Metamath Proof Explorer


Theorem pgpfaclem1

Description: Lemma for pgpfac . (Contributed by Mario Carneiro, 27-Apr-2016) (Revised by Mario Carneiro, 3-May-2016)

Ref Expression
Hypotheses pgpfac.b B = Base G
pgpfac.c C = r SubGrp G | G 𝑠 r CycGrp ran pGrp
pgpfac.g φ G Abel
pgpfac.p φ P pGrp G
pgpfac.f φ B Fin
pgpfac.u φ U SubGrp G
pgpfac.a φ t SubGrp G t U s Word C G dom DProd s G DProd s = t
pgpfac.h H = G 𝑠 U
pgpfac.k K = mrCls SubGrp H
pgpfac.o O = od H
pgpfac.e E = gEx H
pgpfac.0 0 ˙ = 0 H
pgpfac.l ˙ = LSSum H
pgpfac.1 φ E 1
pgpfac.x φ X U
pgpfac.oe φ O X = E
pgpfac.w φ W SubGrp H
pgpfac.i φ K X W = 0 ˙
pgpfac.s φ K X ˙ W = U
pgpfac.2 φ S Word C
pgpfac.4 φ G dom DProd S
pgpfac.5 φ G DProd S = W
pgpfac.t T = S ++ ⟨“ K X ”⟩
Assertion pgpfaclem1 φ s Word C G dom DProd s G DProd s = U

Proof

Step Hyp Ref Expression
1 pgpfac.b B = Base G
2 pgpfac.c C = r SubGrp G | G 𝑠 r CycGrp ran pGrp
3 pgpfac.g φ G Abel
4 pgpfac.p φ P pGrp G
5 pgpfac.f φ B Fin
6 pgpfac.u φ U SubGrp G
7 pgpfac.a φ t SubGrp G t U s Word C G dom DProd s G DProd s = t
8 pgpfac.h H = G 𝑠 U
9 pgpfac.k K = mrCls SubGrp H
10 pgpfac.o O = od H
11 pgpfac.e E = gEx H
12 pgpfac.0 0 ˙ = 0 H
13 pgpfac.l ˙ = LSSum H
14 pgpfac.1 φ E 1
15 pgpfac.x φ X U
16 pgpfac.oe φ O X = E
17 pgpfac.w φ W SubGrp H
18 pgpfac.i φ K X W = 0 ˙
19 pgpfac.s φ K X ˙ W = U
20 pgpfac.2 φ S Word C
21 pgpfac.4 φ G dom DProd S
22 pgpfac.5 φ G DProd S = W
23 pgpfac.t T = S ++ ⟨“ K X ”⟩
24 8 subggrp U SubGrp G H Grp
25 6 24 syl φ H Grp
26 eqid Base H = Base H
27 26 subgacs H Grp SubGrp H ACS Base H
28 25 27 syl φ SubGrp H ACS Base H
29 28 acsmred φ SubGrp H Moore Base H
30 8 subgbas U SubGrp G U = Base H
31 6 30 syl φ U = Base H
32 15 31 eleqtrd φ X Base H
33 9 mrcsncl SubGrp H Moore Base H X Base H K X SubGrp H
34 29 32 33 syl2anc φ K X SubGrp H
35 8 subsubg U SubGrp G K X SubGrp H K X SubGrp G K X U
36 6 35 syl φ K X SubGrp H K X SubGrp G K X U
37 34 36 mpbid φ K X SubGrp G K X U
38 37 simpld φ K X SubGrp G
39 8 oveq1i H 𝑠 K X = G 𝑠 U 𝑠 K X
40 37 simprd φ K X U
41 ressabs U SubGrp G K X U G 𝑠 U 𝑠 K X = G 𝑠 K X
42 6 40 41 syl2anc φ G 𝑠 U 𝑠 K X = G 𝑠 K X
43 39 42 syl5eq φ H 𝑠 K X = G 𝑠 K X
44 26 9 cycsubgcyg2 H Grp X Base H H 𝑠 K X CycGrp
45 25 32 44 syl2anc φ H 𝑠 K X CycGrp
46 43 45 eqeltrrd φ G 𝑠 K X CycGrp
47 pgpprm P pGrp G P
48 4 47 syl φ P
49 subgpgp P pGrp G K X SubGrp G P pGrp G 𝑠 K X
50 4 38 49 syl2anc φ P pGrp G 𝑠 K X
51 brelrng P G 𝑠 K X CycGrp P pGrp G 𝑠 K X G 𝑠 K X ran pGrp
52 48 46 50 51 syl3anc φ G 𝑠 K X ran pGrp
53 46 52 elind φ G 𝑠 K X CycGrp ran pGrp
54 oveq2 r = K X G 𝑠 r = G 𝑠 K X
55 54 eleq1d r = K X G 𝑠 r CycGrp ran pGrp G 𝑠 K X CycGrp ran pGrp
56 55 2 elrab2 K X C K X SubGrp G G 𝑠 K X CycGrp ran pGrp
57 38 53 56 sylanbrc φ K X C
58 23 20 57 cats1cld φ T Word C
59 wrdf T Word C T : 0 ..^ T C
60 58 59 syl φ T : 0 ..^ T C
61 2 ssrab3 C SubGrp G
62 fss T : 0 ..^ T C C SubGrp G T : 0 ..^ T SubGrp G
63 60 61 62 sylancl φ T : 0 ..^ T SubGrp G
64 fzodisj 0 ..^ S S ..^ S + 1 =
65 lencl S Word C S 0
66 20 65 syl φ S 0
67 66 nn0zd φ S
68 fzosn S S ..^ S + 1 = S
69 67 68 syl φ S ..^ S + 1 = S
70 69 ineq2d φ 0 ..^ S S ..^ S + 1 = 0 ..^ S S
71 64 70 syl5reqr φ 0 ..^ S S =
72 23 fveq2i T = S ++ ⟨“ K X ”⟩
73 57 s1cld φ ⟨“ K X ”⟩ Word C
74 ccatlen S Word C ⟨“ K X ”⟩ Word C S ++ ⟨“ K X ”⟩ = S + ⟨“ K X ”⟩
75 20 73 74 syl2anc φ S ++ ⟨“ K X ”⟩ = S + ⟨“ K X ”⟩
76 72 75 syl5eq φ T = S + ⟨“ K X ”⟩
77 s1len ⟨“ K X ”⟩ = 1
78 77 oveq2i S + ⟨“ K X ”⟩ = S + 1
79 76 78 eqtrdi φ T = S + 1
80 79 oveq2d φ 0 ..^ T = 0 ..^ S + 1
81 nn0uz 0 = 0
82 66 81 eleqtrdi φ S 0
83 fzosplitsn S 0 0 ..^ S + 1 = 0 ..^ S S
84 82 83 syl φ 0 ..^ S + 1 = 0 ..^ S S
85 80 84 eqtrd φ 0 ..^ T = 0 ..^ S S
86 eqid Cntz G = Cntz G
87 eqid 0 G = 0 G
88 cats1un S Word C K X C S ++ ⟨“ K X ”⟩ = S S K X
89 20 57 88 syl2anc φ S ++ ⟨“ K X ”⟩ = S S K X
90 23 89 syl5eq φ T = S S K X
91 90 reseq1d φ T 0 ..^ S = S S K X 0 ..^ S
92 wrdfn S Word C S Fn 0 ..^ S
93 20 92 syl φ S Fn 0 ..^ S
94 fzonel ¬ S 0 ..^ S
95 fsnunres S Fn 0 ..^ S ¬ S 0 ..^ S S S K X 0 ..^ S = S
96 93 94 95 sylancl φ S S K X 0 ..^ S = S
97 91 96 eqtrd φ T 0 ..^ S = S
98 21 97 breqtrrd φ G dom DProd T 0 ..^ S
99 fvex S V
100 dprdsn S V K X SubGrp G G dom DProd S K X G DProd S K X = K X
101 99 38 100 sylancr φ G dom DProd S K X G DProd S K X = K X
102 101 simpld φ G dom DProd S K X
103 wrdfn T Word C T Fn 0 ..^ T
104 58 103 syl φ T Fn 0 ..^ T
105 ssun2 S 0 ..^ S S
106 99 snss S 0 ..^ S S S 0 ..^ S S
107 105 106 mpbir S 0 ..^ S S
108 107 85 eleqtrrid φ S 0 ..^ T
109 fnressn T Fn 0 ..^ T S 0 ..^ T T S = S T S
110 104 108 109 syl2anc φ T S = S T S
111 23 fveq1i T S = S ++ ⟨“ K X ”⟩ S
112 66 nn0cnd φ S
113 112 addid2d φ 0 + S = S
114 113 fveq2d φ S ++ ⟨“ K X ”⟩ 0 + S = S ++ ⟨“ K X ”⟩ S
115 111 114 eqtr4id φ T S = S ++ ⟨“ K X ”⟩ 0 + S
116 1nn 1
117 77 116 eqeltri ⟨“ K X ”⟩
118 lbfzo0 0 0 ..^ ⟨“ K X ”⟩ ⟨“ K X ”⟩
119 117 118 mpbir 0 0 ..^ ⟨“ K X ”⟩
120 119 a1i φ 0 0 ..^ ⟨“ K X ”⟩
121 ccatval3 S Word C ⟨“ K X ”⟩ Word C 0 0 ..^ ⟨“ K X ”⟩ S ++ ⟨“ K X ”⟩ 0 + S = ⟨“ K X ”⟩ 0
122 20 73 120 121 syl3anc φ S ++ ⟨“ K X ”⟩ 0 + S = ⟨“ K X ”⟩ 0
123 fvex K X V
124 s1fv K X V ⟨“ K X ”⟩ 0 = K X
125 123 124 mp1i φ ⟨“ K X ”⟩ 0 = K X
126 115 122 125 3eqtrd φ T S = K X
127 126 opeq2d φ S T S = S K X
128 127 sneqd φ S T S = S K X
129 110 128 eqtrd φ T S = S K X
130 102 129 breqtrrd φ G dom DProd T S
131 dprdsubg G dom DProd T 0 ..^ S G DProd T 0 ..^ S SubGrp G
132 98 131 syl φ G DProd T 0 ..^ S SubGrp G
133 dprdsubg G dom DProd T S G DProd T S SubGrp G
134 130 133 syl φ G DProd T S SubGrp G
135 86 3 132 134 ablcntzd φ G DProd T 0 ..^ S Cntz G G DProd T S
136 97 oveq2d φ G DProd T 0 ..^ S = G DProd S
137 136 22 eqtrd φ G DProd T 0 ..^ S = W
138 129 oveq2d φ G DProd T S = G DProd S K X
139 101 simprd φ G DProd S K X = K X
140 138 139 eqtrd φ G DProd T S = K X
141 137 140 ineq12d φ G DProd T 0 ..^ S G DProd T S = W K X
142 incom W K X = K X W
143 141 142 eqtrdi φ G DProd T 0 ..^ S G DProd T S = K X W
144 8 87 subg0 U SubGrp G 0 G = 0 H
145 6 144 syl φ 0 G = 0 H
146 145 12 eqtr4di φ 0 G = 0 ˙
147 146 sneqd φ 0 G = 0 ˙
148 18 143 147 3eqtr4d φ G DProd T 0 ..^ S G DProd T S = 0 G
149 63 71 85 86 87 98 130 135 148 dmdprdsplit2 φ G dom DProd T
150 eqid LSSum G = LSSum G
151 63 71 85 150 149 dprdsplit φ G DProd T = G DProd T 0 ..^ S LSSum G G DProd T S
152 137 140 oveq12d φ G DProd T 0 ..^ S LSSum G G DProd T S = W LSSum G K X
153 137 132 eqeltrrd φ W SubGrp G
154 150 lsmcom G Abel W SubGrp G K X SubGrp G W LSSum G K X = K X LSSum G W
155 3 153 38 154 syl3anc φ W LSSum G K X = K X LSSum G W
156 151 152 155 3eqtrd φ G DProd T = K X LSSum G W
157 26 subgss W SubGrp H W Base H
158 17 157 syl φ W Base H
159 158 31 sseqtrrd φ W U
160 8 150 13 subglsm U SubGrp G K X U W U K X LSSum G W = K X ˙ W
161 6 40 159 160 syl3anc φ K X LSSum G W = K X ˙ W
162 156 161 19 3eqtrd φ G DProd T = U
163 breq2 s = T G dom DProd s G dom DProd T
164 oveq2 s = T G DProd s = G DProd T
165 164 eqeq1d s = T G DProd s = U G DProd T = U
166 163 165 anbi12d s = T G dom DProd s G DProd s = U G dom DProd T G DProd T = U
167 166 rspcev T Word C G dom DProd T G DProd T = U s Word C G dom DProd s G DProd s = U
168 58 149 162 167 syl12anc φ s Word C G dom DProd s G DProd s = U