| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pgpfac.b |
|
| 2 |
|
pgpfac.c |
|
| 3 |
|
pgpfac.g |
|
| 4 |
|
pgpfac.p |
|
| 5 |
|
pgpfac.f |
|
| 6 |
|
pgpfac.u |
|
| 7 |
|
pgpfac.a |
|
| 8 |
|
pgpfac.h |
|
| 9 |
|
pgpfac.k |
|
| 10 |
|
pgpfac.o |
|
| 11 |
|
pgpfac.e |
|
| 12 |
|
pgpfac.0 |
|
| 13 |
|
pgpfac.l |
|
| 14 |
|
pgpfac.1 |
|
| 15 |
|
pgpfac.x |
|
| 16 |
|
pgpfac.oe |
|
| 17 |
|
pgpfac.w |
|
| 18 |
|
pgpfac.i |
|
| 19 |
|
pgpfac.s |
|
| 20 |
8
|
subsubg |
|
| 21 |
6 20
|
syl |
|
| 22 |
17 21
|
mpbid |
|
| 23 |
22
|
simprd |
|
| 24 |
1
|
subgss |
|
| 25 |
6 24
|
syl |
|
| 26 |
5 25
|
ssfid |
|
| 27 |
26 23
|
ssfid |
|
| 28 |
|
hashcl |
|
| 29 |
27 28
|
syl |
|
| 30 |
29
|
nn0red |
|
| 31 |
12
|
fvexi |
|
| 32 |
|
hashsng |
|
| 33 |
31 32
|
ax-mp |
|
| 34 |
|
subgrcl |
|
| 35 |
|
eqid |
|
| 36 |
35
|
subgacs |
|
| 37 |
|
acsmre |
|
| 38 |
17 34 36 37
|
4syl |
|
| 39 |
38 9
|
mrcssvd |
|
| 40 |
8
|
subgbas |
|
| 41 |
6 40
|
syl |
|
| 42 |
39 41
|
sseqtrrd |
|
| 43 |
26 42
|
ssfid |
|
| 44 |
15 41
|
eleqtrd |
|
| 45 |
9
|
mrcsncl |
|
| 46 |
38 44 45
|
syl2anc |
|
| 47 |
12
|
subg0cl |
|
| 48 |
46 47
|
syl |
|
| 49 |
48
|
snssd |
|
| 50 |
44
|
snssd |
|
| 51 |
38 9 50
|
mrcssidd |
|
| 52 |
|
snssg |
|
| 53 |
15 52
|
syl |
|
| 54 |
51 53
|
mpbird |
|
| 55 |
16 14
|
eqnetrd |
|
| 56 |
10 12
|
od1 |
|
| 57 |
17 34 56
|
3syl |
|
| 58 |
|
elsni |
|
| 59 |
58
|
fveqeq2d |
|
| 60 |
57 59
|
syl5ibrcom |
|
| 61 |
60
|
necon3ad |
|
| 62 |
55 61
|
mpd |
|
| 63 |
49 54 62
|
ssnelpssd |
|
| 64 |
|
php3 |
|
| 65 |
43 63 64
|
syl2anc |
|
| 66 |
|
snfi |
|
| 67 |
|
hashsdom |
|
| 68 |
66 43 67
|
sylancr |
|
| 69 |
65 68
|
mpbird |
|
| 70 |
33 69
|
eqbrtrrid |
|
| 71 |
|
1red |
|
| 72 |
|
hashcl |
|
| 73 |
43 72
|
syl |
|
| 74 |
73
|
nn0red |
|
| 75 |
12
|
subg0cl |
|
| 76 |
|
ne0i |
|
| 77 |
17 75 76
|
3syl |
|
| 78 |
|
hashnncl |
|
| 79 |
27 78
|
syl |
|
| 80 |
77 79
|
mpbird |
|
| 81 |
80
|
nngt0d |
|
| 82 |
|
ltmul1 |
|
| 83 |
71 74 30 81 82
|
syl112anc |
|
| 84 |
70 83
|
mpbid |
|
| 85 |
30
|
recnd |
|
| 86 |
85
|
mullidd |
|
| 87 |
|
eqid |
|
| 88 |
8
|
subgabl |
|
| 89 |
3 6 88
|
syl2anc |
|
| 90 |
87 89 46 17
|
ablcntzd |
|
| 91 |
13 12 87 46 17 18 90 43 27
|
lsmhash |
|
| 92 |
19
|
fveq2d |
|
| 93 |
91 92
|
eqtr3d |
|
| 94 |
84 86 93
|
3brtr3d |
|
| 95 |
30 94
|
ltned |
|
| 96 |
|
fveq2 |
|
| 97 |
96
|
necon3i |
|
| 98 |
95 97
|
syl |
|
| 99 |
|
df-pss |
|
| 100 |
23 98 99
|
sylanbrc |
|
| 101 |
|
psseq1 |
|
| 102 |
|
eqeq2 |
|
| 103 |
102
|
anbi2d |
|
| 104 |
103
|
rexbidv |
|
| 105 |
101 104
|
imbi12d |
|
| 106 |
22
|
simpld |
|
| 107 |
105 7 106
|
rspcdva |
|
| 108 |
100 107
|
mpd |
|
| 109 |
|
breq2 |
|
| 110 |
|
oveq2 |
|
| 111 |
110
|
eqeq1d |
|
| 112 |
109 111
|
anbi12d |
|
| 113 |
112
|
cbvrexvw |
|
| 114 |
108 113
|
sylib |
|
| 115 |
3
|
adantr |
|
| 116 |
4
|
adantr |
|
| 117 |
5
|
adantr |
|
| 118 |
6
|
adantr |
|
| 119 |
7
|
adantr |
|
| 120 |
14
|
adantr |
|
| 121 |
15
|
adantr |
|
| 122 |
16
|
adantr |
|
| 123 |
17
|
adantr |
|
| 124 |
18
|
adantr |
|
| 125 |
19
|
adantr |
|
| 126 |
|
simprl |
|
| 127 |
|
simprrl |
|
| 128 |
|
simprrr |
|
| 129 |
|
eqid |
|
| 130 |
1 2 115 116 117 118 119 8 9 10 11 12 13 120 121 122 123 124 125 126 127 128 129
|
pgpfaclem1 |
|
| 131 |
114 130
|
rexlimddv |
|