Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|
2 |
|
eqid |
|
3 |
1 2
|
matrcl |
|
4 |
3
|
simpld |
|
5 |
4
|
ad3antlr |
|
6 |
|
isfld |
|
7 |
6
|
simplbi |
|
8 |
7
|
anim1i |
|
9 |
4
|
ad2antrl |
|
10 |
|
simpr |
|
11 |
|
xpfi |
|
12 |
11
|
anidms |
|
13 |
|
eqid |
|
14 |
|
eqid |
|
15 |
13 14
|
frlmfibas |
|
16 |
12 15
|
sylan2 |
|
17 |
1 13
|
matbas |
|
18 |
17
|
ancoms |
|
19 |
16 18
|
eqtrd |
|
20 |
19
|
eleq2d |
|
21 |
4 20
|
sylan2 |
|
22 |
|
fvex |
|
23 |
4 4 11
|
syl2anc |
|
24 |
|
elmapg |
|
25 |
22 23 24
|
sylancr |
|
26 |
25
|
adantl |
|
27 |
21 26
|
bitr3d |
|
28 |
10 27
|
mpbid |
|
29 |
28
|
adantrr |
|
30 |
|
eldifsn |
|
31 |
30
|
biimpri |
|
32 |
4 31
|
sylan |
|
33 |
32
|
adantl |
|
34 |
|
curf |
|
35 |
22 34
|
mp3an3 |
|
36 |
29 33 35
|
syl2anc |
|
37 |
9 36
|
jca |
|
38 |
37
|
ex |
|
39 |
38
|
imdistani |
|
40 |
39
|
anassrs |
|
41 |
|
anass |
|
42 |
40 41
|
sylibr |
|
43 |
|
drngring |
|
44 |
|
eqid |
|
45 |
|
eqid |
|
46 |
|
eqid |
|
47 |
44 45 46
|
uvcff |
|
48 |
43 47
|
sylan |
|
49 |
48
|
ffvelrnda |
|
50 |
49
|
ad4ant14 |
|
51 |
|
ffn |
|
52 |
|
fnima |
|
53 |
51 52
|
syl |
|
54 |
53
|
adantl |
|
55 |
54
|
fveq2d |
|
56 |
55
|
adantr |
|
57 |
|
simplll |
|
58 |
|
simpllr |
|
59 |
45
|
frlmlmod |
|
60 |
43 59
|
sylan |
|
61 |
60
|
adantr |
|
62 |
|
lindfrn |
|
63 |
61 62
|
sylan |
|
64 |
45
|
frlmsca |
|
65 |
|
drngnzr |
|
66 |
65
|
adantr |
|
67 |
64 66
|
eqeltrrd |
|
68 |
60 67
|
jca |
|
69 |
|
eqid |
|
70 |
46 69
|
lindff1 |
|
71 |
70
|
3expa |
|
72 |
68 71
|
sylan |
|
73 |
|
fdm |
|
74 |
|
f1eq2 |
|
75 |
74
|
biimpac |
|
76 |
72 73 75
|
syl2an |
|
77 |
76
|
an32s |
|
78 |
|
f1f1orn |
|
79 |
77 78
|
syl |
|
80 |
|
f1oeng |
|
81 |
58 79 80
|
syl2anc |
|
82 |
81
|
ensymd |
|
83 |
|
lindsenlbs |
|
84 |
57 58 63 82 83
|
syl31anc |
|
85 |
|
eqid |
|
86 |
|
eqid |
|
87 |
46 85 86
|
lbssp |
|
88 |
84 87
|
syl |
|
89 |
56 88
|
eqtrd |
|
90 |
89
|
adantr |
|
91 |
50 90
|
eleqtrrd |
|
92 |
|
eqid |
|
93 |
|
eqid |
|
94 |
|
eqid |
|
95 |
45 14
|
frlmfibas |
|
96 |
95
|
feq3d |
|
97 |
96
|
biimpa |
|
98 |
59
|
adantr |
|
99 |
|
simplr |
|
100 |
86 46 92 69 93 94 97 98 99
|
elfilspd |
|
101 |
45
|
frlmsca |
|
102 |
101
|
fveq2d |
|
103 |
102
|
oveq1d |
|
104 |
103
|
adantr |
|
105 |
|
elmapi |
|
106 |
|
ffn |
|
107 |
106
|
adantl |
|
108 |
51
|
ad2antlr |
|
109 |
|
simpllr |
|
110 |
|
inidm |
|
111 |
|
eqidd |
|
112 |
|
eqidd |
|
113 |
107 108 109 109 110 111 112
|
offval |
|
114 |
|
simp-4r |
|
115 |
|
ffvelrn |
|
116 |
115
|
adantll |
|
117 |
|
ffvelrn |
|
118 |
117
|
ad4ant24 |
|
119 |
95
|
ad3antrrr |
|
120 |
118 119
|
eleqtrd |
|
121 |
|
eqid |
|
122 |
45 46 14 114 116 120 94 121
|
frlmvscafval |
|
123 |
|
fvex |
|
124 |
|
fnconstg |
|
125 |
123 124
|
mp1i |
|
126 |
|
elmapfn |
|
127 |
117 126
|
syl |
|
128 |
127
|
ad4ant24 |
|
129 |
123
|
fvconst2 |
|
130 |
129
|
adantl |
|
131 |
|
eqidd |
|
132 |
125 128 114 114 110 130 131
|
offval |
|
133 |
122 132
|
eqtrd |
|
134 |
133
|
mpteq2dva |
|
135 |
113 134
|
eqtrd |
|
136 |
135
|
oveq2d |
|
137 |
|
eqid |
|
138 |
|
simplll |
|
139 |
|
simp-5l |
|
140 |
115
|
ad4ant23 |
|
141 |
|
simplr |
|
142 |
|
elmapi |
|
143 |
117 142
|
syl |
|
144 |
143
|
ffvelrnda |
|
145 |
141 144
|
sylanl1 |
|
146 |
14 121
|
ringcl |
|
147 |
139 140 145 146
|
syl3anc |
|
148 |
147
|
fmpttd |
|
149 |
|
elmapg |
|
150 |
22 149
|
mpan |
|
151 |
150
|
adantl |
|
152 |
95
|
eleq2d |
|
153 |
151 152
|
bitr3d |
|
154 |
153
|
ad3antrrr |
|
155 |
148 154
|
mpbid |
|
156 |
|
mptexg |
|
157 |
156
|
ralrimivw |
|
158 |
|
eqid |
|
159 |
158
|
fnmpt |
|
160 |
157 159
|
syl |
|
161 |
|
id |
|
162 |
|
fvexd |
|
163 |
160 161 162
|
fndmfifsupp |
|
164 |
163
|
ad3antlr |
|
165 |
45 46 137 109 109 138 155 164
|
frlmgsum |
|
166 |
136 165
|
eqtr2d |
|
167 |
105 166
|
sylan2 |
|
168 |
167
|
eqeq2d |
|
169 |
104 168
|
rexeqbidva |
|
170 |
100 169
|
bitr4d |
|
171 |
43 170
|
sylanl1 |
|
172 |
171
|
ad2antrr |
|
173 |
91 172
|
mpbid |
|
174 |
173
|
ralrimiva |
|
175 |
42 174
|
sylan |
|
176 |
10 21
|
mpbird |
|
177 |
|
elmapfn |
|
178 |
176 177
|
syl |
|
179 |
4
|
adantl |
|
180 |
|
an32 |
|
181 |
|
df-3an |
|
182 |
180 181
|
bitr4i |
|
183 |
|
curfv |
|
184 |
182 183
|
sylanb |
|
185 |
184
|
an32s |
|
186 |
185
|
oveq2d |
|
187 |
186
|
mpteq2dva |
|
188 |
187
|
an32s |
|
189 |
188
|
oveq2d |
|
190 |
189
|
mpteq2dva |
|
191 |
190
|
eqeq2d |
|
192 |
191
|
rexbidv |
|
193 |
192
|
ralbidv |
|
194 |
178 179 193
|
syl2anc |
|
195 |
194
|
ad2antrr |
|
196 |
175 195
|
mpbid |
|
197 |
8 196
|
sylanl1 |
|
198 |
|
fveq1 |
|
199 |
|
uncov |
|
200 |
199
|
el2v |
|
201 |
198 200
|
eqtr4di |
|
202 |
201
|
oveq1d |
|
203 |
202
|
mpteq2dv |
|
204 |
203
|
oveq2d |
|
205 |
204
|
mpteq2dv |
|
206 |
205
|
eqeq2d |
|
207 |
206
|
ac6sfi |
|
208 |
5 197 207
|
syl2anc |
|
209 |
|
uncf |
|
210 |
13 14
|
frlmfibas |
|
211 |
12 210
|
sylan2 |
|
212 |
1 13
|
matbas |
|
213 |
212
|
ancoms |
|
214 |
211 213
|
eqtrd |
|
215 |
4 214
|
sylan2 |
|
216 |
215
|
eleq2d |
|
217 |
|
elmapg |
|
218 |
22 23 217
|
sylancr |
|
219 |
218
|
adantl |
|
220 |
216 219
|
bitr3d |
|
221 |
220
|
biimpar |
|
222 |
221
|
adantr |
|
223 |
|
nfv |
|
224 |
|
nfmpt1 |
|
225 |
224
|
nfeq2 |
|
226 |
|
fveq1 |
|
227 |
7 43
|
syl |
|
228 |
227 4
|
anim12i |
|
229 |
228
|
adantr |
|
230 |
|
equcom |
|
231 |
|
ifbi |
|
232 |
230 231
|
ax-mp |
|
233 |
|
eqid |
|
234 |
|
eqid |
|
235 |
|
simpllr |
|
236 |
|
simplll |
|
237 |
|
simplr |
|
238 |
|
simpr |
|
239 |
|
eqid |
|
240 |
1 233 234 235 236 237 238 239
|
mat1ov |
|
241 |
|
df-3an |
|
242 |
44 233 234
|
uvcvval |
|
243 |
241 242
|
sylanbr |
|
244 |
232 240 243
|
3eqtr4a |
|
245 |
229 244
|
sylanl1 |
|
246 |
|
ovex |
|
247 |
|
eqid |
|
248 |
247
|
fvmpt2 |
|
249 |
246 248
|
mpan2 |
|
250 |
249
|
adantl |
|
251 |
|
eqid |
|
252 |
|
simp-4l |
|
253 |
4
|
ad4antlr |
|
254 |
218
|
biimpar |
|
255 |
254
|
ad5ant23 |
|
256 |
|
simpr |
|
257 |
256 215
|
eleqtrrd |
|
258 |
257
|
ad3antrrr |
|
259 |
|
simplr |
|
260 |
|
simpr |
|
261 |
251 14 121 252 253 253 253 255 258 259 260
|
mamufv |
|
262 |
1 251
|
matmulr |
|
263 |
262
|
ancoms |
|
264 |
263
|
oveqd |
|
265 |
264
|
oveqd |
|
266 |
4 265
|
sylan2 |
|
267 |
266
|
ad3antrrr |
|
268 |
250 261 267
|
3eqtr2rd |
|
269 |
245 268
|
eqeq12d |
|
270 |
226 269
|
syl5ibr |
|
271 |
270
|
ex |
|
272 |
271
|
com23 |
|
273 |
223 225 272
|
ralrimd |
|
274 |
273
|
ralimdva |
|
275 |
1 2 239
|
mat1bas |
|
276 |
13 14
|
frlmfibas |
|
277 |
12 276
|
sylan2 |
|
278 |
1 13
|
matbas |
|
279 |
278
|
ancoms |
|
280 |
277 279
|
eqtrd |
|
281 |
275 280
|
eleqtrrd |
|
282 |
|
elmapfn |
|
283 |
281 282
|
syl |
|
284 |
227 4 283
|
syl2an |
|
285 |
284
|
adantr |
|
286 |
1
|
matring |
|
287 |
4 227 286
|
syl2anr |
|
288 |
287
|
adantr |
|
289 |
|
simplr |
|
290 |
|
eqid |
|
291 |
2 290
|
ringcl |
|
292 |
288 221 289 291
|
syl3anc |
|
293 |
215
|
adantr |
|
294 |
292 293
|
eleqtrrd |
|
295 |
|
elmapfn |
|
296 |
294 295
|
syl |
|
297 |
|
eqfnov2 |
|
298 |
285 296 297
|
syl2anc |
|
299 |
274 298
|
sylibrd |
|
300 |
299
|
imp |
|
301 |
300
|
eqcomd |
|
302 |
|
oveq1 |
|
303 |
302
|
eqeq1d |
|
304 |
303
|
rspcev |
|
305 |
222 301 304
|
syl2anc |
|
306 |
305
|
expl |
|
307 |
209 306
|
sylani |
|
308 |
307
|
exlimdv |
|
309 |
308
|
imp |
|
310 |
309
|
adantlr |
|
311 |
208 310
|
syldan |
|
312 |
6
|
simprbi |
|
313 |
|
eqid |
|
314 |
313 1 2 14
|
mdetcl |
|
315 |
313 1 2 14
|
mdetcl |
|
316 |
|
eqid |
|
317 |
14 316 121
|
dvdsrmul |
|
318 |
314 315 317
|
syl2an |
|
319 |
318
|
anandis |
|
320 |
319
|
anassrs |
|
321 |
320
|
adantrr |
|
322 |
|
fveq2 |
|
323 |
1 2 313 121 290
|
mdetmul |
|
324 |
323
|
3expa |
|
325 |
324
|
an32s |
|
326 |
313 1 239 233
|
mdet1 |
|
327 |
4 326
|
sylan2 |
|
328 |
327
|
adantr |
|
329 |
325 328
|
eqeq12d |
|
330 |
322 329
|
syl5ib |
|
331 |
330
|
impr |
|
332 |
331
|
breq2d |
|
333 |
|
eqid |
|
334 |
333 233 316
|
crngunit |
|
335 |
334
|
ad2antrr |
|
336 |
332 335
|
bitr4d |
|
337 |
321 336
|
mpbid |
|
338 |
312 337
|
sylanl1 |
|
339 |
338
|
ad4ant14 |
|
340 |
311 339
|
rexlimddv |
|