| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pgpfac.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
pgpfac.c |
⊢ 𝐶 = { 𝑟 ∈ ( SubGrp ‘ 𝐺 ) ∣ ( 𝐺 ↾s 𝑟 ) ∈ ( CycGrp ∩ ran pGrp ) } |
| 3 |
|
pgpfac.g |
⊢ ( 𝜑 → 𝐺 ∈ Abel ) |
| 4 |
|
pgpfac.p |
⊢ ( 𝜑 → 𝑃 pGrp 𝐺 ) |
| 5 |
|
pgpfac.f |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
| 6 |
|
pgpfac.u |
⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 7 |
|
pgpfac.a |
⊢ ( 𝜑 → ∀ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( 𝑡 ⊊ 𝑈 → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑡 ) ) ) |
| 8 |
|
pgpfac.h |
⊢ 𝐻 = ( 𝐺 ↾s 𝑈 ) |
| 9 |
|
pgpfac.k |
⊢ 𝐾 = ( mrCls ‘ ( SubGrp ‘ 𝐻 ) ) |
| 10 |
|
pgpfac.o |
⊢ 𝑂 = ( od ‘ 𝐻 ) |
| 11 |
|
pgpfac.e |
⊢ 𝐸 = ( gEx ‘ 𝐻 ) |
| 12 |
|
pgpfac.0 |
⊢ 0 = ( 0g ‘ 𝐻 ) |
| 13 |
|
pgpfac.l |
⊢ ⊕ = ( LSSum ‘ 𝐻 ) |
| 14 |
|
pgpfac.1 |
⊢ ( 𝜑 → 𝐸 ≠ 1 ) |
| 15 |
|
pgpfac.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) |
| 16 |
|
pgpfac.oe |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝑋 ) = 𝐸 ) |
| 17 |
|
pgpfac.w |
⊢ ( 𝜑 → 𝑊 ∈ ( SubGrp ‘ 𝐻 ) ) |
| 18 |
|
pgpfac.i |
⊢ ( 𝜑 → ( ( 𝐾 ‘ { 𝑋 } ) ∩ 𝑊 ) = { 0 } ) |
| 19 |
|
pgpfac.s |
⊢ ( 𝜑 → ( ( 𝐾 ‘ { 𝑋 } ) ⊕ 𝑊 ) = 𝑈 ) |
| 20 |
8
|
subsubg |
⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑊 ∈ ( SubGrp ‘ 𝐻 ) ↔ ( 𝑊 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑊 ⊆ 𝑈 ) ) ) |
| 21 |
6 20
|
syl |
⊢ ( 𝜑 → ( 𝑊 ∈ ( SubGrp ‘ 𝐻 ) ↔ ( 𝑊 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑊 ⊆ 𝑈 ) ) ) |
| 22 |
17 21
|
mpbid |
⊢ ( 𝜑 → ( 𝑊 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑊 ⊆ 𝑈 ) ) |
| 23 |
22
|
simprd |
⊢ ( 𝜑 → 𝑊 ⊆ 𝑈 ) |
| 24 |
1
|
subgss |
⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) → 𝑈 ⊆ 𝐵 ) |
| 25 |
6 24
|
syl |
⊢ ( 𝜑 → 𝑈 ⊆ 𝐵 ) |
| 26 |
5 25
|
ssfid |
⊢ ( 𝜑 → 𝑈 ∈ Fin ) |
| 27 |
26 23
|
ssfid |
⊢ ( 𝜑 → 𝑊 ∈ Fin ) |
| 28 |
|
hashcl |
⊢ ( 𝑊 ∈ Fin → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
| 29 |
27 28
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
| 30 |
29
|
nn0red |
⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) ∈ ℝ ) |
| 31 |
12
|
fvexi |
⊢ 0 ∈ V |
| 32 |
|
hashsng |
⊢ ( 0 ∈ V → ( ♯ ‘ { 0 } ) = 1 ) |
| 33 |
31 32
|
ax-mp |
⊢ ( ♯ ‘ { 0 } ) = 1 |
| 34 |
|
subgrcl |
⊢ ( 𝑊 ∈ ( SubGrp ‘ 𝐻 ) → 𝐻 ∈ Grp ) |
| 35 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
| 36 |
35
|
subgacs |
⊢ ( 𝐻 ∈ Grp → ( SubGrp ‘ 𝐻 ) ∈ ( ACS ‘ ( Base ‘ 𝐻 ) ) ) |
| 37 |
|
acsmre |
⊢ ( ( SubGrp ‘ 𝐻 ) ∈ ( ACS ‘ ( Base ‘ 𝐻 ) ) → ( SubGrp ‘ 𝐻 ) ∈ ( Moore ‘ ( Base ‘ 𝐻 ) ) ) |
| 38 |
17 34 36 37
|
4syl |
⊢ ( 𝜑 → ( SubGrp ‘ 𝐻 ) ∈ ( Moore ‘ ( Base ‘ 𝐻 ) ) ) |
| 39 |
38 9
|
mrcssvd |
⊢ ( 𝜑 → ( 𝐾 ‘ { 𝑋 } ) ⊆ ( Base ‘ 𝐻 ) ) |
| 40 |
8
|
subgbas |
⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) → 𝑈 = ( Base ‘ 𝐻 ) ) |
| 41 |
6 40
|
syl |
⊢ ( 𝜑 → 𝑈 = ( Base ‘ 𝐻 ) ) |
| 42 |
39 41
|
sseqtrrd |
⊢ ( 𝜑 → ( 𝐾 ‘ { 𝑋 } ) ⊆ 𝑈 ) |
| 43 |
26 42
|
ssfid |
⊢ ( 𝜑 → ( 𝐾 ‘ { 𝑋 } ) ∈ Fin ) |
| 44 |
15 41
|
eleqtrd |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐻 ) ) |
| 45 |
9
|
mrcsncl |
⊢ ( ( ( SubGrp ‘ 𝐻 ) ∈ ( Moore ‘ ( Base ‘ 𝐻 ) ) ∧ 𝑋 ∈ ( Base ‘ 𝐻 ) ) → ( 𝐾 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝐻 ) ) |
| 46 |
38 44 45
|
syl2anc |
⊢ ( 𝜑 → ( 𝐾 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝐻 ) ) |
| 47 |
12
|
subg0cl |
⊢ ( ( 𝐾 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝐻 ) → 0 ∈ ( 𝐾 ‘ { 𝑋 } ) ) |
| 48 |
46 47
|
syl |
⊢ ( 𝜑 → 0 ∈ ( 𝐾 ‘ { 𝑋 } ) ) |
| 49 |
48
|
snssd |
⊢ ( 𝜑 → { 0 } ⊆ ( 𝐾 ‘ { 𝑋 } ) ) |
| 50 |
44
|
snssd |
⊢ ( 𝜑 → { 𝑋 } ⊆ ( Base ‘ 𝐻 ) ) |
| 51 |
38 9 50
|
mrcssidd |
⊢ ( 𝜑 → { 𝑋 } ⊆ ( 𝐾 ‘ { 𝑋 } ) ) |
| 52 |
|
snssg |
⊢ ( 𝑋 ∈ 𝑈 → ( 𝑋 ∈ ( 𝐾 ‘ { 𝑋 } ) ↔ { 𝑋 } ⊆ ( 𝐾 ‘ { 𝑋 } ) ) ) |
| 53 |
15 52
|
syl |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐾 ‘ { 𝑋 } ) ↔ { 𝑋 } ⊆ ( 𝐾 ‘ { 𝑋 } ) ) ) |
| 54 |
51 53
|
mpbird |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐾 ‘ { 𝑋 } ) ) |
| 55 |
16 14
|
eqnetrd |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝑋 ) ≠ 1 ) |
| 56 |
10 12
|
od1 |
⊢ ( 𝐻 ∈ Grp → ( 𝑂 ‘ 0 ) = 1 ) |
| 57 |
17 34 56
|
3syl |
⊢ ( 𝜑 → ( 𝑂 ‘ 0 ) = 1 ) |
| 58 |
|
elsni |
⊢ ( 𝑋 ∈ { 0 } → 𝑋 = 0 ) |
| 59 |
58
|
fveqeq2d |
⊢ ( 𝑋 ∈ { 0 } → ( ( 𝑂 ‘ 𝑋 ) = 1 ↔ ( 𝑂 ‘ 0 ) = 1 ) ) |
| 60 |
57 59
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝑋 ∈ { 0 } → ( 𝑂 ‘ 𝑋 ) = 1 ) ) |
| 61 |
60
|
necon3ad |
⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝑋 ) ≠ 1 → ¬ 𝑋 ∈ { 0 } ) ) |
| 62 |
55 61
|
mpd |
⊢ ( 𝜑 → ¬ 𝑋 ∈ { 0 } ) |
| 63 |
49 54 62
|
ssnelpssd |
⊢ ( 𝜑 → { 0 } ⊊ ( 𝐾 ‘ { 𝑋 } ) ) |
| 64 |
|
php3 |
⊢ ( ( ( 𝐾 ‘ { 𝑋 } ) ∈ Fin ∧ { 0 } ⊊ ( 𝐾 ‘ { 𝑋 } ) ) → { 0 } ≺ ( 𝐾 ‘ { 𝑋 } ) ) |
| 65 |
43 63 64
|
syl2anc |
⊢ ( 𝜑 → { 0 } ≺ ( 𝐾 ‘ { 𝑋 } ) ) |
| 66 |
|
snfi |
⊢ { 0 } ∈ Fin |
| 67 |
|
hashsdom |
⊢ ( ( { 0 } ∈ Fin ∧ ( 𝐾 ‘ { 𝑋 } ) ∈ Fin ) → ( ( ♯ ‘ { 0 } ) < ( ♯ ‘ ( 𝐾 ‘ { 𝑋 } ) ) ↔ { 0 } ≺ ( 𝐾 ‘ { 𝑋 } ) ) ) |
| 68 |
66 43 67
|
sylancr |
⊢ ( 𝜑 → ( ( ♯ ‘ { 0 } ) < ( ♯ ‘ ( 𝐾 ‘ { 𝑋 } ) ) ↔ { 0 } ≺ ( 𝐾 ‘ { 𝑋 } ) ) ) |
| 69 |
65 68
|
mpbird |
⊢ ( 𝜑 → ( ♯ ‘ { 0 } ) < ( ♯ ‘ ( 𝐾 ‘ { 𝑋 } ) ) ) |
| 70 |
33 69
|
eqbrtrrid |
⊢ ( 𝜑 → 1 < ( ♯ ‘ ( 𝐾 ‘ { 𝑋 } ) ) ) |
| 71 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 72 |
|
hashcl |
⊢ ( ( 𝐾 ‘ { 𝑋 } ) ∈ Fin → ( ♯ ‘ ( 𝐾 ‘ { 𝑋 } ) ) ∈ ℕ0 ) |
| 73 |
43 72
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐾 ‘ { 𝑋 } ) ) ∈ ℕ0 ) |
| 74 |
73
|
nn0red |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐾 ‘ { 𝑋 } ) ) ∈ ℝ ) |
| 75 |
12
|
subg0cl |
⊢ ( 𝑊 ∈ ( SubGrp ‘ 𝐻 ) → 0 ∈ 𝑊 ) |
| 76 |
|
ne0i |
⊢ ( 0 ∈ 𝑊 → 𝑊 ≠ ∅ ) |
| 77 |
17 75 76
|
3syl |
⊢ ( 𝜑 → 𝑊 ≠ ∅ ) |
| 78 |
|
hashnncl |
⊢ ( 𝑊 ∈ Fin → ( ( ♯ ‘ 𝑊 ) ∈ ℕ ↔ 𝑊 ≠ ∅ ) ) |
| 79 |
27 78
|
syl |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑊 ) ∈ ℕ ↔ 𝑊 ≠ ∅ ) ) |
| 80 |
77 79
|
mpbird |
⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) ∈ ℕ ) |
| 81 |
80
|
nngt0d |
⊢ ( 𝜑 → 0 < ( ♯ ‘ 𝑊 ) ) |
| 82 |
|
ltmul1 |
⊢ ( ( 1 ∈ ℝ ∧ ( ♯ ‘ ( 𝐾 ‘ { 𝑋 } ) ) ∈ ℝ ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℝ ∧ 0 < ( ♯ ‘ 𝑊 ) ) ) → ( 1 < ( ♯ ‘ ( 𝐾 ‘ { 𝑋 } ) ) ↔ ( 1 · ( ♯ ‘ 𝑊 ) ) < ( ( ♯ ‘ ( 𝐾 ‘ { 𝑋 } ) ) · ( ♯ ‘ 𝑊 ) ) ) ) |
| 83 |
71 74 30 81 82
|
syl112anc |
⊢ ( 𝜑 → ( 1 < ( ♯ ‘ ( 𝐾 ‘ { 𝑋 } ) ) ↔ ( 1 · ( ♯ ‘ 𝑊 ) ) < ( ( ♯ ‘ ( 𝐾 ‘ { 𝑋 } ) ) · ( ♯ ‘ 𝑊 ) ) ) ) |
| 84 |
70 83
|
mpbid |
⊢ ( 𝜑 → ( 1 · ( ♯ ‘ 𝑊 ) ) < ( ( ♯ ‘ ( 𝐾 ‘ { 𝑋 } ) ) · ( ♯ ‘ 𝑊 ) ) ) |
| 85 |
30
|
recnd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) ∈ ℂ ) |
| 86 |
85
|
mullidd |
⊢ ( 𝜑 → ( 1 · ( ♯ ‘ 𝑊 ) ) = ( ♯ ‘ 𝑊 ) ) |
| 87 |
|
eqid |
⊢ ( Cntz ‘ 𝐻 ) = ( Cntz ‘ 𝐻 ) |
| 88 |
8
|
subgabl |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝐻 ∈ Abel ) |
| 89 |
3 6 88
|
syl2anc |
⊢ ( 𝜑 → 𝐻 ∈ Abel ) |
| 90 |
87 89 46 17
|
ablcntzd |
⊢ ( 𝜑 → ( 𝐾 ‘ { 𝑋 } ) ⊆ ( ( Cntz ‘ 𝐻 ) ‘ 𝑊 ) ) |
| 91 |
13 12 87 46 17 18 90 43 27
|
lsmhash |
⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝐾 ‘ { 𝑋 } ) ⊕ 𝑊 ) ) = ( ( ♯ ‘ ( 𝐾 ‘ { 𝑋 } ) ) · ( ♯ ‘ 𝑊 ) ) ) |
| 92 |
19
|
fveq2d |
⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝐾 ‘ { 𝑋 } ) ⊕ 𝑊 ) ) = ( ♯ ‘ 𝑈 ) ) |
| 93 |
91 92
|
eqtr3d |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 𝐾 ‘ { 𝑋 } ) ) · ( ♯ ‘ 𝑊 ) ) = ( ♯ ‘ 𝑈 ) ) |
| 94 |
84 86 93
|
3brtr3d |
⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) < ( ♯ ‘ 𝑈 ) ) |
| 95 |
30 94
|
ltned |
⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) ≠ ( ♯ ‘ 𝑈 ) ) |
| 96 |
|
fveq2 |
⊢ ( 𝑊 = 𝑈 → ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ) |
| 97 |
96
|
necon3i |
⊢ ( ( ♯ ‘ 𝑊 ) ≠ ( ♯ ‘ 𝑈 ) → 𝑊 ≠ 𝑈 ) |
| 98 |
95 97
|
syl |
⊢ ( 𝜑 → 𝑊 ≠ 𝑈 ) |
| 99 |
|
df-pss |
⊢ ( 𝑊 ⊊ 𝑈 ↔ ( 𝑊 ⊆ 𝑈 ∧ 𝑊 ≠ 𝑈 ) ) |
| 100 |
23 98 99
|
sylanbrc |
⊢ ( 𝜑 → 𝑊 ⊊ 𝑈 ) |
| 101 |
|
psseq1 |
⊢ ( 𝑡 = 𝑊 → ( 𝑡 ⊊ 𝑈 ↔ 𝑊 ⊊ 𝑈 ) ) |
| 102 |
|
eqeq2 |
⊢ ( 𝑡 = 𝑊 → ( ( 𝐺 DProd 𝑠 ) = 𝑡 ↔ ( 𝐺 DProd 𝑠 ) = 𝑊 ) ) |
| 103 |
102
|
anbi2d |
⊢ ( 𝑡 = 𝑊 → ( ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑡 ) ↔ ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑊 ) ) ) |
| 104 |
103
|
rexbidv |
⊢ ( 𝑡 = 𝑊 → ( ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑡 ) ↔ ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑊 ) ) ) |
| 105 |
101 104
|
imbi12d |
⊢ ( 𝑡 = 𝑊 → ( ( 𝑡 ⊊ 𝑈 → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑡 ) ) ↔ ( 𝑊 ⊊ 𝑈 → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑊 ) ) ) ) |
| 106 |
22
|
simpld |
⊢ ( 𝜑 → 𝑊 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 107 |
105 7 106
|
rspcdva |
⊢ ( 𝜑 → ( 𝑊 ⊊ 𝑈 → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑊 ) ) ) |
| 108 |
100 107
|
mpd |
⊢ ( 𝜑 → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑊 ) ) |
| 109 |
|
breq2 |
⊢ ( 𝑠 = 𝑎 → ( 𝐺 dom DProd 𝑠 ↔ 𝐺 dom DProd 𝑎 ) ) |
| 110 |
|
oveq2 |
⊢ ( 𝑠 = 𝑎 → ( 𝐺 DProd 𝑠 ) = ( 𝐺 DProd 𝑎 ) ) |
| 111 |
110
|
eqeq1d |
⊢ ( 𝑠 = 𝑎 → ( ( 𝐺 DProd 𝑠 ) = 𝑊 ↔ ( 𝐺 DProd 𝑎 ) = 𝑊 ) ) |
| 112 |
109 111
|
anbi12d |
⊢ ( 𝑠 = 𝑎 → ( ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑊 ) ↔ ( 𝐺 dom DProd 𝑎 ∧ ( 𝐺 DProd 𝑎 ) = 𝑊 ) ) ) |
| 113 |
112
|
cbvrexvw |
⊢ ( ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑊 ) ↔ ∃ 𝑎 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑎 ∧ ( 𝐺 DProd 𝑎 ) = 𝑊 ) ) |
| 114 |
108 113
|
sylib |
⊢ ( 𝜑 → ∃ 𝑎 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑎 ∧ ( 𝐺 DProd 𝑎 ) = 𝑊 ) ) |
| 115 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ Word 𝐶 ∧ ( 𝐺 dom DProd 𝑎 ∧ ( 𝐺 DProd 𝑎 ) = 𝑊 ) ) ) → 𝐺 ∈ Abel ) |
| 116 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ Word 𝐶 ∧ ( 𝐺 dom DProd 𝑎 ∧ ( 𝐺 DProd 𝑎 ) = 𝑊 ) ) ) → 𝑃 pGrp 𝐺 ) |
| 117 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ Word 𝐶 ∧ ( 𝐺 dom DProd 𝑎 ∧ ( 𝐺 DProd 𝑎 ) = 𝑊 ) ) ) → 𝐵 ∈ Fin ) |
| 118 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ Word 𝐶 ∧ ( 𝐺 dom DProd 𝑎 ∧ ( 𝐺 DProd 𝑎 ) = 𝑊 ) ) ) → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 119 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ Word 𝐶 ∧ ( 𝐺 dom DProd 𝑎 ∧ ( 𝐺 DProd 𝑎 ) = 𝑊 ) ) ) → ∀ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( 𝑡 ⊊ 𝑈 → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑡 ) ) ) |
| 120 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ Word 𝐶 ∧ ( 𝐺 dom DProd 𝑎 ∧ ( 𝐺 DProd 𝑎 ) = 𝑊 ) ) ) → 𝐸 ≠ 1 ) |
| 121 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ Word 𝐶 ∧ ( 𝐺 dom DProd 𝑎 ∧ ( 𝐺 DProd 𝑎 ) = 𝑊 ) ) ) → 𝑋 ∈ 𝑈 ) |
| 122 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ Word 𝐶 ∧ ( 𝐺 dom DProd 𝑎 ∧ ( 𝐺 DProd 𝑎 ) = 𝑊 ) ) ) → ( 𝑂 ‘ 𝑋 ) = 𝐸 ) |
| 123 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ Word 𝐶 ∧ ( 𝐺 dom DProd 𝑎 ∧ ( 𝐺 DProd 𝑎 ) = 𝑊 ) ) ) → 𝑊 ∈ ( SubGrp ‘ 𝐻 ) ) |
| 124 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ Word 𝐶 ∧ ( 𝐺 dom DProd 𝑎 ∧ ( 𝐺 DProd 𝑎 ) = 𝑊 ) ) ) → ( ( 𝐾 ‘ { 𝑋 } ) ∩ 𝑊 ) = { 0 } ) |
| 125 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ Word 𝐶 ∧ ( 𝐺 dom DProd 𝑎 ∧ ( 𝐺 DProd 𝑎 ) = 𝑊 ) ) ) → ( ( 𝐾 ‘ { 𝑋 } ) ⊕ 𝑊 ) = 𝑈 ) |
| 126 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ Word 𝐶 ∧ ( 𝐺 dom DProd 𝑎 ∧ ( 𝐺 DProd 𝑎 ) = 𝑊 ) ) ) → 𝑎 ∈ Word 𝐶 ) |
| 127 |
|
simprrl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ Word 𝐶 ∧ ( 𝐺 dom DProd 𝑎 ∧ ( 𝐺 DProd 𝑎 ) = 𝑊 ) ) ) → 𝐺 dom DProd 𝑎 ) |
| 128 |
|
simprrr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ Word 𝐶 ∧ ( 𝐺 dom DProd 𝑎 ∧ ( 𝐺 DProd 𝑎 ) = 𝑊 ) ) ) → ( 𝐺 DProd 𝑎 ) = 𝑊 ) |
| 129 |
|
eqid |
⊢ ( 𝑎 ++ 〈“ ( 𝐾 ‘ { 𝑋 } ) ”〉 ) = ( 𝑎 ++ 〈“ ( 𝐾 ‘ { 𝑋 } ) ”〉 ) |
| 130 |
1 2 115 116 117 118 119 8 9 10 11 12 13 120 121 122 123 124 125 126 127 128 129
|
pgpfaclem1 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ Word 𝐶 ∧ ( 𝐺 dom DProd 𝑎 ∧ ( 𝐺 DProd 𝑎 ) = 𝑊 ) ) ) → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑈 ) ) |
| 131 |
114 130
|
rexlimddv |
⊢ ( 𝜑 → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑈 ) ) |