| Step |
Hyp |
Ref |
Expression |
| 1 |
|
naddunif.1 |
⊢ ( 𝜑 → 𝐴 ∈ On ) |
| 2 |
|
naddunif.2 |
⊢ ( 𝜑 → 𝐵 ∈ On ) |
| 3 |
|
naddunif.3 |
⊢ ( 𝜑 → 𝐴 = ∩ { 𝑥 ∈ On ∣ 𝑋 ⊆ 𝑥 } ) |
| 4 |
|
naddunif.4 |
⊢ ( 𝜑 → 𝐵 = ∩ { 𝑦 ∈ On ∣ 𝑌 ⊆ 𝑦 } ) |
| 5 |
|
naddov3 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +no 𝐵 ) = ∩ { 𝑤 ∈ On ∣ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ⊆ 𝑤 } ) |
| 6 |
1 2 5
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 +no 𝐵 ) = ∩ { 𝑤 ∈ On ∣ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ⊆ 𝑤 } ) |
| 7 |
|
naddfn |
⊢ +no Fn ( On × On ) |
| 8 |
|
fnfun |
⊢ ( +no Fn ( On × On ) → Fun +no ) |
| 9 |
7 8
|
ax-mp |
⊢ Fun +no |
| 10 |
|
snex |
⊢ { 𝐴 } ∈ V |
| 11 |
|
xpexg |
⊢ ( ( { 𝐴 } ∈ V ∧ 𝐵 ∈ On ) → ( { 𝐴 } × 𝐵 ) ∈ V ) |
| 12 |
10 2 11
|
sylancr |
⊢ ( 𝜑 → ( { 𝐴 } × 𝐵 ) ∈ V ) |
| 13 |
|
funimaexg |
⊢ ( ( Fun +no ∧ ( { 𝐴 } × 𝐵 ) ∈ V ) → ( +no “ ( { 𝐴 } × 𝐵 ) ) ∈ V ) |
| 14 |
9 12 13
|
sylancr |
⊢ ( 𝜑 → ( +no “ ( { 𝐴 } × 𝐵 ) ) ∈ V ) |
| 15 |
|
imassrn |
⊢ ( +no “ ( { 𝐴 } × 𝐵 ) ) ⊆ ran +no |
| 16 |
|
naddf |
⊢ +no : ( On × On ) ⟶ On |
| 17 |
|
frn |
⊢ ( +no : ( On × On ) ⟶ On → ran +no ⊆ On ) |
| 18 |
16 17
|
ax-mp |
⊢ ran +no ⊆ On |
| 19 |
15 18
|
sstri |
⊢ ( +no “ ( { 𝐴 } × 𝐵 ) ) ⊆ On |
| 20 |
19
|
a1i |
⊢ ( 𝜑 → ( +no “ ( { 𝐴 } × 𝐵 ) ) ⊆ On ) |
| 21 |
14 20
|
elpwd |
⊢ ( 𝜑 → ( +no “ ( { 𝐴 } × 𝐵 ) ) ∈ 𝒫 On ) |
| 22 |
|
snex |
⊢ { 𝐵 } ∈ V |
| 23 |
|
xpexg |
⊢ ( ( 𝐴 ∈ On ∧ { 𝐵 } ∈ V ) → ( 𝐴 × { 𝐵 } ) ∈ V ) |
| 24 |
1 22 23
|
sylancl |
⊢ ( 𝜑 → ( 𝐴 × { 𝐵 } ) ∈ V ) |
| 25 |
|
funimaexg |
⊢ ( ( Fun +no ∧ ( 𝐴 × { 𝐵 } ) ∈ V ) → ( +no “ ( 𝐴 × { 𝐵 } ) ) ∈ V ) |
| 26 |
9 24 25
|
sylancr |
⊢ ( 𝜑 → ( +no “ ( 𝐴 × { 𝐵 } ) ) ∈ V ) |
| 27 |
|
imassrn |
⊢ ( +no “ ( 𝐴 × { 𝐵 } ) ) ⊆ ran +no |
| 28 |
27 18
|
sstri |
⊢ ( +no “ ( 𝐴 × { 𝐵 } ) ) ⊆ On |
| 29 |
28
|
a1i |
⊢ ( 𝜑 → ( +no “ ( 𝐴 × { 𝐵 } ) ) ⊆ On ) |
| 30 |
26 29
|
elpwd |
⊢ ( 𝜑 → ( +no “ ( 𝐴 × { 𝐵 } ) ) ∈ 𝒫 On ) |
| 31 |
|
pwuncl |
⊢ ( ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∈ 𝒫 On ∧ ( +no “ ( 𝐴 × { 𝐵 } ) ) ∈ 𝒫 On ) → ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ∈ 𝒫 On ) |
| 32 |
21 30 31
|
syl2anc |
⊢ ( 𝜑 → ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ∈ 𝒫 On ) |
| 33 |
3 1
|
eqeltrrd |
⊢ ( 𝜑 → ∩ { 𝑥 ∈ On ∣ 𝑋 ⊆ 𝑥 } ∈ On ) |
| 34 |
|
onintrab2 |
⊢ ( ∃ 𝑥 ∈ On 𝑋 ⊆ 𝑥 ↔ ∩ { 𝑥 ∈ On ∣ 𝑋 ⊆ 𝑥 } ∈ On ) |
| 35 |
33 34
|
sylibr |
⊢ ( 𝜑 → ∃ 𝑥 ∈ On 𝑋 ⊆ 𝑥 ) |
| 36 |
|
vex |
⊢ 𝑥 ∈ V |
| 37 |
36
|
ssex |
⊢ ( 𝑋 ⊆ 𝑥 → 𝑋 ∈ V ) |
| 38 |
37
|
rexlimivw |
⊢ ( ∃ 𝑥 ∈ On 𝑋 ⊆ 𝑥 → 𝑋 ∈ V ) |
| 39 |
35 38
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ V ) |
| 40 |
|
xpexg |
⊢ ( ( 𝑋 ∈ V ∧ { 𝐵 } ∈ V ) → ( 𝑋 × { 𝐵 } ) ∈ V ) |
| 41 |
39 22 40
|
sylancl |
⊢ ( 𝜑 → ( 𝑋 × { 𝐵 } ) ∈ V ) |
| 42 |
|
funimaexg |
⊢ ( ( Fun +no ∧ ( 𝑋 × { 𝐵 } ) ∈ V ) → ( +no “ ( 𝑋 × { 𝐵 } ) ) ∈ V ) |
| 43 |
9 41 42
|
sylancr |
⊢ ( 𝜑 → ( +no “ ( 𝑋 × { 𝐵 } ) ) ∈ V ) |
| 44 |
|
imassrn |
⊢ ( +no “ ( 𝑋 × { 𝐵 } ) ) ⊆ ran +no |
| 45 |
44 18
|
sstri |
⊢ ( +no “ ( 𝑋 × { 𝐵 } ) ) ⊆ On |
| 46 |
45
|
a1i |
⊢ ( 𝜑 → ( +no “ ( 𝑋 × { 𝐵 } ) ) ⊆ On ) |
| 47 |
43 46
|
elpwd |
⊢ ( 𝜑 → ( +no “ ( 𝑋 × { 𝐵 } ) ) ∈ 𝒫 On ) |
| 48 |
4 2
|
eqeltrrd |
⊢ ( 𝜑 → ∩ { 𝑦 ∈ On ∣ 𝑌 ⊆ 𝑦 } ∈ On ) |
| 49 |
|
onintrab2 |
⊢ ( ∃ 𝑦 ∈ On 𝑌 ⊆ 𝑦 ↔ ∩ { 𝑦 ∈ On ∣ 𝑌 ⊆ 𝑦 } ∈ On ) |
| 50 |
48 49
|
sylibr |
⊢ ( 𝜑 → ∃ 𝑦 ∈ On 𝑌 ⊆ 𝑦 ) |
| 51 |
|
vex |
⊢ 𝑦 ∈ V |
| 52 |
51
|
ssex |
⊢ ( 𝑌 ⊆ 𝑦 → 𝑌 ∈ V ) |
| 53 |
52
|
rexlimivw |
⊢ ( ∃ 𝑦 ∈ On 𝑌 ⊆ 𝑦 → 𝑌 ∈ V ) |
| 54 |
50 53
|
syl |
⊢ ( 𝜑 → 𝑌 ∈ V ) |
| 55 |
|
xpexg |
⊢ ( ( { 𝐴 } ∈ V ∧ 𝑌 ∈ V ) → ( { 𝐴 } × 𝑌 ) ∈ V ) |
| 56 |
10 54 55
|
sylancr |
⊢ ( 𝜑 → ( { 𝐴 } × 𝑌 ) ∈ V ) |
| 57 |
|
funimaexg |
⊢ ( ( Fun +no ∧ ( { 𝐴 } × 𝑌 ) ∈ V ) → ( +no “ ( { 𝐴 } × 𝑌 ) ) ∈ V ) |
| 58 |
9 56 57
|
sylancr |
⊢ ( 𝜑 → ( +no “ ( { 𝐴 } × 𝑌 ) ) ∈ V ) |
| 59 |
|
imassrn |
⊢ ( +no “ ( { 𝐴 } × 𝑌 ) ) ⊆ ran +no |
| 60 |
59 18
|
sstri |
⊢ ( +no “ ( { 𝐴 } × 𝑌 ) ) ⊆ On |
| 61 |
60
|
a1i |
⊢ ( 𝜑 → ( +no “ ( { 𝐴 } × 𝑌 ) ) ⊆ On ) |
| 62 |
58 61
|
elpwd |
⊢ ( 𝜑 → ( +no “ ( { 𝐴 } × 𝑌 ) ) ∈ 𝒫 On ) |
| 63 |
|
pwuncl |
⊢ ( ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∈ 𝒫 On ∧ ( +no “ ( { 𝐴 } × 𝑌 ) ) ∈ 𝒫 On ) → ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ∈ 𝒫 On ) |
| 64 |
47 62 63
|
syl2anc |
⊢ ( 𝜑 → ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ∈ 𝒫 On ) |
| 65 |
2 4
|
cofonr |
⊢ ( 𝜑 → ∀ 𝑞 ∈ 𝐵 ∃ 𝑠 ∈ 𝑌 𝑞 ⊆ 𝑠 ) |
| 66 |
|
onss |
⊢ ( 𝐵 ∈ On → 𝐵 ⊆ On ) |
| 67 |
2 66
|
syl |
⊢ ( 𝜑 → 𝐵 ⊆ On ) |
| 68 |
67
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐵 ) → 𝑞 ∈ On ) |
| 69 |
68
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑠 ∈ 𝑌 ) → 𝑞 ∈ On ) |
| 70 |
|
onss |
⊢ ( 𝑦 ∈ On → 𝑦 ⊆ On ) |
| 71 |
70
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ On ) → 𝑦 ⊆ On ) |
| 72 |
|
sstr |
⊢ ( ( 𝑌 ⊆ 𝑦 ∧ 𝑦 ⊆ On ) → 𝑌 ⊆ On ) |
| 73 |
72
|
expcom |
⊢ ( 𝑦 ⊆ On → ( 𝑌 ⊆ 𝑦 → 𝑌 ⊆ On ) ) |
| 74 |
71 73
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ On ) → ( 𝑌 ⊆ 𝑦 → 𝑌 ⊆ On ) ) |
| 75 |
74
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ On 𝑌 ⊆ 𝑦 → 𝑌 ⊆ On ) ) |
| 76 |
50 75
|
mpd |
⊢ ( 𝜑 → 𝑌 ⊆ On ) |
| 77 |
76
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐵 ) → 𝑌 ⊆ On ) |
| 78 |
77
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑠 ∈ 𝑌 ) → 𝑠 ∈ On ) |
| 79 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑠 ∈ 𝑌 ) → 𝐴 ∈ On ) |
| 80 |
|
naddss2 |
⊢ ( ( 𝑞 ∈ On ∧ 𝑠 ∈ On ∧ 𝐴 ∈ On ) → ( 𝑞 ⊆ 𝑠 ↔ ( 𝐴 +no 𝑞 ) ⊆ ( 𝐴 +no 𝑠 ) ) ) |
| 81 |
69 78 79 80
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝐵 ) ∧ 𝑠 ∈ 𝑌 ) → ( 𝑞 ⊆ 𝑠 ↔ ( 𝐴 +no 𝑞 ) ⊆ ( 𝐴 +no 𝑠 ) ) ) |
| 82 |
81
|
rexbidva |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐵 ) → ( ∃ 𝑠 ∈ 𝑌 𝑞 ⊆ 𝑠 ↔ ∃ 𝑠 ∈ 𝑌 ( 𝐴 +no 𝑞 ) ⊆ ( 𝐴 +no 𝑠 ) ) ) |
| 83 |
82
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑞 ∈ 𝐵 ∃ 𝑠 ∈ 𝑌 𝑞 ⊆ 𝑠 ↔ ∀ 𝑞 ∈ 𝐵 ∃ 𝑠 ∈ 𝑌 ( 𝐴 +no 𝑞 ) ⊆ ( 𝐴 +no 𝑠 ) ) ) |
| 84 |
65 83
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑞 ∈ 𝐵 ∃ 𝑠 ∈ 𝑌 ( 𝐴 +no 𝑞 ) ⊆ ( 𝐴 +no 𝑠 ) ) |
| 85 |
1
|
snssd |
⊢ ( 𝜑 → { 𝐴 } ⊆ On ) |
| 86 |
|
xpss12 |
⊢ ( ( { 𝐴 } ⊆ On ∧ 𝑌 ⊆ On ) → ( { 𝐴 } × 𝑌 ) ⊆ ( On × On ) ) |
| 87 |
85 76 86
|
syl2anc |
⊢ ( 𝜑 → ( { 𝐴 } × 𝑌 ) ⊆ ( On × On ) ) |
| 88 |
|
sseq2 |
⊢ ( 𝑑 = ( 𝑟 +no 𝑠 ) → ( ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ↔ ( 𝐴 +no 𝑞 ) ⊆ ( 𝑟 +no 𝑠 ) ) ) |
| 89 |
88
|
imaeqexov |
⊢ ( ( +no Fn ( On × On ) ∧ ( { 𝐴 } × 𝑌 ) ⊆ ( On × On ) ) → ( ∃ 𝑑 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ↔ ∃ 𝑟 ∈ { 𝐴 } ∃ 𝑠 ∈ 𝑌 ( 𝐴 +no 𝑞 ) ⊆ ( 𝑟 +no 𝑠 ) ) ) |
| 90 |
7 87 89
|
sylancr |
⊢ ( 𝜑 → ( ∃ 𝑑 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ↔ ∃ 𝑟 ∈ { 𝐴 } ∃ 𝑠 ∈ 𝑌 ( 𝐴 +no 𝑞 ) ⊆ ( 𝑟 +no 𝑠 ) ) ) |
| 91 |
|
oveq1 |
⊢ ( 𝑟 = 𝐴 → ( 𝑟 +no 𝑠 ) = ( 𝐴 +no 𝑠 ) ) |
| 92 |
91
|
sseq2d |
⊢ ( 𝑟 = 𝐴 → ( ( 𝐴 +no 𝑞 ) ⊆ ( 𝑟 +no 𝑠 ) ↔ ( 𝐴 +no 𝑞 ) ⊆ ( 𝐴 +no 𝑠 ) ) ) |
| 93 |
92
|
rexbidv |
⊢ ( 𝑟 = 𝐴 → ( ∃ 𝑠 ∈ 𝑌 ( 𝐴 +no 𝑞 ) ⊆ ( 𝑟 +no 𝑠 ) ↔ ∃ 𝑠 ∈ 𝑌 ( 𝐴 +no 𝑞 ) ⊆ ( 𝐴 +no 𝑠 ) ) ) |
| 94 |
93
|
rexsng |
⊢ ( 𝐴 ∈ On → ( ∃ 𝑟 ∈ { 𝐴 } ∃ 𝑠 ∈ 𝑌 ( 𝐴 +no 𝑞 ) ⊆ ( 𝑟 +no 𝑠 ) ↔ ∃ 𝑠 ∈ 𝑌 ( 𝐴 +no 𝑞 ) ⊆ ( 𝐴 +no 𝑠 ) ) ) |
| 95 |
1 94
|
syl |
⊢ ( 𝜑 → ( ∃ 𝑟 ∈ { 𝐴 } ∃ 𝑠 ∈ 𝑌 ( 𝐴 +no 𝑞 ) ⊆ ( 𝑟 +no 𝑠 ) ↔ ∃ 𝑠 ∈ 𝑌 ( 𝐴 +no 𝑞 ) ⊆ ( 𝐴 +no 𝑠 ) ) ) |
| 96 |
90 95
|
bitrd |
⊢ ( 𝜑 → ( ∃ 𝑑 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ↔ ∃ 𝑠 ∈ 𝑌 ( 𝐴 +no 𝑞 ) ⊆ ( 𝐴 +no 𝑠 ) ) ) |
| 97 |
96
|
ralbidv |
⊢ ( 𝜑 → ( ∀ 𝑞 ∈ 𝐵 ∃ 𝑑 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ↔ ∀ 𝑞 ∈ 𝐵 ∃ 𝑠 ∈ 𝑌 ( 𝐴 +no 𝑞 ) ⊆ ( 𝐴 +no 𝑠 ) ) ) |
| 98 |
84 97
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑞 ∈ 𝐵 ∃ 𝑑 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ) |
| 99 |
|
olc |
⊢ ( ∃ 𝑑 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 → ( ∃ 𝑑 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ∨ ∃ 𝑑 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ) ) |
| 100 |
99
|
ralimi |
⊢ ( ∀ 𝑞 ∈ 𝐵 ∃ 𝑑 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 → ∀ 𝑞 ∈ 𝐵 ( ∃ 𝑑 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ∨ ∃ 𝑑 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ) ) |
| 101 |
98 100
|
syl |
⊢ ( 𝜑 → ∀ 𝑞 ∈ 𝐵 ( ∃ 𝑑 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ∨ ∃ 𝑑 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ) ) |
| 102 |
|
rexun |
⊢ ( ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ↔ ( ∃ 𝑑 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ∨ ∃ 𝑑 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ) ) |
| 103 |
102
|
ralbii |
⊢ ( ∀ 𝑞 ∈ 𝐵 ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ↔ ∀ 𝑞 ∈ 𝐵 ( ∃ 𝑑 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ∨ ∃ 𝑑 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ) ) |
| 104 |
101 103
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑞 ∈ 𝐵 ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ) |
| 105 |
|
xpss12 |
⊢ ( ( { 𝐴 } ⊆ On ∧ 𝐵 ⊆ On ) → ( { 𝐴 } × 𝐵 ) ⊆ ( On × On ) ) |
| 106 |
85 67 105
|
syl2anc |
⊢ ( 𝜑 → ( { 𝐴 } × 𝐵 ) ⊆ ( On × On ) ) |
| 107 |
|
sseq1 |
⊢ ( 𝑐 = ( 𝑝 +no 𝑞 ) → ( 𝑐 ⊆ 𝑑 ↔ ( 𝑝 +no 𝑞 ) ⊆ 𝑑 ) ) |
| 108 |
107
|
rexbidv |
⊢ ( 𝑐 = ( 𝑝 +no 𝑞 ) → ( ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) 𝑐 ⊆ 𝑑 ↔ ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑑 ) ) |
| 109 |
108
|
imaeqalov |
⊢ ( ( +no Fn ( On × On ) ∧ ( { 𝐴 } × 𝐵 ) ⊆ ( On × On ) ) → ( ∀ 𝑐 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) 𝑐 ⊆ 𝑑 ↔ ∀ 𝑝 ∈ { 𝐴 } ∀ 𝑞 ∈ 𝐵 ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑑 ) ) |
| 110 |
7 106 109
|
sylancr |
⊢ ( 𝜑 → ( ∀ 𝑐 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) 𝑐 ⊆ 𝑑 ↔ ∀ 𝑝 ∈ { 𝐴 } ∀ 𝑞 ∈ 𝐵 ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑑 ) ) |
| 111 |
|
oveq1 |
⊢ ( 𝑝 = 𝐴 → ( 𝑝 +no 𝑞 ) = ( 𝐴 +no 𝑞 ) ) |
| 112 |
111
|
sseq1d |
⊢ ( 𝑝 = 𝐴 → ( ( 𝑝 +no 𝑞 ) ⊆ 𝑑 ↔ ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ) ) |
| 113 |
112
|
rexbidv |
⊢ ( 𝑝 = 𝐴 → ( ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑑 ↔ ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ) ) |
| 114 |
113
|
ralbidv |
⊢ ( 𝑝 = 𝐴 → ( ∀ 𝑞 ∈ 𝐵 ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑑 ↔ ∀ 𝑞 ∈ 𝐵 ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ) ) |
| 115 |
114
|
ralsng |
⊢ ( 𝐴 ∈ On → ( ∀ 𝑝 ∈ { 𝐴 } ∀ 𝑞 ∈ 𝐵 ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑑 ↔ ∀ 𝑞 ∈ 𝐵 ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ) ) |
| 116 |
1 115
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑝 ∈ { 𝐴 } ∀ 𝑞 ∈ 𝐵 ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑑 ↔ ∀ 𝑞 ∈ 𝐵 ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ) ) |
| 117 |
110 116
|
bitrd |
⊢ ( 𝜑 → ( ∀ 𝑐 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) 𝑐 ⊆ 𝑑 ↔ ∀ 𝑞 ∈ 𝐵 ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑑 ) ) |
| 118 |
104 117
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑐 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) 𝑐 ⊆ 𝑑 ) |
| 119 |
1 3
|
cofonr |
⊢ ( 𝜑 → ∀ 𝑝 ∈ 𝐴 ∃ 𝑟 ∈ 𝑋 𝑝 ⊆ 𝑟 ) |
| 120 |
|
onss |
⊢ ( 𝐴 ∈ On → 𝐴 ⊆ On ) |
| 121 |
1 120
|
syl |
⊢ ( 𝜑 → 𝐴 ⊆ On ) |
| 122 |
121
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) → 𝑝 ∈ On ) |
| 123 |
122
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) ∧ 𝑟 ∈ 𝑋 ) → 𝑝 ∈ On ) |
| 124 |
|
ssintub |
⊢ 𝑋 ⊆ ∩ { 𝑥 ∈ On ∣ 𝑋 ⊆ 𝑥 } |
| 125 |
3 121
|
eqsstrrd |
⊢ ( 𝜑 → ∩ { 𝑥 ∈ On ∣ 𝑋 ⊆ 𝑥 } ⊆ On ) |
| 126 |
124 125
|
sstrid |
⊢ ( 𝜑 → 𝑋 ⊆ On ) |
| 127 |
126
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) → 𝑋 ⊆ On ) |
| 128 |
127
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) ∧ 𝑟 ∈ 𝑋 ) → 𝑟 ∈ On ) |
| 129 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) ∧ 𝑟 ∈ 𝑋 ) → 𝐵 ∈ On ) |
| 130 |
|
naddss1 |
⊢ ( ( 𝑝 ∈ On ∧ 𝑟 ∈ On ∧ 𝐵 ∈ On ) → ( 𝑝 ⊆ 𝑟 ↔ ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝐵 ) ) ) |
| 131 |
123 128 129 130
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) ∧ 𝑟 ∈ 𝑋 ) → ( 𝑝 ⊆ 𝑟 ↔ ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝐵 ) ) ) |
| 132 |
131
|
rexbidva |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) → ( ∃ 𝑟 ∈ 𝑋 𝑝 ⊆ 𝑟 ↔ ∃ 𝑟 ∈ 𝑋 ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝐵 ) ) ) |
| 133 |
132
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑝 ∈ 𝐴 ∃ 𝑟 ∈ 𝑋 𝑝 ⊆ 𝑟 ↔ ∀ 𝑝 ∈ 𝐴 ∃ 𝑟 ∈ 𝑋 ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝐵 ) ) ) |
| 134 |
119 133
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑝 ∈ 𝐴 ∃ 𝑟 ∈ 𝑋 ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝐵 ) ) |
| 135 |
2
|
snssd |
⊢ ( 𝜑 → { 𝐵 } ⊆ On ) |
| 136 |
|
xpss12 |
⊢ ( ( 𝑋 ⊆ On ∧ { 𝐵 } ⊆ On ) → ( 𝑋 × { 𝐵 } ) ⊆ ( On × On ) ) |
| 137 |
126 135 136
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 × { 𝐵 } ) ⊆ ( On × On ) ) |
| 138 |
|
sseq2 |
⊢ ( 𝑑 = ( 𝑟 +no 𝑠 ) → ( ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ↔ ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝑠 ) ) ) |
| 139 |
138
|
imaeqexov |
⊢ ( ( +no Fn ( On × On ) ∧ ( 𝑋 × { 𝐵 } ) ⊆ ( On × On ) ) → ( ∃ 𝑑 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ↔ ∃ 𝑟 ∈ 𝑋 ∃ 𝑠 ∈ { 𝐵 } ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝑠 ) ) ) |
| 140 |
7 137 139
|
sylancr |
⊢ ( 𝜑 → ( ∃ 𝑑 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ↔ ∃ 𝑟 ∈ 𝑋 ∃ 𝑠 ∈ { 𝐵 } ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝑠 ) ) ) |
| 141 |
|
oveq2 |
⊢ ( 𝑠 = 𝐵 → ( 𝑟 +no 𝑠 ) = ( 𝑟 +no 𝐵 ) ) |
| 142 |
141
|
sseq2d |
⊢ ( 𝑠 = 𝐵 → ( ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝑠 ) ↔ ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝐵 ) ) ) |
| 143 |
142
|
rexsng |
⊢ ( 𝐵 ∈ On → ( ∃ 𝑠 ∈ { 𝐵 } ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝑠 ) ↔ ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝐵 ) ) ) |
| 144 |
2 143
|
syl |
⊢ ( 𝜑 → ( ∃ 𝑠 ∈ { 𝐵 } ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝑠 ) ↔ ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝐵 ) ) ) |
| 145 |
144
|
rexbidv |
⊢ ( 𝜑 → ( ∃ 𝑟 ∈ 𝑋 ∃ 𝑠 ∈ { 𝐵 } ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝑠 ) ↔ ∃ 𝑟 ∈ 𝑋 ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝐵 ) ) ) |
| 146 |
140 145
|
bitrd |
⊢ ( 𝜑 → ( ∃ 𝑑 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ↔ ∃ 𝑟 ∈ 𝑋 ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝐵 ) ) ) |
| 147 |
146
|
ralbidv |
⊢ ( 𝜑 → ( ∀ 𝑝 ∈ 𝐴 ∃ 𝑑 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ↔ ∀ 𝑝 ∈ 𝐴 ∃ 𝑟 ∈ 𝑋 ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝐵 ) ) ) |
| 148 |
134 147
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑝 ∈ 𝐴 ∃ 𝑑 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ) |
| 149 |
|
orc |
⊢ ( ∃ 𝑑 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 → ( ∃ 𝑑 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ∨ ∃ 𝑑 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ) ) |
| 150 |
149
|
ralimi |
⊢ ( ∀ 𝑝 ∈ 𝐴 ∃ 𝑑 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 → ∀ 𝑝 ∈ 𝐴 ( ∃ 𝑑 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ∨ ∃ 𝑑 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ) ) |
| 151 |
148 150
|
syl |
⊢ ( 𝜑 → ∀ 𝑝 ∈ 𝐴 ( ∃ 𝑑 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ∨ ∃ 𝑑 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ) ) |
| 152 |
|
rexun |
⊢ ( ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ↔ ( ∃ 𝑑 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ∨ ∃ 𝑑 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ) ) |
| 153 |
152
|
ralbii |
⊢ ( ∀ 𝑝 ∈ 𝐴 ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ↔ ∀ 𝑝 ∈ 𝐴 ( ∃ 𝑑 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ∨ ∃ 𝑑 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ) ) |
| 154 |
151 153
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑝 ∈ 𝐴 ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ) |
| 155 |
|
oveq2 |
⊢ ( 𝑞 = 𝐵 → ( 𝑝 +no 𝑞 ) = ( 𝑝 +no 𝐵 ) ) |
| 156 |
155
|
sseq1d |
⊢ ( 𝑞 = 𝐵 → ( ( 𝑝 +no 𝑞 ) ⊆ 𝑑 ↔ ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ) ) |
| 157 |
156
|
rexbidv |
⊢ ( 𝑞 = 𝐵 → ( ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑑 ↔ ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ) ) |
| 158 |
157
|
ralsng |
⊢ ( 𝐵 ∈ On → ( ∀ 𝑞 ∈ { 𝐵 } ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑑 ↔ ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ) ) |
| 159 |
2 158
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑞 ∈ { 𝐵 } ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑑 ↔ ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ) ) |
| 160 |
159
|
ralbidv |
⊢ ( 𝜑 → ( ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ { 𝐵 } ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑑 ↔ ∀ 𝑝 ∈ 𝐴 ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑑 ) ) |
| 161 |
154 160
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ { 𝐵 } ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑑 ) |
| 162 |
|
xpss12 |
⊢ ( ( 𝐴 ⊆ On ∧ { 𝐵 } ⊆ On ) → ( 𝐴 × { 𝐵 } ) ⊆ ( On × On ) ) |
| 163 |
121 135 162
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 × { 𝐵 } ) ⊆ ( On × On ) ) |
| 164 |
108
|
imaeqalov |
⊢ ( ( +no Fn ( On × On ) ∧ ( 𝐴 × { 𝐵 } ) ⊆ ( On × On ) ) → ( ∀ 𝑐 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) 𝑐 ⊆ 𝑑 ↔ ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ { 𝐵 } ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑑 ) ) |
| 165 |
7 163 164
|
sylancr |
⊢ ( 𝜑 → ( ∀ 𝑐 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) 𝑐 ⊆ 𝑑 ↔ ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ { 𝐵 } ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑑 ) ) |
| 166 |
161 165
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑐 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) 𝑐 ⊆ 𝑑 ) |
| 167 |
|
ralunb |
⊢ ( ∀ 𝑐 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) 𝑐 ⊆ 𝑑 ↔ ( ∀ 𝑐 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) 𝑐 ⊆ 𝑑 ∧ ∀ 𝑐 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) 𝑐 ⊆ 𝑑 ) ) |
| 168 |
118 166 167
|
sylanbrc |
⊢ ( 𝜑 → ∀ 𝑐 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ∃ 𝑑 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) 𝑐 ⊆ 𝑑 ) |
| 169 |
124 3
|
sseqtrrid |
⊢ ( 𝜑 → 𝑋 ⊆ 𝐴 ) |
| 170 |
169
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) → 𝑝 ∈ 𝐴 ) |
| 171 |
|
ssid |
⊢ 𝑝 ⊆ 𝑝 |
| 172 |
|
sseq2 |
⊢ ( 𝑟 = 𝑝 → ( 𝑝 ⊆ 𝑟 ↔ 𝑝 ⊆ 𝑝 ) ) |
| 173 |
172
|
rspcev |
⊢ ( ( 𝑝 ∈ 𝐴 ∧ 𝑝 ⊆ 𝑝 ) → ∃ 𝑟 ∈ 𝐴 𝑝 ⊆ 𝑟 ) |
| 174 |
170 171 173
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) → ∃ 𝑟 ∈ 𝐴 𝑝 ⊆ 𝑟 ) |
| 175 |
174
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑝 ∈ 𝑋 ∃ 𝑟 ∈ 𝐴 𝑝 ⊆ 𝑟 ) |
| 176 |
126
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) → 𝑝 ∈ On ) |
| 177 |
176
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝐴 ) → 𝑝 ∈ On ) |
| 178 |
121
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) → 𝐴 ⊆ On ) |
| 179 |
178
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝐴 ) → 𝑟 ∈ On ) |
| 180 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝐴 ) → 𝐵 ∈ On ) |
| 181 |
177 179 180 130
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝐴 ) → ( 𝑝 ⊆ 𝑟 ↔ ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝐵 ) ) ) |
| 182 |
181
|
rexbidva |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) → ( ∃ 𝑟 ∈ 𝐴 𝑝 ⊆ 𝑟 ↔ ∃ 𝑟 ∈ 𝐴 ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝐵 ) ) ) |
| 183 |
182
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑝 ∈ 𝑋 ∃ 𝑟 ∈ 𝐴 𝑝 ⊆ 𝑟 ↔ ∀ 𝑝 ∈ 𝑋 ∃ 𝑟 ∈ 𝐴 ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝐵 ) ) ) |
| 184 |
175 183
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑝 ∈ 𝑋 ∃ 𝑟 ∈ 𝐴 ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝐵 ) ) |
| 185 |
|
sseq2 |
⊢ ( 𝑏 = ( 𝑟 +no 𝑠 ) → ( ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ↔ ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝑠 ) ) ) |
| 186 |
185
|
imaeqexov |
⊢ ( ( +no Fn ( On × On ) ∧ ( 𝐴 × { 𝐵 } ) ⊆ ( On × On ) ) → ( ∃ 𝑏 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ↔ ∃ 𝑟 ∈ 𝐴 ∃ 𝑠 ∈ { 𝐵 } ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝑠 ) ) ) |
| 187 |
7 163 186
|
sylancr |
⊢ ( 𝜑 → ( ∃ 𝑏 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ↔ ∃ 𝑟 ∈ 𝐴 ∃ 𝑠 ∈ { 𝐵 } ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝑠 ) ) ) |
| 188 |
144
|
rexbidv |
⊢ ( 𝜑 → ( ∃ 𝑟 ∈ 𝐴 ∃ 𝑠 ∈ { 𝐵 } ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝑠 ) ↔ ∃ 𝑟 ∈ 𝐴 ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝐵 ) ) ) |
| 189 |
187 188
|
bitrd |
⊢ ( 𝜑 → ( ∃ 𝑏 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ↔ ∃ 𝑟 ∈ 𝐴 ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝐵 ) ) ) |
| 190 |
189
|
ralbidv |
⊢ ( 𝜑 → ( ∀ 𝑝 ∈ 𝑋 ∃ 𝑏 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ↔ ∀ 𝑝 ∈ 𝑋 ∃ 𝑟 ∈ 𝐴 ( 𝑝 +no 𝐵 ) ⊆ ( 𝑟 +no 𝐵 ) ) ) |
| 191 |
184 190
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑝 ∈ 𝑋 ∃ 𝑏 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ) |
| 192 |
|
olc |
⊢ ( ∃ 𝑏 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 → ( ∃ 𝑏 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ∨ ∃ 𝑏 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ) ) |
| 193 |
192
|
ralimi |
⊢ ( ∀ 𝑝 ∈ 𝑋 ∃ 𝑏 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 → ∀ 𝑝 ∈ 𝑋 ( ∃ 𝑏 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ∨ ∃ 𝑏 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ) ) |
| 194 |
191 193
|
syl |
⊢ ( 𝜑 → ∀ 𝑝 ∈ 𝑋 ( ∃ 𝑏 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ∨ ∃ 𝑏 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ) ) |
| 195 |
155
|
sseq1d |
⊢ ( 𝑞 = 𝐵 → ( ( 𝑝 +no 𝑞 ) ⊆ 𝑏 ↔ ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ) ) |
| 196 |
195
|
rexbidv |
⊢ ( 𝑞 = 𝐵 → ( ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑏 ↔ ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ) ) |
| 197 |
196
|
ralsng |
⊢ ( 𝐵 ∈ On → ( ∀ 𝑞 ∈ { 𝐵 } ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑏 ↔ ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ) ) |
| 198 |
2 197
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑞 ∈ { 𝐵 } ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑏 ↔ ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ) ) |
| 199 |
198
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) → ( ∀ 𝑞 ∈ { 𝐵 } ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑏 ↔ ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ) ) |
| 200 |
|
rexun |
⊢ ( ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ↔ ( ∃ 𝑏 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ∨ ∃ 𝑏 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ) ) |
| 201 |
199 200
|
bitrdi |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) → ( ∀ 𝑞 ∈ { 𝐵 } ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑏 ↔ ( ∃ 𝑏 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ∨ ∃ 𝑏 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ) ) ) |
| 202 |
201
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑝 ∈ 𝑋 ∀ 𝑞 ∈ { 𝐵 } ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑏 ↔ ∀ 𝑝 ∈ 𝑋 ( ∃ 𝑏 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ∨ ∃ 𝑏 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ( 𝑝 +no 𝐵 ) ⊆ 𝑏 ) ) ) |
| 203 |
194 202
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑝 ∈ 𝑋 ∀ 𝑞 ∈ { 𝐵 } ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑏 ) |
| 204 |
|
sseq1 |
⊢ ( 𝑎 = ( 𝑝 +no 𝑞 ) → ( 𝑎 ⊆ 𝑏 ↔ ( 𝑝 +no 𝑞 ) ⊆ 𝑏 ) ) |
| 205 |
204
|
rexbidv |
⊢ ( 𝑎 = ( 𝑝 +no 𝑞 ) → ( ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) 𝑎 ⊆ 𝑏 ↔ ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑏 ) ) |
| 206 |
205
|
imaeqalov |
⊢ ( ( +no Fn ( On × On ) ∧ ( 𝑋 × { 𝐵 } ) ⊆ ( On × On ) ) → ( ∀ 𝑎 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) 𝑎 ⊆ 𝑏 ↔ ∀ 𝑝 ∈ 𝑋 ∀ 𝑞 ∈ { 𝐵 } ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑏 ) ) |
| 207 |
7 137 206
|
sylancr |
⊢ ( 𝜑 → ( ∀ 𝑎 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) 𝑎 ⊆ 𝑏 ↔ ∀ 𝑝 ∈ 𝑋 ∀ 𝑞 ∈ { 𝐵 } ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑏 ) ) |
| 208 |
203 207
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) 𝑎 ⊆ 𝑏 ) |
| 209 |
|
ssintub |
⊢ 𝑌 ⊆ ∩ { 𝑦 ∈ On ∣ 𝑌 ⊆ 𝑦 } |
| 210 |
209 4
|
sseqtrrid |
⊢ ( 𝜑 → 𝑌 ⊆ 𝐵 ) |
| 211 |
210
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑌 ) → 𝑞 ∈ 𝐵 ) |
| 212 |
|
ssid |
⊢ 𝑞 ⊆ 𝑞 |
| 213 |
|
sseq2 |
⊢ ( 𝑠 = 𝑞 → ( 𝑞 ⊆ 𝑠 ↔ 𝑞 ⊆ 𝑞 ) ) |
| 214 |
213
|
rspcev |
⊢ ( ( 𝑞 ∈ 𝐵 ∧ 𝑞 ⊆ 𝑞 ) → ∃ 𝑠 ∈ 𝐵 𝑞 ⊆ 𝑠 ) |
| 215 |
211 212 214
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑌 ) → ∃ 𝑠 ∈ 𝐵 𝑞 ⊆ 𝑠 ) |
| 216 |
215
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑞 ∈ 𝑌 ∃ 𝑠 ∈ 𝐵 𝑞 ⊆ 𝑠 ) |
| 217 |
92
|
rexbidv |
⊢ ( 𝑟 = 𝐴 → ( ∃ 𝑠 ∈ 𝐵 ( 𝐴 +no 𝑞 ) ⊆ ( 𝑟 +no 𝑠 ) ↔ ∃ 𝑠 ∈ 𝐵 ( 𝐴 +no 𝑞 ) ⊆ ( 𝐴 +no 𝑠 ) ) ) |
| 218 |
217
|
rexsng |
⊢ ( 𝐴 ∈ On → ( ∃ 𝑟 ∈ { 𝐴 } ∃ 𝑠 ∈ 𝐵 ( 𝐴 +no 𝑞 ) ⊆ ( 𝑟 +no 𝑠 ) ↔ ∃ 𝑠 ∈ 𝐵 ( 𝐴 +no 𝑞 ) ⊆ ( 𝐴 +no 𝑠 ) ) ) |
| 219 |
1 218
|
syl |
⊢ ( 𝜑 → ( ∃ 𝑟 ∈ { 𝐴 } ∃ 𝑠 ∈ 𝐵 ( 𝐴 +no 𝑞 ) ⊆ ( 𝑟 +no 𝑠 ) ↔ ∃ 𝑠 ∈ 𝐵 ( 𝐴 +no 𝑞 ) ⊆ ( 𝐴 +no 𝑠 ) ) ) |
| 220 |
219
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑌 ) → ( ∃ 𝑟 ∈ { 𝐴 } ∃ 𝑠 ∈ 𝐵 ( 𝐴 +no 𝑞 ) ⊆ ( 𝑟 +no 𝑠 ) ↔ ∃ 𝑠 ∈ 𝐵 ( 𝐴 +no 𝑞 ) ⊆ ( 𝐴 +no 𝑠 ) ) ) |
| 221 |
|
sseq2 |
⊢ ( 𝑏 = ( 𝑟 +no 𝑠 ) → ( ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ↔ ( 𝐴 +no 𝑞 ) ⊆ ( 𝑟 +no 𝑠 ) ) ) |
| 222 |
221
|
imaeqexov |
⊢ ( ( +no Fn ( On × On ) ∧ ( { 𝐴 } × 𝐵 ) ⊆ ( On × On ) ) → ( ∃ 𝑏 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ↔ ∃ 𝑟 ∈ { 𝐴 } ∃ 𝑠 ∈ 𝐵 ( 𝐴 +no 𝑞 ) ⊆ ( 𝑟 +no 𝑠 ) ) ) |
| 223 |
7 106 222
|
sylancr |
⊢ ( 𝜑 → ( ∃ 𝑏 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ↔ ∃ 𝑟 ∈ { 𝐴 } ∃ 𝑠 ∈ 𝐵 ( 𝐴 +no 𝑞 ) ⊆ ( 𝑟 +no 𝑠 ) ) ) |
| 224 |
223
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑌 ) → ( ∃ 𝑏 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ↔ ∃ 𝑟 ∈ { 𝐴 } ∃ 𝑠 ∈ 𝐵 ( 𝐴 +no 𝑞 ) ⊆ ( 𝑟 +no 𝑠 ) ) ) |
| 225 |
76
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑌 ) → 𝑞 ∈ On ) |
| 226 |
225
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝑌 ) ∧ 𝑠 ∈ 𝐵 ) → 𝑞 ∈ On ) |
| 227 |
67
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑌 ) → 𝐵 ⊆ On ) |
| 228 |
227
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝑌 ) ∧ 𝑠 ∈ 𝐵 ) → 𝑠 ∈ On ) |
| 229 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝑌 ) ∧ 𝑠 ∈ 𝐵 ) → 𝐴 ∈ On ) |
| 230 |
226 228 229 80
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝑌 ) ∧ 𝑠 ∈ 𝐵 ) → ( 𝑞 ⊆ 𝑠 ↔ ( 𝐴 +no 𝑞 ) ⊆ ( 𝐴 +no 𝑠 ) ) ) |
| 231 |
230
|
rexbidva |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑌 ) → ( ∃ 𝑠 ∈ 𝐵 𝑞 ⊆ 𝑠 ↔ ∃ 𝑠 ∈ 𝐵 ( 𝐴 +no 𝑞 ) ⊆ ( 𝐴 +no 𝑠 ) ) ) |
| 232 |
220 224 231
|
3bitr4d |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑌 ) → ( ∃ 𝑏 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ↔ ∃ 𝑠 ∈ 𝐵 𝑞 ⊆ 𝑠 ) ) |
| 233 |
232
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑞 ∈ 𝑌 ∃ 𝑏 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ↔ ∀ 𝑞 ∈ 𝑌 ∃ 𝑠 ∈ 𝐵 𝑞 ⊆ 𝑠 ) ) |
| 234 |
216 233
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑞 ∈ 𝑌 ∃ 𝑏 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ) |
| 235 |
|
orc |
⊢ ( ∃ 𝑏 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 → ( ∃ 𝑏 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ∨ ∃ 𝑏 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ) ) |
| 236 |
235
|
ralimi |
⊢ ( ∀ 𝑞 ∈ 𝑌 ∃ 𝑏 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 → ∀ 𝑞 ∈ 𝑌 ( ∃ 𝑏 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ∨ ∃ 𝑏 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ) ) |
| 237 |
234 236
|
syl |
⊢ ( 𝜑 → ∀ 𝑞 ∈ 𝑌 ( ∃ 𝑏 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ∨ ∃ 𝑏 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ) ) |
| 238 |
|
rexun |
⊢ ( ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ↔ ( ∃ 𝑏 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ∨ ∃ 𝑏 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ) ) |
| 239 |
238
|
ralbii |
⊢ ( ∀ 𝑞 ∈ 𝑌 ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ↔ ∀ 𝑞 ∈ 𝑌 ( ∃ 𝑏 ∈ ( +no “ ( { 𝐴 } × 𝐵 ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ∨ ∃ 𝑏 ∈ ( +no “ ( 𝐴 × { 𝐵 } ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ) ) |
| 240 |
237 239
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑞 ∈ 𝑌 ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ) |
| 241 |
111
|
sseq1d |
⊢ ( 𝑝 = 𝐴 → ( ( 𝑝 +no 𝑞 ) ⊆ 𝑏 ↔ ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ) ) |
| 242 |
241
|
rexbidv |
⊢ ( 𝑝 = 𝐴 → ( ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑏 ↔ ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ) ) |
| 243 |
242
|
ralbidv |
⊢ ( 𝑝 = 𝐴 → ( ∀ 𝑞 ∈ 𝑌 ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑏 ↔ ∀ 𝑞 ∈ 𝑌 ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ) ) |
| 244 |
243
|
ralsng |
⊢ ( 𝐴 ∈ On → ( ∀ 𝑝 ∈ { 𝐴 } ∀ 𝑞 ∈ 𝑌 ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑏 ↔ ∀ 𝑞 ∈ 𝑌 ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ) ) |
| 245 |
1 244
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑝 ∈ { 𝐴 } ∀ 𝑞 ∈ 𝑌 ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑏 ↔ ∀ 𝑞 ∈ 𝑌 ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝐴 +no 𝑞 ) ⊆ 𝑏 ) ) |
| 246 |
240 245
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑝 ∈ { 𝐴 } ∀ 𝑞 ∈ 𝑌 ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑏 ) |
| 247 |
205
|
imaeqalov |
⊢ ( ( +no Fn ( On × On ) ∧ ( { 𝐴 } × 𝑌 ) ⊆ ( On × On ) ) → ( ∀ 𝑎 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) 𝑎 ⊆ 𝑏 ↔ ∀ 𝑝 ∈ { 𝐴 } ∀ 𝑞 ∈ 𝑌 ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑏 ) ) |
| 248 |
7 87 247
|
sylancr |
⊢ ( 𝜑 → ( ∀ 𝑎 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) 𝑎 ⊆ 𝑏 ↔ ∀ 𝑝 ∈ { 𝐴 } ∀ 𝑞 ∈ 𝑌 ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ( 𝑝 +no 𝑞 ) ⊆ 𝑏 ) ) |
| 249 |
246 248
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) 𝑎 ⊆ 𝑏 ) |
| 250 |
|
ralunb |
⊢ ( ∀ 𝑎 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) 𝑎 ⊆ 𝑏 ↔ ( ∀ 𝑎 ∈ ( +no “ ( 𝑋 × { 𝐵 } ) ) ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) 𝑎 ⊆ 𝑏 ∧ ∀ 𝑎 ∈ ( +no “ ( { 𝐴 } × 𝑌 ) ) ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) 𝑎 ⊆ 𝑏 ) ) |
| 251 |
208 249 250
|
sylanbrc |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ∃ 𝑏 ∈ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) 𝑎 ⊆ 𝑏 ) |
| 252 |
32 64 168 251
|
cofon2 |
⊢ ( 𝜑 → ∩ { 𝑤 ∈ On ∣ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ∪ ( +no “ ( 𝐴 × { 𝐵 } ) ) ) ⊆ 𝑤 } = ∩ { 𝑧 ∈ On ∣ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ⊆ 𝑧 } ) |
| 253 |
6 252
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 +no 𝐵 ) = ∩ { 𝑧 ∈ On ∣ ( ( +no “ ( 𝑋 × { 𝐵 } ) ) ∪ ( +no “ ( { 𝐴 } × 𝑌 ) ) ) ⊆ 𝑧 } ) |