Metamath Proof Explorer


Theorem pige3ALT

Description: Alternate proof of pige3 . This proof is based on the geometric observation that a hexagon of unit side length has perimeter 6, which is less than the unit-radius circumcircle, of perimeter 2pi . We translate this to algebra by looking at the function e ^ (i x ) as x goes from 0 to pi / 3 ; it moves at unit speed and travels distance 1 , hence 1 <_ _pi / 3 . (Contributed by Mario Carneiro, 21-May-2016) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion pige3ALT 3 ≤ π

Proof

Step Hyp Ref Expression
1 3cn 3 ∈ ℂ
2 1 mulid2i ( 1 · 3 ) = 3
3 tru
4 0xr 0 ∈ ℝ*
5 pirp π ∈ ℝ+
6 3rp 3 ∈ ℝ+
7 rpdivcl ( ( π ∈ ℝ+ ∧ 3 ∈ ℝ+ ) → ( π / 3 ) ∈ ℝ+ )
8 5 6 7 mp2an ( π / 3 ) ∈ ℝ+
9 rpxr ( ( π / 3 ) ∈ ℝ+ → ( π / 3 ) ∈ ℝ* )
10 8 9 ax-mp ( π / 3 ) ∈ ℝ*
11 rpge0 ( ( π / 3 ) ∈ ℝ+ → 0 ≤ ( π / 3 ) )
12 8 11 ax-mp 0 ≤ ( π / 3 )
13 lbicc2 ( ( 0 ∈ ℝ* ∧ ( π / 3 ) ∈ ℝ* ∧ 0 ≤ ( π / 3 ) ) → 0 ∈ ( 0 [,] ( π / 3 ) ) )
14 4 10 12 13 mp3an 0 ∈ ( 0 [,] ( π / 3 ) )
15 ubicc2 ( ( 0 ∈ ℝ* ∧ ( π / 3 ) ∈ ℝ* ∧ 0 ≤ ( π / 3 ) ) → ( π / 3 ) ∈ ( 0 [,] ( π / 3 ) ) )
16 4 10 12 15 mp3an ( π / 3 ) ∈ ( 0 [,] ( π / 3 ) )
17 14 16 pm3.2i ( 0 ∈ ( 0 [,] ( π / 3 ) ) ∧ ( π / 3 ) ∈ ( 0 [,] ( π / 3 ) ) )
18 0re 0 ∈ ℝ
19 18 a1i ( ⊤ → 0 ∈ ℝ )
20 pire π ∈ ℝ
21 3re 3 ∈ ℝ
22 3ne0 3 ≠ 0
23 20 21 22 redivcli ( π / 3 ) ∈ ℝ
24 23 a1i ( ⊤ → ( π / 3 ) ∈ ℝ )
25 efcn exp ∈ ( ℂ –cn→ ℂ )
26 25 a1i ( ⊤ → exp ∈ ( ℂ –cn→ ℂ ) )
27 iccssre ( ( 0 ∈ ℝ ∧ ( π / 3 ) ∈ ℝ ) → ( 0 [,] ( π / 3 ) ) ⊆ ℝ )
28 18 23 27 mp2an ( 0 [,] ( π / 3 ) ) ⊆ ℝ
29 ax-resscn ℝ ⊆ ℂ
30 28 29 sstri ( 0 [,] ( π / 3 ) ) ⊆ ℂ
31 resmpt ( ( 0 [,] ( π / 3 ) ) ⊆ ℂ → ( ( 𝑥 ∈ ℂ ↦ ( i · 𝑥 ) ) ↾ ( 0 [,] ( π / 3 ) ) ) = ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( i · 𝑥 ) ) )
32 30 31 mp1i ( ⊤ → ( ( 𝑥 ∈ ℂ ↦ ( i · 𝑥 ) ) ↾ ( 0 [,] ( π / 3 ) ) ) = ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( i · 𝑥 ) ) )
33 ssidd ( ⊤ → ℂ ⊆ ℂ )
34 ax-icn i ∈ ℂ
35 simpr ( ( ⊤ ∧ 𝑥 ∈ ℂ ) → 𝑥 ∈ ℂ )
36 mulcl ( ( i ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( i · 𝑥 ) ∈ ℂ )
37 34 35 36 sylancr ( ( ⊤ ∧ 𝑥 ∈ ℂ ) → ( i · 𝑥 ) ∈ ℂ )
38 37 fmpttd ( ⊤ → ( 𝑥 ∈ ℂ ↦ ( i · 𝑥 ) ) : ℂ ⟶ ℂ )
39 cnelprrecn ℂ ∈ { ℝ , ℂ }
40 39 a1i ( ⊤ → ℂ ∈ { ℝ , ℂ } )
41 ax-1cn 1 ∈ ℂ
42 41 a1i ( ( ⊤ ∧ 𝑥 ∈ ℂ ) → 1 ∈ ℂ )
43 40 dvmptid ( ⊤ → ( ℂ D ( 𝑥 ∈ ℂ ↦ 𝑥 ) ) = ( 𝑥 ∈ ℂ ↦ 1 ) )
44 34 a1i ( ⊤ → i ∈ ℂ )
45 40 35 42 43 44 dvmptcmul ( ⊤ → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( i · 𝑥 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( i · 1 ) ) )
46 34 mulid1i ( i · 1 ) = i
47 46 mpteq2i ( 𝑥 ∈ ℂ ↦ ( i · 1 ) ) = ( 𝑥 ∈ ℂ ↦ i )
48 45 47 eqtrdi ( ⊤ → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( i · 𝑥 ) ) ) = ( 𝑥 ∈ ℂ ↦ i ) )
49 48 dmeqd ( ⊤ → dom ( ℂ D ( 𝑥 ∈ ℂ ↦ ( i · 𝑥 ) ) ) = dom ( 𝑥 ∈ ℂ ↦ i ) )
50 34 elexi i ∈ V
51 eqid ( 𝑥 ∈ ℂ ↦ i ) = ( 𝑥 ∈ ℂ ↦ i )
52 50 51 dmmpti dom ( 𝑥 ∈ ℂ ↦ i ) = ℂ
53 49 52 eqtrdi ( ⊤ → dom ( ℂ D ( 𝑥 ∈ ℂ ↦ ( i · 𝑥 ) ) ) = ℂ )
54 dvcn ( ( ( ℂ ⊆ ℂ ∧ ( 𝑥 ∈ ℂ ↦ ( i · 𝑥 ) ) : ℂ ⟶ ℂ ∧ ℂ ⊆ ℂ ) ∧ dom ( ℂ D ( 𝑥 ∈ ℂ ↦ ( i · 𝑥 ) ) ) = ℂ ) → ( 𝑥 ∈ ℂ ↦ ( i · 𝑥 ) ) ∈ ( ℂ –cn→ ℂ ) )
55 33 38 33 53 54 syl31anc ( ⊤ → ( 𝑥 ∈ ℂ ↦ ( i · 𝑥 ) ) ∈ ( ℂ –cn→ ℂ ) )
56 rescncf ( ( 0 [,] ( π / 3 ) ) ⊆ ℂ → ( ( 𝑥 ∈ ℂ ↦ ( i · 𝑥 ) ) ∈ ( ℂ –cn→ ℂ ) → ( ( 𝑥 ∈ ℂ ↦ ( i · 𝑥 ) ) ↾ ( 0 [,] ( π / 3 ) ) ) ∈ ( ( 0 [,] ( π / 3 ) ) –cn→ ℂ ) ) )
57 30 55 56 mpsyl ( ⊤ → ( ( 𝑥 ∈ ℂ ↦ ( i · 𝑥 ) ) ↾ ( 0 [,] ( π / 3 ) ) ) ∈ ( ( 0 [,] ( π / 3 ) ) –cn→ ℂ ) )
58 32 57 eqeltrrd ( ⊤ → ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( i · 𝑥 ) ) ∈ ( ( 0 [,] ( π / 3 ) ) –cn→ ℂ ) )
59 26 58 cncfmpt1f ( ⊤ → ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ∈ ( ( 0 [,] ( π / 3 ) ) –cn→ ℂ ) )
60 reelprrecn ℝ ∈ { ℝ , ℂ }
61 60 a1i ( ⊤ → ℝ ∈ { ℝ , ℂ } )
62 recn ( 𝑥 ∈ ℝ → 𝑥 ∈ ℂ )
63 efcl ( ( i · 𝑥 ) ∈ ℂ → ( exp ‘ ( i · 𝑥 ) ) ∈ ℂ )
64 37 63 syl ( ( ⊤ ∧ 𝑥 ∈ ℂ ) → ( exp ‘ ( i · 𝑥 ) ) ∈ ℂ )
65 62 64 sylan2 ( ( ⊤ ∧ 𝑥 ∈ ℝ ) → ( exp ‘ ( i · 𝑥 ) ) ∈ ℂ )
66 mulcl ( ( ( exp ‘ ( i · 𝑥 ) ) ∈ ℂ ∧ i ∈ ℂ ) → ( ( exp ‘ ( i · 𝑥 ) ) · i ) ∈ ℂ )
67 64 34 66 sylancl ( ( ⊤ ∧ 𝑥 ∈ ℂ ) → ( ( exp ‘ ( i · 𝑥 ) ) · i ) ∈ ℂ )
68 62 67 sylan2 ( ( ⊤ ∧ 𝑥 ∈ ℝ ) → ( ( exp ‘ ( i · 𝑥 ) ) · i ) ∈ ℂ )
69 eqid ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld )
70 69 cnfldtopon ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ )
71 toponmax ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) → ℂ ∈ ( TopOpen ‘ ℂfld ) )
72 70 71 mp1i ( ⊤ → ℂ ∈ ( TopOpen ‘ ℂfld ) )
73 29 a1i ( ⊤ → ℝ ⊆ ℂ )
74 df-ss ( ℝ ⊆ ℂ ↔ ( ℝ ∩ ℂ ) = ℝ )
75 73 74 sylib ( ⊤ → ( ℝ ∩ ℂ ) = ℝ )
76 34 a1i ( ( ⊤ ∧ 𝑥 ∈ ℂ ) → i ∈ ℂ )
77 efcl ( 𝑦 ∈ ℂ → ( exp ‘ 𝑦 ) ∈ ℂ )
78 77 adantl ( ( ⊤ ∧ 𝑦 ∈ ℂ ) → ( exp ‘ 𝑦 ) ∈ ℂ )
79 dvef ( ℂ D exp ) = exp
80 eff exp : ℂ ⟶ ℂ
81 80 a1i ( ⊤ → exp : ℂ ⟶ ℂ )
82 81 feqmptd ( ⊤ → exp = ( 𝑦 ∈ ℂ ↦ ( exp ‘ 𝑦 ) ) )
83 82 oveq2d ( ⊤ → ( ℂ D exp ) = ( ℂ D ( 𝑦 ∈ ℂ ↦ ( exp ‘ 𝑦 ) ) ) )
84 79 83 82 3eqtr3a ( ⊤ → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( exp ‘ 𝑦 ) ) ) = ( 𝑦 ∈ ℂ ↦ ( exp ‘ 𝑦 ) ) )
85 fveq2 ( 𝑦 = ( i · 𝑥 ) → ( exp ‘ 𝑦 ) = ( exp ‘ ( i · 𝑥 ) ) )
86 40 40 37 76 78 78 48 84 85 85 dvmptco ( ⊤ → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( exp ‘ ( i · 𝑥 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( ( exp ‘ ( i · 𝑥 ) ) · i ) ) )
87 69 61 72 75 64 67 86 dvmptres3 ( ⊤ → ( ℝ D ( 𝑥 ∈ ℝ ↦ ( exp ‘ ( i · 𝑥 ) ) ) ) = ( 𝑥 ∈ ℝ ↦ ( ( exp ‘ ( i · 𝑥 ) ) · i ) ) )
88 28 a1i ( ⊤ → ( 0 [,] ( π / 3 ) ) ⊆ ℝ )
89 69 tgioo2 ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ )
90 iccntr ( ( 0 ∈ ℝ ∧ ( π / 3 ) ∈ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 0 [,] ( π / 3 ) ) ) = ( 0 (,) ( π / 3 ) ) )
91 18 24 90 sylancr ( ⊤ → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 0 [,] ( π / 3 ) ) ) = ( 0 (,) ( π / 3 ) ) )
92 61 65 68 87 88 89 69 91 dvmptres2 ( ⊤ → ( ℝ D ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ) = ( 𝑥 ∈ ( 0 (,) ( π / 3 ) ) ↦ ( ( exp ‘ ( i · 𝑥 ) ) · i ) ) )
93 92 dmeqd ( ⊤ → dom ( ℝ D ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ) = dom ( 𝑥 ∈ ( 0 (,) ( π / 3 ) ) ↦ ( ( exp ‘ ( i · 𝑥 ) ) · i ) ) )
94 ovex ( ( exp ‘ ( i · 𝑥 ) ) · i ) ∈ V
95 eqid ( 𝑥 ∈ ( 0 (,) ( π / 3 ) ) ↦ ( ( exp ‘ ( i · 𝑥 ) ) · i ) ) = ( 𝑥 ∈ ( 0 (,) ( π / 3 ) ) ↦ ( ( exp ‘ ( i · 𝑥 ) ) · i ) )
96 94 95 dmmpti dom ( 𝑥 ∈ ( 0 (,) ( π / 3 ) ) ↦ ( ( exp ‘ ( i · 𝑥 ) ) · i ) ) = ( 0 (,) ( π / 3 ) )
97 93 96 eqtrdi ( ⊤ → dom ( ℝ D ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ) = ( 0 (,) ( π / 3 ) ) )
98 1re 1 ∈ ℝ
99 98 a1i ( ⊤ → 1 ∈ ℝ )
100 92 fveq1d ( ⊤ → ( ( ℝ D ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ) ‘ 𝑦 ) = ( ( 𝑥 ∈ ( 0 (,) ( π / 3 ) ) ↦ ( ( exp ‘ ( i · 𝑥 ) ) · i ) ) ‘ 𝑦 ) )
101 oveq2 ( 𝑥 = 𝑦 → ( i · 𝑥 ) = ( i · 𝑦 ) )
102 101 fveq2d ( 𝑥 = 𝑦 → ( exp ‘ ( i · 𝑥 ) ) = ( exp ‘ ( i · 𝑦 ) ) )
103 102 oveq1d ( 𝑥 = 𝑦 → ( ( exp ‘ ( i · 𝑥 ) ) · i ) = ( ( exp ‘ ( i · 𝑦 ) ) · i ) )
104 103 95 94 fvmpt3i ( 𝑦 ∈ ( 0 (,) ( π / 3 ) ) → ( ( 𝑥 ∈ ( 0 (,) ( π / 3 ) ) ↦ ( ( exp ‘ ( i · 𝑥 ) ) · i ) ) ‘ 𝑦 ) = ( ( exp ‘ ( i · 𝑦 ) ) · i ) )
105 100 104 sylan9eq ( ( ⊤ ∧ 𝑦 ∈ ( 0 (,) ( π / 3 ) ) ) → ( ( ℝ D ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ) ‘ 𝑦 ) = ( ( exp ‘ ( i · 𝑦 ) ) · i ) )
106 105 fveq2d ( ( ⊤ ∧ 𝑦 ∈ ( 0 (,) ( π / 3 ) ) ) → ( abs ‘ ( ( ℝ D ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ) ‘ 𝑦 ) ) = ( abs ‘ ( ( exp ‘ ( i · 𝑦 ) ) · i ) ) )
107 ioossre ( 0 (,) ( π / 3 ) ) ⊆ ℝ
108 107 a1i ( ⊤ → ( 0 (,) ( π / 3 ) ) ⊆ ℝ )
109 108 sselda ( ( ⊤ ∧ 𝑦 ∈ ( 0 (,) ( π / 3 ) ) ) → 𝑦 ∈ ℝ )
110 109 recnd ( ( ⊤ ∧ 𝑦 ∈ ( 0 (,) ( π / 3 ) ) ) → 𝑦 ∈ ℂ )
111 mulcl ( ( i ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( i · 𝑦 ) ∈ ℂ )
112 34 110 111 sylancr ( ( ⊤ ∧ 𝑦 ∈ ( 0 (,) ( π / 3 ) ) ) → ( i · 𝑦 ) ∈ ℂ )
113 efcl ( ( i · 𝑦 ) ∈ ℂ → ( exp ‘ ( i · 𝑦 ) ) ∈ ℂ )
114 112 113 syl ( ( ⊤ ∧ 𝑦 ∈ ( 0 (,) ( π / 3 ) ) ) → ( exp ‘ ( i · 𝑦 ) ) ∈ ℂ )
115 absmul ( ( ( exp ‘ ( i · 𝑦 ) ) ∈ ℂ ∧ i ∈ ℂ ) → ( abs ‘ ( ( exp ‘ ( i · 𝑦 ) ) · i ) ) = ( ( abs ‘ ( exp ‘ ( i · 𝑦 ) ) ) · ( abs ‘ i ) ) )
116 114 34 115 sylancl ( ( ⊤ ∧ 𝑦 ∈ ( 0 (,) ( π / 3 ) ) ) → ( abs ‘ ( ( exp ‘ ( i · 𝑦 ) ) · i ) ) = ( ( abs ‘ ( exp ‘ ( i · 𝑦 ) ) ) · ( abs ‘ i ) ) )
117 absefi ( 𝑦 ∈ ℝ → ( abs ‘ ( exp ‘ ( i · 𝑦 ) ) ) = 1 )
118 109 117 syl ( ( ⊤ ∧ 𝑦 ∈ ( 0 (,) ( π / 3 ) ) ) → ( abs ‘ ( exp ‘ ( i · 𝑦 ) ) ) = 1 )
119 absi ( abs ‘ i ) = 1
120 119 a1i ( ( ⊤ ∧ 𝑦 ∈ ( 0 (,) ( π / 3 ) ) ) → ( abs ‘ i ) = 1 )
121 118 120 oveq12d ( ( ⊤ ∧ 𝑦 ∈ ( 0 (,) ( π / 3 ) ) ) → ( ( abs ‘ ( exp ‘ ( i · 𝑦 ) ) ) · ( abs ‘ i ) ) = ( 1 · 1 ) )
122 41 mulid1i ( 1 · 1 ) = 1
123 121 122 eqtrdi ( ( ⊤ ∧ 𝑦 ∈ ( 0 (,) ( π / 3 ) ) ) → ( ( abs ‘ ( exp ‘ ( i · 𝑦 ) ) ) · ( abs ‘ i ) ) = 1 )
124 106 116 123 3eqtrd ( ( ⊤ ∧ 𝑦 ∈ ( 0 (,) ( π / 3 ) ) ) → ( abs ‘ ( ( ℝ D ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ) ‘ 𝑦 ) ) = 1 )
125 1le1 1 ≤ 1
126 124 125 eqbrtrdi ( ( ⊤ ∧ 𝑦 ∈ ( 0 (,) ( π / 3 ) ) ) → ( abs ‘ ( ( ℝ D ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ) ‘ 𝑦 ) ) ≤ 1 )
127 19 24 59 97 99 126 dvlip ( ( ⊤ ∧ ( 0 ∈ ( 0 [,] ( π / 3 ) ) ∧ ( π / 3 ) ∈ ( 0 [,] ( π / 3 ) ) ) ) → ( abs ‘ ( ( ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ‘ 0 ) − ( ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ‘ ( π / 3 ) ) ) ) ≤ ( 1 · ( abs ‘ ( 0 − ( π / 3 ) ) ) ) )
128 3 17 127 mp2an ( abs ‘ ( ( ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ‘ 0 ) − ( ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ‘ ( π / 3 ) ) ) ) ≤ ( 1 · ( abs ‘ ( 0 − ( π / 3 ) ) ) )
129 oveq2 ( 𝑥 = 0 → ( i · 𝑥 ) = ( i · 0 ) )
130 it0e0 ( i · 0 ) = 0
131 129 130 eqtrdi ( 𝑥 = 0 → ( i · 𝑥 ) = 0 )
132 131 fveq2d ( 𝑥 = 0 → ( exp ‘ ( i · 𝑥 ) ) = ( exp ‘ 0 ) )
133 ef0 ( exp ‘ 0 ) = 1
134 132 133 eqtrdi ( 𝑥 = 0 → ( exp ‘ ( i · 𝑥 ) ) = 1 )
135 eqid ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) = ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) )
136 fvex ( exp ‘ ( i · 𝑥 ) ) ∈ V
137 134 135 136 fvmpt3i ( 0 ∈ ( 0 [,] ( π / 3 ) ) → ( ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ‘ 0 ) = 1 )
138 14 137 ax-mp ( ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ‘ 0 ) = 1
139 oveq2 ( 𝑥 = ( π / 3 ) → ( i · 𝑥 ) = ( i · ( π / 3 ) ) )
140 139 fveq2d ( 𝑥 = ( π / 3 ) → ( exp ‘ ( i · 𝑥 ) ) = ( exp ‘ ( i · ( π / 3 ) ) ) )
141 140 135 136 fvmpt3i ( ( π / 3 ) ∈ ( 0 [,] ( π / 3 ) ) → ( ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ‘ ( π / 3 ) ) = ( exp ‘ ( i · ( π / 3 ) ) ) )
142 16 141 ax-mp ( ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ‘ ( π / 3 ) ) = ( exp ‘ ( i · ( π / 3 ) ) )
143 138 142 oveq12i ( ( ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ‘ 0 ) − ( ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ‘ ( π / 3 ) ) ) = ( 1 − ( exp ‘ ( i · ( π / 3 ) ) ) )
144 23 recni ( π / 3 ) ∈ ℂ
145 34 144 mulcli ( i · ( π / 3 ) ) ∈ ℂ
146 efcl ( ( i · ( π / 3 ) ) ∈ ℂ → ( exp ‘ ( i · ( π / 3 ) ) ) ∈ ℂ )
147 145 146 ax-mp ( exp ‘ ( i · ( π / 3 ) ) ) ∈ ℂ
148 negicn - i ∈ ℂ
149 148 144 mulcli ( - i · ( π / 3 ) ) ∈ ℂ
150 efcl ( ( - i · ( π / 3 ) ) ∈ ℂ → ( exp ‘ ( - i · ( π / 3 ) ) ) ∈ ℂ )
151 149 150 ax-mp ( exp ‘ ( - i · ( π / 3 ) ) ) ∈ ℂ
152 cosval ( ( π / 3 ) ∈ ℂ → ( cos ‘ ( π / 3 ) ) = ( ( ( exp ‘ ( i · ( π / 3 ) ) ) + ( exp ‘ ( - i · ( π / 3 ) ) ) ) / 2 ) )
153 144 152 ax-mp ( cos ‘ ( π / 3 ) ) = ( ( ( exp ‘ ( i · ( π / 3 ) ) ) + ( exp ‘ ( - i · ( π / 3 ) ) ) ) / 2 )
154 sincos3rdpi ( ( sin ‘ ( π / 3 ) ) = ( ( √ ‘ 3 ) / 2 ) ∧ ( cos ‘ ( π / 3 ) ) = ( 1 / 2 ) )
155 154 simpri ( cos ‘ ( π / 3 ) ) = ( 1 / 2 )
156 153 155 eqtr3i ( ( ( exp ‘ ( i · ( π / 3 ) ) ) + ( exp ‘ ( - i · ( π / 3 ) ) ) ) / 2 ) = ( 1 / 2 )
157 147 151 addcli ( ( exp ‘ ( i · ( π / 3 ) ) ) + ( exp ‘ ( - i · ( π / 3 ) ) ) ) ∈ ℂ
158 2cn 2 ∈ ℂ
159 2ne0 2 ≠ 0
160 157 41 158 159 div11i ( ( ( ( exp ‘ ( i · ( π / 3 ) ) ) + ( exp ‘ ( - i · ( π / 3 ) ) ) ) / 2 ) = ( 1 / 2 ) ↔ ( ( exp ‘ ( i · ( π / 3 ) ) ) + ( exp ‘ ( - i · ( π / 3 ) ) ) ) = 1 )
161 156 160 mpbi ( ( exp ‘ ( i · ( π / 3 ) ) ) + ( exp ‘ ( - i · ( π / 3 ) ) ) ) = 1
162 41 147 151 161 subaddrii ( 1 − ( exp ‘ ( i · ( π / 3 ) ) ) ) = ( exp ‘ ( - i · ( π / 3 ) ) )
163 mulneg12 ( ( i ∈ ℂ ∧ ( π / 3 ) ∈ ℂ ) → ( - i · ( π / 3 ) ) = ( i · - ( π / 3 ) ) )
164 34 144 163 mp2an ( - i · ( π / 3 ) ) = ( i · - ( π / 3 ) )
165 164 fveq2i ( exp ‘ ( - i · ( π / 3 ) ) ) = ( exp ‘ ( i · - ( π / 3 ) ) )
166 143 162 165 3eqtri ( ( ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ‘ 0 ) − ( ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ‘ ( π / 3 ) ) ) = ( exp ‘ ( i · - ( π / 3 ) ) )
167 166 fveq2i ( abs ‘ ( ( ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ‘ 0 ) − ( ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ‘ ( π / 3 ) ) ) ) = ( abs ‘ ( exp ‘ ( i · - ( π / 3 ) ) ) )
168 144 absnegi ( abs ‘ - ( π / 3 ) ) = ( abs ‘ ( π / 3 ) )
169 df-neg - ( π / 3 ) = ( 0 − ( π / 3 ) )
170 169 fveq2i ( abs ‘ - ( π / 3 ) ) = ( abs ‘ ( 0 − ( π / 3 ) ) )
171 168 170 eqtr3i ( abs ‘ ( π / 3 ) ) = ( abs ‘ ( 0 − ( π / 3 ) ) )
172 rprege0 ( ( π / 3 ) ∈ ℝ+ → ( ( π / 3 ) ∈ ℝ ∧ 0 ≤ ( π / 3 ) ) )
173 absid ( ( ( π / 3 ) ∈ ℝ ∧ 0 ≤ ( π / 3 ) ) → ( abs ‘ ( π / 3 ) ) = ( π / 3 ) )
174 8 172 173 mp2b ( abs ‘ ( π / 3 ) ) = ( π / 3 )
175 171 174 eqtr3i ( abs ‘ ( 0 − ( π / 3 ) ) ) = ( π / 3 )
176 175 oveq2i ( 1 · ( abs ‘ ( 0 − ( π / 3 ) ) ) ) = ( 1 · ( π / 3 ) )
177 128 167 176 3brtr3i ( abs ‘ ( exp ‘ ( i · - ( π / 3 ) ) ) ) ≤ ( 1 · ( π / 3 ) )
178 23 renegcli - ( π / 3 ) ∈ ℝ
179 absefi ( - ( π / 3 ) ∈ ℝ → ( abs ‘ ( exp ‘ ( i · - ( π / 3 ) ) ) ) = 1 )
180 178 179 ax-mp ( abs ‘ ( exp ‘ ( i · - ( π / 3 ) ) ) ) = 1
181 144 mulid2i ( 1 · ( π / 3 ) ) = ( π / 3 )
182 177 180 181 3brtr3i 1 ≤ ( π / 3 )
183 3pos 0 < 3
184 21 183 pm3.2i ( 3 ∈ ℝ ∧ 0 < 3 )
185 lemuldiv ( ( 1 ∈ ℝ ∧ π ∈ ℝ ∧ ( 3 ∈ ℝ ∧ 0 < 3 ) ) → ( ( 1 · 3 ) ≤ π ↔ 1 ≤ ( π / 3 ) ) )
186 98 20 184 185 mp3an ( ( 1 · 3 ) ≤ π ↔ 1 ≤ ( π / 3 ) )
187 182 186 mpbir ( 1 · 3 ) ≤ π
188 2 187 eqbrtrri 3 ≤ π