) ) |
282 |
|
elmapfn |
⊢ ( ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) → ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) Fn ( 𝐼 × 𝐼 ) ) |
283 |
281 282
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ) → ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) Fn ( 𝐼 × 𝐼 ) ) |
284 |
227 4 283
|
syl2an |
⊢ ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) Fn ( 𝐼 × 𝐼 ) ) |
285 |
284
|
adantr |
⊢ ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) → ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) Fn ( 𝐼 × 𝐼 ) ) |
286 |
1
|
matring |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝐼 Mat 𝑅 ) ∈ Ring ) |
287 |
4 227 286
|
syl2anr |
⊢ ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( 𝐼 Mat 𝑅 ) ∈ Ring ) |
288 |
287
|
adantr |
⊢ ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) → ( 𝐼 Mat 𝑅 ) ∈ Ring ) |
289 |
|
simplr |
⊢ ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) → 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) |
290 |
|
eqid |
⊢ ( .r ‘ ( 𝐼 Mat 𝑅 ) ) = ( .r ‘ ( 𝐼 Mat 𝑅 ) ) |
291 |
2 290
|
ringcl |
⊢ ( ( ( 𝐼 Mat 𝑅 ) ∈ Ring ∧ uncurry 𝑓 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( uncurry 𝑓 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) |
292 |
288 221 289 291
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) → ( uncurry 𝑓 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) |
293 |
215
|
adantr |
⊢ ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) → ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) = ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) |
294 |
292 293
|
eleqtrrd |
⊢ ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) → ( uncurry 𝑓 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) ) |
295 |
|
elmapfn |
⊢ ( ( uncurry 𝑓 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 × 𝐼 ) ) → ( uncurry 𝑓 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) Fn ( 𝐼 × 𝐼 ) ) |
296 |
294 295
|
syl |
⊢ ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) → ( uncurry 𝑓 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) Fn ( 𝐼 × 𝐼 ) ) |
297 |
|
eqfnov2 |
⊢ ( ( ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) Fn ( 𝐼 × 𝐼 ) ∧ ( uncurry 𝑓 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) Fn ( 𝐼 × 𝐼 ) ) → ( ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) = ( uncurry 𝑓 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) ↔ ∀ 𝑖 ∈ 𝐼 ∀ 𝑗 ∈ 𝐼 ( 𝑖 ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑗 ) = ( 𝑖 ( uncurry 𝑓 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) 𝑗 ) ) ) |
298 |
285 296 297
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) → ( ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) = ( uncurry 𝑓 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) ↔ ∀ 𝑖 ∈ 𝐼 ∀ 𝑗 ∈ 𝐼 ( 𝑖 ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑗 ) = ( 𝑖 ( uncurry 𝑓 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) 𝑗 ) ) ) |
299 |
274 298
|
sylibrd |
⊢ ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) → ( ∀ 𝑖 ∈ 𝐼 ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) → ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) = ( uncurry 𝑓 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) ) ) |
300 |
299
|
imp |
⊢ ( ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ∧ ∀ 𝑖 ∈ 𝐼 ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) ) → ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) = ( uncurry 𝑓 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) ) |
301 |
300
|
eqcomd |
⊢ ( ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ∧ ∀ 𝑖 ∈ 𝐼 ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) ) → ( uncurry 𝑓 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) = ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) ) |
302 |
|
oveq1 |
⊢ ( 𝑛 = uncurry 𝑓 → ( 𝑛 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) = ( uncurry 𝑓 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) ) |
303 |
302
|
eqeq1d |
⊢ ( 𝑛 = uncurry 𝑓 → ( ( 𝑛 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) = ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) ↔ ( uncurry 𝑓 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) = ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) ) ) |
304 |
303
|
rspcev |
⊢ ( ( uncurry 𝑓 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ∧ ( uncurry 𝑓 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) = ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) ) → ∃ 𝑛 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ( 𝑛 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) = ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) ) |
305 |
222 301 304
|
syl2anc |
⊢ ( ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ) ∧ ∀ 𝑖 ∈ 𝐼 ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) ) → ∃ 𝑛 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ( 𝑛 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) = ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) ) |
306 |
305
|
expl |
⊢ ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( ( uncurry 𝑓 : ( 𝐼 × 𝐼 ) ⟶ ( Base ‘ 𝑅 ) ∧ ∀ 𝑖 ∈ 𝐼 ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) ) → ∃ 𝑛 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ( 𝑛 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) = ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) ) ) |
307 |
209 306
|
sylani |
⊢ ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( ( 𝑓 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ∧ ∀ 𝑖 ∈ 𝐼 ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) ) → ∃ 𝑛 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ( 𝑛 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) = ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) ) ) |
308 |
307
|
exlimdv |
⊢ ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( ∃ 𝑓 ( 𝑓 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ∧ ∀ 𝑖 ∈ 𝐼 ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) ) → ∃ 𝑛 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ( 𝑛 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) = ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) ) ) |
309 |
308
|
imp |
⊢ ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ ∃ 𝑓 ( 𝑓 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ∧ ∀ 𝑖 ∈ 𝐼 ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) ) ) → ∃ 𝑛 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ( 𝑛 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) = ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) ) |
310 |
309
|
adantlr |
⊢ ( ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ 𝐼 ≠ ∅ ) ∧ ∃ 𝑓 ( 𝑓 : 𝐼 ⟶ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ∧ ∀ 𝑖 ∈ 𝐼 ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑖 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑖 uncurry 𝑓 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑀 𝑗 ) ) ) ) ) ) ) → ∃ 𝑛 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ( 𝑛 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) = ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) ) |
311 |
208 310
|
syldan |
⊢ ( ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ 𝐼 ≠ ∅ ) ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) → ∃ 𝑛 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ( 𝑛 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) = ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) ) |
312 |
6
|
simprbi |
⊢ ( 𝑅 ∈ Field → 𝑅 ∈ CRing ) |
313 |
|
eqid |
⊢ ( 𝐼 maDet 𝑅 ) = ( 𝐼 maDet 𝑅 ) |
314 |
313 1 2 14
|
mdetcl |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ∈ ( Base ‘ 𝑅 ) ) |
315 |
313 1 2 14
|
mdetcl |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( ( 𝐼 maDet 𝑅 ) ‘ 𝑛 ) ∈ ( Base ‘ 𝑅 ) ) |
316 |
|
eqid |
⊢ ( ∥r ‘ 𝑅 ) = ( ∥r ‘ 𝑅 ) |
317 |
14 316 121
|
dvdsrmul |
⊢ ( ( ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝐼 maDet 𝑅 ) ‘ 𝑛 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ( ∥r ‘ 𝑅 ) ( ( ( 𝐼 maDet 𝑅 ) ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ) ) |
318 |
314 315 317
|
syl2an |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ) → ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ( ∥r ‘ 𝑅 ) ( ( ( 𝐼 maDet 𝑅 ) ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ) ) |
319 |
318
|
anandis |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ∧ 𝑛 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ) → ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ( ∥r ‘ 𝑅 ) ( ( ( 𝐼 maDet 𝑅 ) ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ) ) |
320 |
319
|
anassrs |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ 𝑛 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ( ∥r ‘ 𝑅 ) ( ( ( 𝐼 maDet 𝑅 ) ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ) ) |
321 |
320
|
adantrr |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ ( 𝑛 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ∧ ( 𝑛 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) = ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) ) ) → ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ( ∥r ‘ 𝑅 ) ( ( ( 𝐼 maDet 𝑅 ) ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ) ) |
322 |
|
fveq2 |
⊢ ( ( 𝑛 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) = ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) → ( ( 𝐼 maDet 𝑅 ) ‘ ( 𝑛 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) ) = ( ( 𝐼 maDet 𝑅 ) ‘ ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) ) ) |
323 |
1 2 313 121 290
|
mdetmul |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( ( 𝐼 maDet 𝑅 ) ‘ ( 𝑛 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) ) = ( ( ( 𝐼 maDet 𝑅 ) ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ) ) |
324 |
323
|
3expa |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( ( 𝐼 maDet 𝑅 ) ‘ ( 𝑛 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) ) = ( ( ( 𝐼 maDet 𝑅 ) ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ) ) |
325 |
324
|
an32s |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ 𝑛 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( ( 𝐼 maDet 𝑅 ) ‘ ( 𝑛 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) ) = ( ( ( 𝐼 maDet 𝑅 ) ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ) ) |
326 |
313 1 239 233
|
mdet1 |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ Fin ) → ( ( 𝐼 maDet 𝑅 ) ‘ ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) ) = ( 1r ‘ 𝑅 ) ) |
327 |
4 326
|
sylan2 |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( ( 𝐼 maDet 𝑅 ) ‘ ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) ) = ( 1r ‘ 𝑅 ) ) |
328 |
327
|
adantr |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ 𝑛 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( ( 𝐼 maDet 𝑅 ) ‘ ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) ) = ( 1r ‘ 𝑅 ) ) |
329 |
325 328
|
eqeq12d |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ 𝑛 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( ( ( 𝐼 maDet 𝑅 ) ‘ ( 𝑛 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) ) = ( ( 𝐼 maDet 𝑅 ) ‘ ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) ) ↔ ( ( ( 𝐼 maDet 𝑅 ) ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ) = ( 1r ‘ 𝑅 ) ) ) |
330 |
322 329
|
syl5ib |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ 𝑛 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) → ( ( 𝑛 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) = ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) → ( ( ( 𝐼 maDet 𝑅 ) ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ) = ( 1r ‘ 𝑅 ) ) ) |
331 |
330
|
impr |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ ( 𝑛 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ∧ ( 𝑛 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) = ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) ) ) → ( ( ( 𝐼 maDet 𝑅 ) ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ) = ( 1r ‘ 𝑅 ) ) |
332 |
331
|
breq2d |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ ( 𝑛 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ∧ ( 𝑛 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) = ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) ) ) → ( ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ( ∥r ‘ 𝑅 ) ( ( ( 𝐼 maDet 𝑅 ) ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ) ↔ ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) |
333 |
|
eqid |
⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) |
334 |
333 233 316
|
crngunit |
⊢ ( 𝑅 ∈ CRing → ( ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ∈ ( Unit ‘ 𝑅 ) ↔ ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) |
335 |
334
|
ad2antrr |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ ( 𝑛 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ∧ ( 𝑛 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) = ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) ) ) → ( ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ∈ ( Unit ‘ 𝑅 ) ↔ ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) |
336 |
332 335
|
bitr4d |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ ( 𝑛 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ∧ ( 𝑛 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) = ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) ) ) → ( ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ( ∥r ‘ 𝑅 ) ( ( ( 𝐼 maDet 𝑅 ) ‘ 𝑛 ) ( .r ‘ 𝑅 ) ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ) ↔ ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ∈ ( Unit ‘ 𝑅 ) ) ) |
337 |
321 336
|
mpbid |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ ( 𝑛 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ∧ ( 𝑛 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) = ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) ) ) → ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ∈ ( Unit ‘ 𝑅 ) ) |
338 |
312 337
|
sylanl1 |
⊢ ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ ( 𝑛 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ∧ ( 𝑛 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) = ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) ) ) → ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ∈ ( Unit ‘ 𝑅 ) ) |
339 |
338
|
ad4ant14 |
⊢ ( ( ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ 𝐼 ≠ ∅ ) ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) ∧ ( 𝑛 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ∧ ( 𝑛 ( .r ‘ ( 𝐼 Mat 𝑅 ) ) 𝑀 ) = ( 1r ‘ ( 𝐼 Mat 𝑅 ) ) ) ) → ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ∈ ( Unit ‘ 𝑅 ) ) |
340 |
311 339
|
rexlimddv |
⊢ ( ( ( ( 𝑅 ∈ Field ∧ 𝑀 ∈ ( Base ‘ ( 𝐼 Mat 𝑅 ) ) ) ∧ 𝐼 ≠ ∅ ) ∧ curry 𝑀 LIndF ( 𝑅 freeLMod 𝐼 ) ) → ( ( 𝐼 maDet 𝑅 ) ‘ 𝑀 ) ∈ ( Unit ‘ 𝑅 ) ) |