| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eleq1 | ⊢ ( 𝑥  =  𝐶  →  ( 𝑥  ∈  𝐴  ↔  𝐶  ∈  𝐴 ) ) | 
						
							| 2 | 1 | biimpac | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑥  =  𝐶 )  →  𝐶  ∈  𝐴 ) | 
						
							| 3 |  | rabid | ⊢ ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↔  ( 𝑦  ∈  𝐵  ∧  𝐶  ∈  𝐴 ) ) | 
						
							| 4 | 3 | simplbi2com | ⊢ ( 𝐶  ∈  𝐴  →  ( 𝑦  ∈  𝐵  →  𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 } ) ) | 
						
							| 5 | 2 4 | syl | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑥  =  𝐶 )  →  ( 𝑦  ∈  𝐵  →  𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 } ) ) | 
						
							| 6 | 5 | impancom | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  →  ( 𝑥  =  𝐶  →  𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 } ) ) | 
						
							| 7 | 6 | ancrd | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  →  ( 𝑥  =  𝐶  →  ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ∧  𝑥  =  𝐶 ) ) ) | 
						
							| 8 | 7 | expimpd | ⊢ ( 𝑥  ∈  𝐴  →  ( ( 𝑦  ∈  𝐵  ∧  𝑥  =  𝐶 )  →  ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ∧  𝑥  =  𝐶 ) ) ) | 
						
							| 9 | 8 | reximdv2 | ⊢ ( 𝑥  ∈  𝐴  →  ( ∃ 𝑦  ∈  𝐵 𝑥  =  𝐶  →  ∃ 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 } 𝑥  =  𝐶 ) ) | 
						
							| 10 | 9 | ralimia | ⊢ ( ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝑥  =  𝐶  →  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 } 𝑥  =  𝐶 ) | 
						
							| 11 | 3 | simplbi | ⊢ ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  →  𝑦  ∈  𝐵 ) | 
						
							| 12 | 6 | pm4.71rd | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  →  ( 𝑥  =  𝐶  ↔  ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ∧  𝑥  =  𝐶 ) ) ) | 
						
							| 13 |  | df-mpt | ⊢ ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 )  =  { 〈 𝑦 ,  𝑥 〉  ∣  ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ∧  𝑥  =  𝐶 ) } | 
						
							| 14 | 13 | breqi | ⊢ ( 𝑦 ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) 𝑥  ↔  𝑦 { 〈 𝑦 ,  𝑥 〉  ∣  ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ∧  𝑥  =  𝐶 ) } 𝑥 ) | 
						
							| 15 |  | df-br | ⊢ ( 𝑦 { 〈 𝑦 ,  𝑥 〉  ∣  ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ∧  𝑥  =  𝐶 ) } 𝑥  ↔  〈 𝑦 ,  𝑥 〉  ∈  { 〈 𝑦 ,  𝑥 〉  ∣  ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ∧  𝑥  =  𝐶 ) } ) | 
						
							| 16 |  | opabidw | ⊢ ( 〈 𝑦 ,  𝑥 〉  ∈  { 〈 𝑦 ,  𝑥 〉  ∣  ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ∧  𝑥  =  𝐶 ) }  ↔  ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ∧  𝑥  =  𝐶 ) ) | 
						
							| 17 | 14 15 16 | 3bitri | ⊢ ( 𝑦 ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) 𝑥  ↔  ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ∧  𝑥  =  𝐶 ) ) | 
						
							| 18 | 12 17 | bitr4di | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  →  ( 𝑥  =  𝐶  ↔  𝑦 ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) 𝑥 ) ) | 
						
							| 19 | 11 18 | sylan2 | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 } )  →  ( 𝑥  =  𝐶  ↔  𝑦 ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) 𝑥 ) ) | 
						
							| 20 | 19 | rexbidva | ⊢ ( 𝑥  ∈  𝐴  →  ( ∃ 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 } 𝑥  =  𝐶  ↔  ∃ 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 } 𝑦 ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) 𝑥 ) ) | 
						
							| 21 | 20 | ralbiia | ⊢ ( ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 } 𝑥  =  𝐶  ↔  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 } 𝑦 ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) 𝑥 ) | 
						
							| 22 |  | breq2 | ⊢ ( 𝑎  =  𝑥  →  ( 𝑏 ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) 𝑎  ↔  𝑏 ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) 𝑥 ) ) | 
						
							| 23 | 22 | rexbidv | ⊢ ( 𝑎  =  𝑥  →  ( ∃ 𝑏  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 } 𝑏 ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) 𝑎  ↔  ∃ 𝑏  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 } 𝑏 ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) 𝑥 ) ) | 
						
							| 24 |  | nfcv | ⊢ Ⅎ 𝑏 { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 } | 
						
							| 25 |  | nfrab1 | ⊢ Ⅎ 𝑦 { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 } | 
						
							| 26 |  | nfcv | ⊢ Ⅎ 𝑦 𝑏 | 
						
							| 27 |  | nfmpt1 | ⊢ Ⅎ 𝑦 ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) | 
						
							| 28 |  | nfcv | ⊢ Ⅎ 𝑦 𝑥 | 
						
							| 29 | 26 27 28 | nfbr | ⊢ Ⅎ 𝑦 𝑏 ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) 𝑥 | 
						
							| 30 |  | nfv | ⊢ Ⅎ 𝑏 𝑦 ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) 𝑥 | 
						
							| 31 |  | breq1 | ⊢ ( 𝑏  =  𝑦  →  ( 𝑏 ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) 𝑥  ↔  𝑦 ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) 𝑥 ) ) | 
						
							| 32 | 24 25 29 30 31 | cbvrexfw | ⊢ ( ∃ 𝑏  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 } 𝑏 ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) 𝑥  ↔  ∃ 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 } 𝑦 ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) 𝑥 ) | 
						
							| 33 | 23 32 | bitrdi | ⊢ ( 𝑎  =  𝑥  →  ( ∃ 𝑏  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 } 𝑏 ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) 𝑎  ↔  ∃ 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 } 𝑦 ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) 𝑥 ) ) | 
						
							| 34 | 33 | cbvralvw | ⊢ ( ∀ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 } 𝑏 ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) 𝑎  ↔  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 } 𝑦 ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) 𝑥 ) | 
						
							| 35 | 21 34 | bitr4i | ⊢ ( ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 } 𝑥  =  𝐶  ↔  ∀ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 } 𝑏 ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) 𝑎 ) | 
						
							| 36 | 10 35 | sylib | ⊢ ( ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝑥  =  𝐶  →  ∀ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 } 𝑏 ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) 𝑎 ) | 
						
							| 37 |  | nfv | ⊢ Ⅎ 𝑏 ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ∧  𝑥  =  𝐶 ) | 
						
							| 38 | 25 | nfcri | ⊢ Ⅎ 𝑦 𝑏  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 } | 
						
							| 39 |  | nfcsb1v | ⊢ Ⅎ 𝑦 ⦋ 𝑏  /  𝑦 ⦌ 𝐶 | 
						
							| 40 | 39 | nfeq2 | ⊢ Ⅎ 𝑦 𝑥  =  ⦋ 𝑏  /  𝑦 ⦌ 𝐶 | 
						
							| 41 | 38 40 | nfan | ⊢ Ⅎ 𝑦 ( 𝑏  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ∧  𝑥  =  ⦋ 𝑏  /  𝑦 ⦌ 𝐶 ) | 
						
							| 42 |  | eleq1 | ⊢ ( 𝑦  =  𝑏  →  ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↔  𝑏  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 } ) ) | 
						
							| 43 |  | csbeq1a | ⊢ ( 𝑦  =  𝑏  →  𝐶  =  ⦋ 𝑏  /  𝑦 ⦌ 𝐶 ) | 
						
							| 44 | 43 | eqeq2d | ⊢ ( 𝑦  =  𝑏  →  ( 𝑥  =  𝐶  ↔  𝑥  =  ⦋ 𝑏  /  𝑦 ⦌ 𝐶 ) ) | 
						
							| 45 | 42 44 | anbi12d | ⊢ ( 𝑦  =  𝑏  →  ( ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ∧  𝑥  =  𝐶 )  ↔  ( 𝑏  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ∧  𝑥  =  ⦋ 𝑏  /  𝑦 ⦌ 𝐶 ) ) ) | 
						
							| 46 | 37 41 45 | cbvopab1 | ⊢ { 〈 𝑦 ,  𝑥 〉  ∣  ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ∧  𝑥  =  𝐶 ) }  =  { 〈 𝑏 ,  𝑥 〉  ∣  ( 𝑏  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ∧  𝑥  =  ⦋ 𝑏  /  𝑦 ⦌ 𝐶 ) } | 
						
							| 47 |  | df-mpt | ⊢ ( 𝑏  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  ⦋ 𝑏  /  𝑦 ⦌ 𝐶 )  =  { 〈 𝑏 ,  𝑥 〉  ∣  ( 𝑏  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ∧  𝑥  =  ⦋ 𝑏  /  𝑦 ⦌ 𝐶 ) } | 
						
							| 48 | 46 13 47 | 3eqtr4i | ⊢ ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 )  =  ( 𝑏  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  ⦋ 𝑏  /  𝑦 ⦌ 𝐶 ) | 
						
							| 49 |  | nfcv | ⊢ Ⅎ 𝑦 𝐵 | 
						
							| 50 | 39 | nfel1 | ⊢ Ⅎ 𝑦 ⦋ 𝑏  /  𝑦 ⦌ 𝐶  ∈  𝐴 | 
						
							| 51 | 43 | eleq1d | ⊢ ( 𝑦  =  𝑏  →  ( 𝐶  ∈  𝐴  ↔  ⦋ 𝑏  /  𝑦 ⦌ 𝐶  ∈  𝐴 ) ) | 
						
							| 52 | 26 49 50 51 | elrabf | ⊢ ( 𝑏  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↔  ( 𝑏  ∈  𝐵  ∧  ⦋ 𝑏  /  𝑦 ⦌ 𝐶  ∈  𝐴 ) ) | 
						
							| 53 | 52 | simprbi | ⊢ ( 𝑏  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  →  ⦋ 𝑏  /  𝑦 ⦌ 𝐶  ∈  𝐴 ) | 
						
							| 54 | 48 53 | fmpti | ⊢ ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) : { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 } ⟶ 𝐴 | 
						
							| 55 | 36 54 | jctil | ⊢ ( ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝑥  =  𝐶  →  ( ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) : { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 } ⟶ 𝐴  ∧  ∀ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 } 𝑏 ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) 𝑎 ) ) | 
						
							| 56 |  | dffo4 | ⊢ ( ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) : { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 } –onto→ 𝐴  ↔  ( ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) : { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 } ⟶ 𝐴  ∧  ∀ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 } 𝑏 ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) 𝑎 ) ) | 
						
							| 57 | 55 56 | sylibr | ⊢ ( ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝑥  =  𝐶  →  ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) : { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 } –onto→ 𝐴 ) | 
						
							| 58 | 57 | adantl | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐴  ≈  𝐵 )  ∧  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝑥  =  𝐶 )  →  ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) : { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 } –onto→ 𝐴 ) | 
						
							| 59 |  | relen | ⊢ Rel   ≈ | 
						
							| 60 | 59 | brrelex2i | ⊢ ( 𝐴  ≈  𝐵  →  𝐵  ∈  V ) | 
						
							| 61 |  | ssrab2 | ⊢ { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ⊆  𝐵 | 
						
							| 62 |  | ssdomg | ⊢ ( 𝐵  ∈  V  →  ( { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ⊆  𝐵  →  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ≼  𝐵 ) ) | 
						
							| 63 | 60 61 62 | mpisyl | ⊢ ( 𝐴  ≈  𝐵  →  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ≼  𝐵 ) | 
						
							| 64 |  | ensym | ⊢ ( 𝐴  ≈  𝐵  →  𝐵  ≈  𝐴 ) | 
						
							| 65 |  | domentr | ⊢ ( ( { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ≼  𝐵  ∧  𝐵  ≈  𝐴 )  →  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ≼  𝐴 ) | 
						
							| 66 | 63 64 65 | syl2anc | ⊢ ( 𝐴  ≈  𝐵  →  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ≼  𝐴 ) | 
						
							| 67 | 66 | ad2antlr | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐴  ≈  𝐵 )  ∧  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝑥  =  𝐶 )  →  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ≼  𝐴 ) | 
						
							| 68 |  | enfi | ⊢ ( 𝐴  ≈  𝐵  →  ( 𝐴  ∈  Fin  ↔  𝐵  ∈  Fin ) ) | 
						
							| 69 | 68 | biimpac | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐴  ≈  𝐵 )  →  𝐵  ∈  Fin ) | 
						
							| 70 |  | rabfi | ⊢ ( 𝐵  ∈  Fin  →  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ∈  Fin ) | 
						
							| 71 | 69 70 | syl | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐴  ≈  𝐵 )  →  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ∈  Fin ) | 
						
							| 72 |  | fodomfi | ⊢ ( ( { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ∈  Fin  ∧  ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) : { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 } –onto→ 𝐴 )  →  𝐴  ≼  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 } ) | 
						
							| 73 | 71 57 72 | syl2an | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐴  ≈  𝐵 )  ∧  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝑥  =  𝐶 )  →  𝐴  ≼  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 } ) | 
						
							| 74 |  | sbth | ⊢ ( ( { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ≼  𝐴  ∧  𝐴  ≼  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 } )  →  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ≈  𝐴 ) | 
						
							| 75 | 67 73 74 | syl2anc | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐴  ≈  𝐵 )  ∧  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝑥  =  𝐶 )  →  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ≈  𝐴 ) | 
						
							| 76 |  | simpll | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐴  ≈  𝐵 )  ∧  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝑥  =  𝐶 )  →  𝐴  ∈  Fin ) | 
						
							| 77 |  | fofinf1o | ⊢ ( ( ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) : { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 } –onto→ 𝐴  ∧  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ≈  𝐴  ∧  𝐴  ∈  Fin )  →  ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) : { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 } –1-1-onto→ 𝐴 ) | 
						
							| 78 | 58 75 76 77 | syl3anc | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐴  ≈  𝐵 )  ∧  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝑥  =  𝐶 )  →  ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) : { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 } –1-1-onto→ 𝐴 ) | 
						
							| 79 |  | f1of1 | ⊢ ( ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) : { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 } –1-1-onto→ 𝐴  →  ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) : { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 } –1-1→ 𝐴 ) | 
						
							| 80 | 78 79 | syl | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐴  ≈  𝐵 )  ∧  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝑥  =  𝐶 )  →  ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) : { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 } –1-1→ 𝐴 ) | 
						
							| 81 |  | dff12 | ⊢ ( ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) : { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 } –1-1→ 𝐴  ↔  ( ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) : { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 } ⟶ 𝐴  ∧  ∀ 𝑎 ∃* 𝑏 𝑏 ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) 𝑎 ) ) | 
						
							| 82 | 81 | simprbi | ⊢ ( ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) : { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 } –1-1→ 𝐴  →  ∀ 𝑎 ∃* 𝑏 𝑏 ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) 𝑎 ) | 
						
							| 83 | 22 | mobidv | ⊢ ( 𝑎  =  𝑥  →  ( ∃* 𝑏 𝑏 ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) 𝑎  ↔  ∃* 𝑏 𝑏 ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) 𝑥 ) ) | 
						
							| 84 | 29 30 31 | cbvmow | ⊢ ( ∃* 𝑏 𝑏 ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) 𝑥  ↔  ∃* 𝑦 𝑦 ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) 𝑥 ) | 
						
							| 85 | 83 84 | bitrdi | ⊢ ( 𝑎  =  𝑥  →  ( ∃* 𝑏 𝑏 ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) 𝑎  ↔  ∃* 𝑦 𝑦 ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) 𝑥 ) ) | 
						
							| 86 | 85 | cbvalvw | ⊢ ( ∀ 𝑎 ∃* 𝑏 𝑏 ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) 𝑎  ↔  ∀ 𝑥 ∃* 𝑦 𝑦 ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) 𝑥 ) | 
						
							| 87 | 82 86 | sylib | ⊢ ( ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) : { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 } –1-1→ 𝐴  →  ∀ 𝑥 ∃* 𝑦 𝑦 ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) 𝑥 ) | 
						
							| 88 |  | mormo | ⊢ ( ∃* 𝑦 𝑦 ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) 𝑥  →  ∃* 𝑦  ∈  𝐵 𝑦 ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) 𝑥 ) | 
						
							| 89 | 88 | alimi | ⊢ ( ∀ 𝑥 ∃* 𝑦 𝑦 ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) 𝑥  →  ∀ 𝑥 ∃* 𝑦  ∈  𝐵 𝑦 ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) 𝑥 ) | 
						
							| 90 |  | alral | ⊢ ( ∀ 𝑥 ∃* 𝑦  ∈  𝐵 𝑦 ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) 𝑥  →  ∀ 𝑥  ∈  𝐴 ∃* 𝑦  ∈  𝐵 𝑦 ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) 𝑥 ) | 
						
							| 91 | 80 87 89 90 | 4syl | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐴  ≈  𝐵 )  ∧  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝑥  =  𝐶 )  →  ∀ 𝑥  ∈  𝐴 ∃* 𝑦  ∈  𝐵 𝑦 ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) 𝑥 ) | 
						
							| 92 | 18 | rmobidva | ⊢ ( 𝑥  ∈  𝐴  →  ( ∃* 𝑦  ∈  𝐵 𝑥  =  𝐶  ↔  ∃* 𝑦  ∈  𝐵 𝑦 ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) 𝑥 ) ) | 
						
							| 93 | 92 | ralbiia | ⊢ ( ∀ 𝑥  ∈  𝐴 ∃* 𝑦  ∈  𝐵 𝑥  =  𝐶  ↔  ∀ 𝑥  ∈  𝐴 ∃* 𝑦  ∈  𝐵 𝑦 ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝐶  ∈  𝐴 }  ↦  𝐶 ) 𝑥 ) | 
						
							| 94 | 91 93 | sylibr | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐴  ≈  𝐵 )  ∧  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝑥  =  𝐶 )  →  ∀ 𝑥  ∈  𝐴 ∃* 𝑦  ∈  𝐵 𝑥  =  𝐶 ) | 
						
							| 95 | 94 | ex | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐴  ≈  𝐵 )  →  ( ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝑥  =  𝐶  →  ∀ 𝑥  ∈  𝐴 ∃* 𝑦  ∈  𝐵 𝑥  =  𝐶 ) ) | 
						
							| 96 | 95 | pm4.71d | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐴  ≈  𝐵 )  →  ( ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝑥  =  𝐶  ↔  ( ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝑥  =  𝐶  ∧  ∀ 𝑥  ∈  𝐴 ∃* 𝑦  ∈  𝐵 𝑥  =  𝐶 ) ) ) | 
						
							| 97 |  | reu5 | ⊢ ( ∃! 𝑦  ∈  𝐵 𝑥  =  𝐶  ↔  ( ∃ 𝑦  ∈  𝐵 𝑥  =  𝐶  ∧  ∃* 𝑦  ∈  𝐵 𝑥  =  𝐶 ) ) | 
						
							| 98 | 97 | ralbii | ⊢ ( ∀ 𝑥  ∈  𝐴 ∃! 𝑦  ∈  𝐵 𝑥  =  𝐶  ↔  ∀ 𝑥  ∈  𝐴 ( ∃ 𝑦  ∈  𝐵 𝑥  =  𝐶  ∧  ∃* 𝑦  ∈  𝐵 𝑥  =  𝐶 ) ) | 
						
							| 99 |  | r19.26 | ⊢ ( ∀ 𝑥  ∈  𝐴 ( ∃ 𝑦  ∈  𝐵 𝑥  =  𝐶  ∧  ∃* 𝑦  ∈  𝐵 𝑥  =  𝐶 )  ↔  ( ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝑥  =  𝐶  ∧  ∀ 𝑥  ∈  𝐴 ∃* 𝑦  ∈  𝐵 𝑥  =  𝐶 ) ) | 
						
							| 100 | 98 99 | bitri | ⊢ ( ∀ 𝑥  ∈  𝐴 ∃! 𝑦  ∈  𝐵 𝑥  =  𝐶  ↔  ( ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝑥  =  𝐶  ∧  ∀ 𝑥  ∈  𝐴 ∃* 𝑦  ∈  𝐵 𝑥  =  𝐶 ) ) | 
						
							| 101 | 96 100 | bitr4di | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐴  ≈  𝐵 )  →  ( ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝑥  =  𝐶  ↔  ∀ 𝑥  ∈  𝐴 ∃! 𝑦  ∈  𝐵 𝑥  =  𝐶 ) ) |