Step |
Hyp |
Ref |
Expression |
1 |
|
eleq1 |
⊢ ( 𝑥 = 𝐶 → ( 𝑥 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴 ) ) |
2 |
1
|
biimpac |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 = 𝐶 ) → 𝐶 ∈ 𝐴 ) |
3 |
|
rabid |
⊢ ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↔ ( 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴 ) ) |
4 |
3
|
simplbi2com |
⊢ ( 𝐶 ∈ 𝐴 → ( 𝑦 ∈ 𝐵 → 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ) ) |
5 |
2 4
|
syl |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 = 𝐶 ) → ( 𝑦 ∈ 𝐵 → 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ) ) |
6 |
5
|
impancom |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 = 𝐶 → 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ) ) |
7 |
6
|
ancrd |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 = 𝐶 → ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ∧ 𝑥 = 𝐶 ) ) ) |
8 |
7
|
expimpd |
⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐶 ) → ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ∧ 𝑥 = 𝐶 ) ) ) |
9 |
8
|
reximdv2 |
⊢ ( 𝑥 ∈ 𝐴 → ( ∃ 𝑦 ∈ 𝐵 𝑥 = 𝐶 → ∃ 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } 𝑥 = 𝐶 ) ) |
10 |
9
|
ralimia |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 = 𝐶 → ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } 𝑥 = 𝐶 ) |
11 |
3
|
simplbi |
⊢ ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } → 𝑦 ∈ 𝐵 ) |
12 |
6
|
pm4.71rd |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 = 𝐶 ↔ ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ∧ 𝑥 = 𝐶 ) ) ) |
13 |
|
df-mpt |
⊢ ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) = { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ∧ 𝑥 = 𝐶 ) } |
14 |
13
|
breqi |
⊢ ( 𝑦 ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) 𝑥 ↔ 𝑦 { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ∧ 𝑥 = 𝐶 ) } 𝑥 ) |
15 |
|
df-br |
⊢ ( 𝑦 { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ∧ 𝑥 = 𝐶 ) } 𝑥 ↔ 〈 𝑦 , 𝑥 〉 ∈ { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ∧ 𝑥 = 𝐶 ) } ) |
16 |
|
opabidw |
⊢ ( 〈 𝑦 , 𝑥 〉 ∈ { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ∧ 𝑥 = 𝐶 ) } ↔ ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ∧ 𝑥 = 𝐶 ) ) |
17 |
14 15 16
|
3bitri |
⊢ ( 𝑦 ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) 𝑥 ↔ ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ∧ 𝑥 = 𝐶 ) ) |
18 |
12 17
|
bitr4di |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 = 𝐶 ↔ 𝑦 ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) 𝑥 ) ) |
19 |
11 18
|
sylan2 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ) → ( 𝑥 = 𝐶 ↔ 𝑦 ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) 𝑥 ) ) |
20 |
19
|
rexbidva |
⊢ ( 𝑥 ∈ 𝐴 → ( ∃ 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } 𝑥 = 𝐶 ↔ ∃ 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } 𝑦 ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) 𝑥 ) ) |
21 |
20
|
ralbiia |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } 𝑥 = 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } 𝑦 ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) 𝑥 ) |
22 |
|
breq2 |
⊢ ( 𝑎 = 𝑥 → ( 𝑏 ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) 𝑎 ↔ 𝑏 ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) 𝑥 ) ) |
23 |
22
|
rexbidv |
⊢ ( 𝑎 = 𝑥 → ( ∃ 𝑏 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } 𝑏 ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) 𝑎 ↔ ∃ 𝑏 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } 𝑏 ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) 𝑥 ) ) |
24 |
|
nfcv |
⊢ Ⅎ 𝑏 { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } |
25 |
|
nfrab1 |
⊢ Ⅎ 𝑦 { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } |
26 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑏 |
27 |
|
nfmpt1 |
⊢ Ⅎ 𝑦 ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) |
28 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑥 |
29 |
26 27 28
|
nfbr |
⊢ Ⅎ 𝑦 𝑏 ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) 𝑥 |
30 |
|
nfv |
⊢ Ⅎ 𝑏 𝑦 ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) 𝑥 |
31 |
|
breq1 |
⊢ ( 𝑏 = 𝑦 → ( 𝑏 ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) 𝑥 ↔ 𝑦 ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) 𝑥 ) ) |
32 |
24 25 29 30 31
|
cbvrexfw |
⊢ ( ∃ 𝑏 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } 𝑏 ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) 𝑥 ↔ ∃ 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } 𝑦 ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) 𝑥 ) |
33 |
23 32
|
bitrdi |
⊢ ( 𝑎 = 𝑥 → ( ∃ 𝑏 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } 𝑏 ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) 𝑎 ↔ ∃ 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } 𝑦 ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) 𝑥 ) ) |
34 |
33
|
cbvralvw |
⊢ ( ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } 𝑏 ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) 𝑎 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } 𝑦 ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) 𝑥 ) |
35 |
21 34
|
bitr4i |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } 𝑥 = 𝐶 ↔ ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } 𝑏 ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) 𝑎 ) |
36 |
10 35
|
sylib |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 = 𝐶 → ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } 𝑏 ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) 𝑎 ) |
37 |
|
nfv |
⊢ Ⅎ 𝑏 ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ∧ 𝑥 = 𝐶 ) |
38 |
25
|
nfcri |
⊢ Ⅎ 𝑦 𝑏 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } |
39 |
|
nfcsb1v |
⊢ Ⅎ 𝑦 ⦋ 𝑏 / 𝑦 ⦌ 𝐶 |
40 |
39
|
nfeq2 |
⊢ Ⅎ 𝑦 𝑥 = ⦋ 𝑏 / 𝑦 ⦌ 𝐶 |
41 |
38 40
|
nfan |
⊢ Ⅎ 𝑦 ( 𝑏 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ∧ 𝑥 = ⦋ 𝑏 / 𝑦 ⦌ 𝐶 ) |
42 |
|
eleq1 |
⊢ ( 𝑦 = 𝑏 → ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↔ 𝑏 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ) ) |
43 |
|
csbeq1a |
⊢ ( 𝑦 = 𝑏 → 𝐶 = ⦋ 𝑏 / 𝑦 ⦌ 𝐶 ) |
44 |
43
|
eqeq2d |
⊢ ( 𝑦 = 𝑏 → ( 𝑥 = 𝐶 ↔ 𝑥 = ⦋ 𝑏 / 𝑦 ⦌ 𝐶 ) ) |
45 |
42 44
|
anbi12d |
⊢ ( 𝑦 = 𝑏 → ( ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ∧ 𝑥 = 𝐶 ) ↔ ( 𝑏 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ∧ 𝑥 = ⦋ 𝑏 / 𝑦 ⦌ 𝐶 ) ) ) |
46 |
37 41 45
|
cbvopab1 |
⊢ { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ∧ 𝑥 = 𝐶 ) } = { 〈 𝑏 , 𝑥 〉 ∣ ( 𝑏 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ∧ 𝑥 = ⦋ 𝑏 / 𝑦 ⦌ 𝐶 ) } |
47 |
|
df-mpt |
⊢ ( 𝑏 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ ⦋ 𝑏 / 𝑦 ⦌ 𝐶 ) = { 〈 𝑏 , 𝑥 〉 ∣ ( 𝑏 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ∧ 𝑥 = ⦋ 𝑏 / 𝑦 ⦌ 𝐶 ) } |
48 |
46 13 47
|
3eqtr4i |
⊢ ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) = ( 𝑏 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ ⦋ 𝑏 / 𝑦 ⦌ 𝐶 ) |
49 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐵 |
50 |
39
|
nfel1 |
⊢ Ⅎ 𝑦 ⦋ 𝑏 / 𝑦 ⦌ 𝐶 ∈ 𝐴 |
51 |
43
|
eleq1d |
⊢ ( 𝑦 = 𝑏 → ( 𝐶 ∈ 𝐴 ↔ ⦋ 𝑏 / 𝑦 ⦌ 𝐶 ∈ 𝐴 ) ) |
52 |
26 49 50 51
|
elrabf |
⊢ ( 𝑏 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↔ ( 𝑏 ∈ 𝐵 ∧ ⦋ 𝑏 / 𝑦 ⦌ 𝐶 ∈ 𝐴 ) ) |
53 |
52
|
simprbi |
⊢ ( 𝑏 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } → ⦋ 𝑏 / 𝑦 ⦌ 𝐶 ∈ 𝐴 ) |
54 |
48 53
|
fmpti |
⊢ ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) : { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ⟶ 𝐴 |
55 |
36 54
|
jctil |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 = 𝐶 → ( ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) : { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ⟶ 𝐴 ∧ ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } 𝑏 ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) 𝑎 ) ) |
56 |
|
dffo4 |
⊢ ( ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) : { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } –onto→ 𝐴 ↔ ( ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) : { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ⟶ 𝐴 ∧ ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } 𝑏 ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) 𝑎 ) ) |
57 |
55 56
|
sylibr |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 = 𝐶 → ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) : { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } –onto→ 𝐴 ) |
58 |
57
|
adantl |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 = 𝐶 ) → ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) : { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } –onto→ 𝐴 ) |
59 |
|
relen |
⊢ Rel ≈ |
60 |
59
|
brrelex2i |
⊢ ( 𝐴 ≈ 𝐵 → 𝐵 ∈ V ) |
61 |
|
ssrab2 |
⊢ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ⊆ 𝐵 |
62 |
|
ssdomg |
⊢ ( 𝐵 ∈ V → ( { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ⊆ 𝐵 → { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ≼ 𝐵 ) ) |
63 |
60 61 62
|
mpisyl |
⊢ ( 𝐴 ≈ 𝐵 → { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ≼ 𝐵 ) |
64 |
|
ensym |
⊢ ( 𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴 ) |
65 |
|
domentr |
⊢ ( ( { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ≼ 𝐵 ∧ 𝐵 ≈ 𝐴 ) → { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ≼ 𝐴 ) |
66 |
63 64 65
|
syl2anc |
⊢ ( 𝐴 ≈ 𝐵 → { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ≼ 𝐴 ) |
67 |
66
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 = 𝐶 ) → { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ≼ 𝐴 ) |
68 |
|
enfi |
⊢ ( 𝐴 ≈ 𝐵 → ( 𝐴 ∈ Fin ↔ 𝐵 ∈ Fin ) ) |
69 |
68
|
biimpac |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐵 ) → 𝐵 ∈ Fin ) |
70 |
|
rabfi |
⊢ ( 𝐵 ∈ Fin → { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ∈ Fin ) |
71 |
69 70
|
syl |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐵 ) → { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ∈ Fin ) |
72 |
|
fodomfi |
⊢ ( ( { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ∈ Fin ∧ ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) : { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } –onto→ 𝐴 ) → 𝐴 ≼ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ) |
73 |
71 57 72
|
syl2an |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 = 𝐶 ) → 𝐴 ≼ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ) |
74 |
|
sbth |
⊢ ( ( { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ≼ 𝐴 ∧ 𝐴 ≼ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ) → { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ≈ 𝐴 ) |
75 |
67 73 74
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 = 𝐶 ) → { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ≈ 𝐴 ) |
76 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 = 𝐶 ) → 𝐴 ∈ Fin ) |
77 |
|
fofinf1o |
⊢ ( ( ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) : { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } –onto→ 𝐴 ∧ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ≈ 𝐴 ∧ 𝐴 ∈ Fin ) → ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) : { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } –1-1-onto→ 𝐴 ) |
78 |
58 75 76 77
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 = 𝐶 ) → ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) : { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } –1-1-onto→ 𝐴 ) |
79 |
|
f1of1 |
⊢ ( ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) : { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } –1-1-onto→ 𝐴 → ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) : { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } –1-1→ 𝐴 ) |
80 |
78 79
|
syl |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 = 𝐶 ) → ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) : { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } –1-1→ 𝐴 ) |
81 |
|
dff12 |
⊢ ( ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) : { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } –1-1→ 𝐴 ↔ ( ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) : { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ⟶ 𝐴 ∧ ∀ 𝑎 ∃* 𝑏 𝑏 ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) 𝑎 ) ) |
82 |
81
|
simprbi |
⊢ ( ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) : { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } –1-1→ 𝐴 → ∀ 𝑎 ∃* 𝑏 𝑏 ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) 𝑎 ) |
83 |
22
|
mobidv |
⊢ ( 𝑎 = 𝑥 → ( ∃* 𝑏 𝑏 ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) 𝑎 ↔ ∃* 𝑏 𝑏 ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) 𝑥 ) ) |
84 |
29 30 31
|
cbvmow |
⊢ ( ∃* 𝑏 𝑏 ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) 𝑥 ↔ ∃* 𝑦 𝑦 ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) 𝑥 ) |
85 |
83 84
|
bitrdi |
⊢ ( 𝑎 = 𝑥 → ( ∃* 𝑏 𝑏 ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) 𝑎 ↔ ∃* 𝑦 𝑦 ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) 𝑥 ) ) |
86 |
85
|
cbvalvw |
⊢ ( ∀ 𝑎 ∃* 𝑏 𝑏 ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) 𝑎 ↔ ∀ 𝑥 ∃* 𝑦 𝑦 ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) 𝑥 ) |
87 |
82 86
|
sylib |
⊢ ( ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) : { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } –1-1→ 𝐴 → ∀ 𝑥 ∃* 𝑦 𝑦 ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) 𝑥 ) |
88 |
|
mormo |
⊢ ( ∃* 𝑦 𝑦 ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) 𝑥 → ∃* 𝑦 ∈ 𝐵 𝑦 ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) 𝑥 ) |
89 |
88
|
alimi |
⊢ ( ∀ 𝑥 ∃* 𝑦 𝑦 ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) 𝑥 → ∀ 𝑥 ∃* 𝑦 ∈ 𝐵 𝑦 ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) 𝑥 ) |
90 |
|
alral |
⊢ ( ∀ 𝑥 ∃* 𝑦 ∈ 𝐵 𝑦 ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) 𝑥 → ∀ 𝑥 ∈ 𝐴 ∃* 𝑦 ∈ 𝐵 𝑦 ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) 𝑥 ) |
91 |
80 87 89 90
|
4syl |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 = 𝐶 ) → ∀ 𝑥 ∈ 𝐴 ∃* 𝑦 ∈ 𝐵 𝑦 ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) 𝑥 ) |
92 |
18
|
rmobidva |
⊢ ( 𝑥 ∈ 𝐴 → ( ∃* 𝑦 ∈ 𝐵 𝑥 = 𝐶 ↔ ∃* 𝑦 ∈ 𝐵 𝑦 ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) 𝑥 ) ) |
93 |
92
|
ralbiia |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃* 𝑦 ∈ 𝐵 𝑥 = 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 ∃* 𝑦 ∈ 𝐵 𝑦 ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝐶 ∈ 𝐴 } ↦ 𝐶 ) 𝑥 ) |
94 |
91 93
|
sylibr |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 = 𝐶 ) → ∀ 𝑥 ∈ 𝐴 ∃* 𝑦 ∈ 𝐵 𝑥 = 𝐶 ) |
95 |
94
|
ex |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 = 𝐶 → ∀ 𝑥 ∈ 𝐴 ∃* 𝑦 ∈ 𝐵 𝑥 = 𝐶 ) ) |
96 |
95
|
pm4.71d |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 = 𝐶 ↔ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 = 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 ∃* 𝑦 ∈ 𝐵 𝑥 = 𝐶 ) ) ) |
97 |
|
reu5 |
⊢ ( ∃! 𝑦 ∈ 𝐵 𝑥 = 𝐶 ↔ ( ∃ 𝑦 ∈ 𝐵 𝑥 = 𝐶 ∧ ∃* 𝑦 ∈ 𝐵 𝑥 = 𝐶 ) ) |
98 |
97
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝑥 = 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 𝑥 = 𝐶 ∧ ∃* 𝑦 ∈ 𝐵 𝑥 = 𝐶 ) ) |
99 |
|
r19.26 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 𝑥 = 𝐶 ∧ ∃* 𝑦 ∈ 𝐵 𝑥 = 𝐶 ) ↔ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 = 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 ∃* 𝑦 ∈ 𝐵 𝑥 = 𝐶 ) ) |
100 |
98 99
|
bitri |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝑥 = 𝐶 ↔ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 = 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 ∃* 𝑦 ∈ 𝐵 𝑥 = 𝐶 ) ) |
101 |
96 100
|
bitr4di |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 = 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝑥 = 𝐶 ) ) |