| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3cn |
|- 3 e. CC |
| 2 |
1
|
mullidi |
|- ( 1 x. 3 ) = 3 |
| 3 |
|
tru |
|- T. |
| 4 |
|
0xr |
|- 0 e. RR* |
| 5 |
|
pirp |
|- _pi e. RR+ |
| 6 |
|
3rp |
|- 3 e. RR+ |
| 7 |
|
rpdivcl |
|- ( ( _pi e. RR+ /\ 3 e. RR+ ) -> ( _pi / 3 ) e. RR+ ) |
| 8 |
5 6 7
|
mp2an |
|- ( _pi / 3 ) e. RR+ |
| 9 |
|
rpxr |
|- ( ( _pi / 3 ) e. RR+ -> ( _pi / 3 ) e. RR* ) |
| 10 |
8 9
|
ax-mp |
|- ( _pi / 3 ) e. RR* |
| 11 |
|
rpge0 |
|- ( ( _pi / 3 ) e. RR+ -> 0 <_ ( _pi / 3 ) ) |
| 12 |
8 11
|
ax-mp |
|- 0 <_ ( _pi / 3 ) |
| 13 |
|
lbicc2 |
|- ( ( 0 e. RR* /\ ( _pi / 3 ) e. RR* /\ 0 <_ ( _pi / 3 ) ) -> 0 e. ( 0 [,] ( _pi / 3 ) ) ) |
| 14 |
4 10 12 13
|
mp3an |
|- 0 e. ( 0 [,] ( _pi / 3 ) ) |
| 15 |
|
ubicc2 |
|- ( ( 0 e. RR* /\ ( _pi / 3 ) e. RR* /\ 0 <_ ( _pi / 3 ) ) -> ( _pi / 3 ) e. ( 0 [,] ( _pi / 3 ) ) ) |
| 16 |
4 10 12 15
|
mp3an |
|- ( _pi / 3 ) e. ( 0 [,] ( _pi / 3 ) ) |
| 17 |
14 16
|
pm3.2i |
|- ( 0 e. ( 0 [,] ( _pi / 3 ) ) /\ ( _pi / 3 ) e. ( 0 [,] ( _pi / 3 ) ) ) |
| 18 |
|
0re |
|- 0 e. RR |
| 19 |
18
|
a1i |
|- ( T. -> 0 e. RR ) |
| 20 |
|
pire |
|- _pi e. RR |
| 21 |
|
3re |
|- 3 e. RR |
| 22 |
|
3ne0 |
|- 3 =/= 0 |
| 23 |
20 21 22
|
redivcli |
|- ( _pi / 3 ) e. RR |
| 24 |
23
|
a1i |
|- ( T. -> ( _pi / 3 ) e. RR ) |
| 25 |
|
efcn |
|- exp e. ( CC -cn-> CC ) |
| 26 |
25
|
a1i |
|- ( T. -> exp e. ( CC -cn-> CC ) ) |
| 27 |
|
iccssre |
|- ( ( 0 e. RR /\ ( _pi / 3 ) e. RR ) -> ( 0 [,] ( _pi / 3 ) ) C_ RR ) |
| 28 |
18 23 27
|
mp2an |
|- ( 0 [,] ( _pi / 3 ) ) C_ RR |
| 29 |
|
ax-resscn |
|- RR C_ CC |
| 30 |
28 29
|
sstri |
|- ( 0 [,] ( _pi / 3 ) ) C_ CC |
| 31 |
|
resmpt |
|- ( ( 0 [,] ( _pi / 3 ) ) C_ CC -> ( ( x e. CC |-> ( _i x. x ) ) |` ( 0 [,] ( _pi / 3 ) ) ) = ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( _i x. x ) ) ) |
| 32 |
30 31
|
mp1i |
|- ( T. -> ( ( x e. CC |-> ( _i x. x ) ) |` ( 0 [,] ( _pi / 3 ) ) ) = ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( _i x. x ) ) ) |
| 33 |
|
ssidd |
|- ( T. -> CC C_ CC ) |
| 34 |
|
ax-icn |
|- _i e. CC |
| 35 |
|
simpr |
|- ( ( T. /\ x e. CC ) -> x e. CC ) |
| 36 |
|
mulcl |
|- ( ( _i e. CC /\ x e. CC ) -> ( _i x. x ) e. CC ) |
| 37 |
34 35 36
|
sylancr |
|- ( ( T. /\ x e. CC ) -> ( _i x. x ) e. CC ) |
| 38 |
37
|
fmpttd |
|- ( T. -> ( x e. CC |-> ( _i x. x ) ) : CC --> CC ) |
| 39 |
|
cnelprrecn |
|- CC e. { RR , CC } |
| 40 |
39
|
a1i |
|- ( T. -> CC e. { RR , CC } ) |
| 41 |
|
ax-1cn |
|- 1 e. CC |
| 42 |
41
|
a1i |
|- ( ( T. /\ x e. CC ) -> 1 e. CC ) |
| 43 |
40
|
dvmptid |
|- ( T. -> ( CC _D ( x e. CC |-> x ) ) = ( x e. CC |-> 1 ) ) |
| 44 |
34
|
a1i |
|- ( T. -> _i e. CC ) |
| 45 |
40 35 42 43 44
|
dvmptcmul |
|- ( T. -> ( CC _D ( x e. CC |-> ( _i x. x ) ) ) = ( x e. CC |-> ( _i x. 1 ) ) ) |
| 46 |
34
|
mulridi |
|- ( _i x. 1 ) = _i |
| 47 |
46
|
mpteq2i |
|- ( x e. CC |-> ( _i x. 1 ) ) = ( x e. CC |-> _i ) |
| 48 |
45 47
|
eqtrdi |
|- ( T. -> ( CC _D ( x e. CC |-> ( _i x. x ) ) ) = ( x e. CC |-> _i ) ) |
| 49 |
48
|
dmeqd |
|- ( T. -> dom ( CC _D ( x e. CC |-> ( _i x. x ) ) ) = dom ( x e. CC |-> _i ) ) |
| 50 |
34
|
elexi |
|- _i e. _V |
| 51 |
|
eqid |
|- ( x e. CC |-> _i ) = ( x e. CC |-> _i ) |
| 52 |
50 51
|
dmmpti |
|- dom ( x e. CC |-> _i ) = CC |
| 53 |
49 52
|
eqtrdi |
|- ( T. -> dom ( CC _D ( x e. CC |-> ( _i x. x ) ) ) = CC ) |
| 54 |
|
dvcn |
|- ( ( ( CC C_ CC /\ ( x e. CC |-> ( _i x. x ) ) : CC --> CC /\ CC C_ CC ) /\ dom ( CC _D ( x e. CC |-> ( _i x. x ) ) ) = CC ) -> ( x e. CC |-> ( _i x. x ) ) e. ( CC -cn-> CC ) ) |
| 55 |
33 38 33 53 54
|
syl31anc |
|- ( T. -> ( x e. CC |-> ( _i x. x ) ) e. ( CC -cn-> CC ) ) |
| 56 |
|
rescncf |
|- ( ( 0 [,] ( _pi / 3 ) ) C_ CC -> ( ( x e. CC |-> ( _i x. x ) ) e. ( CC -cn-> CC ) -> ( ( x e. CC |-> ( _i x. x ) ) |` ( 0 [,] ( _pi / 3 ) ) ) e. ( ( 0 [,] ( _pi / 3 ) ) -cn-> CC ) ) ) |
| 57 |
30 55 56
|
mpsyl |
|- ( T. -> ( ( x e. CC |-> ( _i x. x ) ) |` ( 0 [,] ( _pi / 3 ) ) ) e. ( ( 0 [,] ( _pi / 3 ) ) -cn-> CC ) ) |
| 58 |
32 57
|
eqeltrrd |
|- ( T. -> ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( _i x. x ) ) e. ( ( 0 [,] ( _pi / 3 ) ) -cn-> CC ) ) |
| 59 |
26 58
|
cncfmpt1f |
|- ( T. -> ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) e. ( ( 0 [,] ( _pi / 3 ) ) -cn-> CC ) ) |
| 60 |
|
reelprrecn |
|- RR e. { RR , CC } |
| 61 |
60
|
a1i |
|- ( T. -> RR e. { RR , CC } ) |
| 62 |
|
recn |
|- ( x e. RR -> x e. CC ) |
| 63 |
|
efcl |
|- ( ( _i x. x ) e. CC -> ( exp ` ( _i x. x ) ) e. CC ) |
| 64 |
37 63
|
syl |
|- ( ( T. /\ x e. CC ) -> ( exp ` ( _i x. x ) ) e. CC ) |
| 65 |
62 64
|
sylan2 |
|- ( ( T. /\ x e. RR ) -> ( exp ` ( _i x. x ) ) e. CC ) |
| 66 |
|
mulcl |
|- ( ( ( exp ` ( _i x. x ) ) e. CC /\ _i e. CC ) -> ( ( exp ` ( _i x. x ) ) x. _i ) e. CC ) |
| 67 |
64 34 66
|
sylancl |
|- ( ( T. /\ x e. CC ) -> ( ( exp ` ( _i x. x ) ) x. _i ) e. CC ) |
| 68 |
62 67
|
sylan2 |
|- ( ( T. /\ x e. RR ) -> ( ( exp ` ( _i x. x ) ) x. _i ) e. CC ) |
| 69 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 70 |
69
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 71 |
|
toponmax |
|- ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) -> CC e. ( TopOpen ` CCfld ) ) |
| 72 |
70 71
|
mp1i |
|- ( T. -> CC e. ( TopOpen ` CCfld ) ) |
| 73 |
29
|
a1i |
|- ( T. -> RR C_ CC ) |
| 74 |
|
dfss2 |
|- ( RR C_ CC <-> ( RR i^i CC ) = RR ) |
| 75 |
73 74
|
sylib |
|- ( T. -> ( RR i^i CC ) = RR ) |
| 76 |
34
|
a1i |
|- ( ( T. /\ x e. CC ) -> _i e. CC ) |
| 77 |
|
efcl |
|- ( y e. CC -> ( exp ` y ) e. CC ) |
| 78 |
77
|
adantl |
|- ( ( T. /\ y e. CC ) -> ( exp ` y ) e. CC ) |
| 79 |
|
dvef |
|- ( CC _D exp ) = exp |
| 80 |
|
eff |
|- exp : CC --> CC |
| 81 |
80
|
a1i |
|- ( T. -> exp : CC --> CC ) |
| 82 |
81
|
feqmptd |
|- ( T. -> exp = ( y e. CC |-> ( exp ` y ) ) ) |
| 83 |
82
|
oveq2d |
|- ( T. -> ( CC _D exp ) = ( CC _D ( y e. CC |-> ( exp ` y ) ) ) ) |
| 84 |
79 83 82
|
3eqtr3a |
|- ( T. -> ( CC _D ( y e. CC |-> ( exp ` y ) ) ) = ( y e. CC |-> ( exp ` y ) ) ) |
| 85 |
|
fveq2 |
|- ( y = ( _i x. x ) -> ( exp ` y ) = ( exp ` ( _i x. x ) ) ) |
| 86 |
40 40 37 76 78 78 48 84 85 85
|
dvmptco |
|- ( T. -> ( CC _D ( x e. CC |-> ( exp ` ( _i x. x ) ) ) ) = ( x e. CC |-> ( ( exp ` ( _i x. x ) ) x. _i ) ) ) |
| 87 |
69 61 72 75 64 67 86
|
dvmptres3 |
|- ( T. -> ( RR _D ( x e. RR |-> ( exp ` ( _i x. x ) ) ) ) = ( x e. RR |-> ( ( exp ` ( _i x. x ) ) x. _i ) ) ) |
| 88 |
28
|
a1i |
|- ( T. -> ( 0 [,] ( _pi / 3 ) ) C_ RR ) |
| 89 |
69
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 90 |
|
iccntr |
|- ( ( 0 e. RR /\ ( _pi / 3 ) e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( 0 [,] ( _pi / 3 ) ) ) = ( 0 (,) ( _pi / 3 ) ) ) |
| 91 |
18 24 90
|
sylancr |
|- ( T. -> ( ( int ` ( topGen ` ran (,) ) ) ` ( 0 [,] ( _pi / 3 ) ) ) = ( 0 (,) ( _pi / 3 ) ) ) |
| 92 |
61 65 68 87 88 89 69 91
|
dvmptres2 |
|- ( T. -> ( RR _D ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ) = ( x e. ( 0 (,) ( _pi / 3 ) ) |-> ( ( exp ` ( _i x. x ) ) x. _i ) ) ) |
| 93 |
92
|
dmeqd |
|- ( T. -> dom ( RR _D ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ) = dom ( x e. ( 0 (,) ( _pi / 3 ) ) |-> ( ( exp ` ( _i x. x ) ) x. _i ) ) ) |
| 94 |
|
ovex |
|- ( ( exp ` ( _i x. x ) ) x. _i ) e. _V |
| 95 |
|
eqid |
|- ( x e. ( 0 (,) ( _pi / 3 ) ) |-> ( ( exp ` ( _i x. x ) ) x. _i ) ) = ( x e. ( 0 (,) ( _pi / 3 ) ) |-> ( ( exp ` ( _i x. x ) ) x. _i ) ) |
| 96 |
94 95
|
dmmpti |
|- dom ( x e. ( 0 (,) ( _pi / 3 ) ) |-> ( ( exp ` ( _i x. x ) ) x. _i ) ) = ( 0 (,) ( _pi / 3 ) ) |
| 97 |
93 96
|
eqtrdi |
|- ( T. -> dom ( RR _D ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ) = ( 0 (,) ( _pi / 3 ) ) ) |
| 98 |
|
1re |
|- 1 e. RR |
| 99 |
98
|
a1i |
|- ( T. -> 1 e. RR ) |
| 100 |
92
|
fveq1d |
|- ( T. -> ( ( RR _D ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ) ` y ) = ( ( x e. ( 0 (,) ( _pi / 3 ) ) |-> ( ( exp ` ( _i x. x ) ) x. _i ) ) ` y ) ) |
| 101 |
|
oveq2 |
|- ( x = y -> ( _i x. x ) = ( _i x. y ) ) |
| 102 |
101
|
fveq2d |
|- ( x = y -> ( exp ` ( _i x. x ) ) = ( exp ` ( _i x. y ) ) ) |
| 103 |
102
|
oveq1d |
|- ( x = y -> ( ( exp ` ( _i x. x ) ) x. _i ) = ( ( exp ` ( _i x. y ) ) x. _i ) ) |
| 104 |
103 95 94
|
fvmpt3i |
|- ( y e. ( 0 (,) ( _pi / 3 ) ) -> ( ( x e. ( 0 (,) ( _pi / 3 ) ) |-> ( ( exp ` ( _i x. x ) ) x. _i ) ) ` y ) = ( ( exp ` ( _i x. y ) ) x. _i ) ) |
| 105 |
100 104
|
sylan9eq |
|- ( ( T. /\ y e. ( 0 (,) ( _pi / 3 ) ) ) -> ( ( RR _D ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ) ` y ) = ( ( exp ` ( _i x. y ) ) x. _i ) ) |
| 106 |
105
|
fveq2d |
|- ( ( T. /\ y e. ( 0 (,) ( _pi / 3 ) ) ) -> ( abs ` ( ( RR _D ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ) ` y ) ) = ( abs ` ( ( exp ` ( _i x. y ) ) x. _i ) ) ) |
| 107 |
|
ioossre |
|- ( 0 (,) ( _pi / 3 ) ) C_ RR |
| 108 |
107
|
a1i |
|- ( T. -> ( 0 (,) ( _pi / 3 ) ) C_ RR ) |
| 109 |
108
|
sselda |
|- ( ( T. /\ y e. ( 0 (,) ( _pi / 3 ) ) ) -> y e. RR ) |
| 110 |
109
|
recnd |
|- ( ( T. /\ y e. ( 0 (,) ( _pi / 3 ) ) ) -> y e. CC ) |
| 111 |
|
mulcl |
|- ( ( _i e. CC /\ y e. CC ) -> ( _i x. y ) e. CC ) |
| 112 |
34 110 111
|
sylancr |
|- ( ( T. /\ y e. ( 0 (,) ( _pi / 3 ) ) ) -> ( _i x. y ) e. CC ) |
| 113 |
|
efcl |
|- ( ( _i x. y ) e. CC -> ( exp ` ( _i x. y ) ) e. CC ) |
| 114 |
112 113
|
syl |
|- ( ( T. /\ y e. ( 0 (,) ( _pi / 3 ) ) ) -> ( exp ` ( _i x. y ) ) e. CC ) |
| 115 |
|
absmul |
|- ( ( ( exp ` ( _i x. y ) ) e. CC /\ _i e. CC ) -> ( abs ` ( ( exp ` ( _i x. y ) ) x. _i ) ) = ( ( abs ` ( exp ` ( _i x. y ) ) ) x. ( abs ` _i ) ) ) |
| 116 |
114 34 115
|
sylancl |
|- ( ( T. /\ y e. ( 0 (,) ( _pi / 3 ) ) ) -> ( abs ` ( ( exp ` ( _i x. y ) ) x. _i ) ) = ( ( abs ` ( exp ` ( _i x. y ) ) ) x. ( abs ` _i ) ) ) |
| 117 |
|
absefi |
|- ( y e. RR -> ( abs ` ( exp ` ( _i x. y ) ) ) = 1 ) |
| 118 |
109 117
|
syl |
|- ( ( T. /\ y e. ( 0 (,) ( _pi / 3 ) ) ) -> ( abs ` ( exp ` ( _i x. y ) ) ) = 1 ) |
| 119 |
|
absi |
|- ( abs ` _i ) = 1 |
| 120 |
119
|
a1i |
|- ( ( T. /\ y e. ( 0 (,) ( _pi / 3 ) ) ) -> ( abs ` _i ) = 1 ) |
| 121 |
118 120
|
oveq12d |
|- ( ( T. /\ y e. ( 0 (,) ( _pi / 3 ) ) ) -> ( ( abs ` ( exp ` ( _i x. y ) ) ) x. ( abs ` _i ) ) = ( 1 x. 1 ) ) |
| 122 |
41
|
mulridi |
|- ( 1 x. 1 ) = 1 |
| 123 |
121 122
|
eqtrdi |
|- ( ( T. /\ y e. ( 0 (,) ( _pi / 3 ) ) ) -> ( ( abs ` ( exp ` ( _i x. y ) ) ) x. ( abs ` _i ) ) = 1 ) |
| 124 |
106 116 123
|
3eqtrd |
|- ( ( T. /\ y e. ( 0 (,) ( _pi / 3 ) ) ) -> ( abs ` ( ( RR _D ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ) ` y ) ) = 1 ) |
| 125 |
|
1le1 |
|- 1 <_ 1 |
| 126 |
124 125
|
eqbrtrdi |
|- ( ( T. /\ y e. ( 0 (,) ( _pi / 3 ) ) ) -> ( abs ` ( ( RR _D ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ) ` y ) ) <_ 1 ) |
| 127 |
19 24 59 97 99 126
|
dvlip |
|- ( ( T. /\ ( 0 e. ( 0 [,] ( _pi / 3 ) ) /\ ( _pi / 3 ) e. ( 0 [,] ( _pi / 3 ) ) ) ) -> ( abs ` ( ( ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ` 0 ) - ( ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ` ( _pi / 3 ) ) ) ) <_ ( 1 x. ( abs ` ( 0 - ( _pi / 3 ) ) ) ) ) |
| 128 |
3 17 127
|
mp2an |
|- ( abs ` ( ( ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ` 0 ) - ( ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ` ( _pi / 3 ) ) ) ) <_ ( 1 x. ( abs ` ( 0 - ( _pi / 3 ) ) ) ) |
| 129 |
|
oveq2 |
|- ( x = 0 -> ( _i x. x ) = ( _i x. 0 ) ) |
| 130 |
|
it0e0 |
|- ( _i x. 0 ) = 0 |
| 131 |
129 130
|
eqtrdi |
|- ( x = 0 -> ( _i x. x ) = 0 ) |
| 132 |
131
|
fveq2d |
|- ( x = 0 -> ( exp ` ( _i x. x ) ) = ( exp ` 0 ) ) |
| 133 |
|
ef0 |
|- ( exp ` 0 ) = 1 |
| 134 |
132 133
|
eqtrdi |
|- ( x = 0 -> ( exp ` ( _i x. x ) ) = 1 ) |
| 135 |
|
eqid |
|- ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) = ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) |
| 136 |
|
fvex |
|- ( exp ` ( _i x. x ) ) e. _V |
| 137 |
134 135 136
|
fvmpt3i |
|- ( 0 e. ( 0 [,] ( _pi / 3 ) ) -> ( ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ` 0 ) = 1 ) |
| 138 |
14 137
|
ax-mp |
|- ( ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ` 0 ) = 1 |
| 139 |
|
oveq2 |
|- ( x = ( _pi / 3 ) -> ( _i x. x ) = ( _i x. ( _pi / 3 ) ) ) |
| 140 |
139
|
fveq2d |
|- ( x = ( _pi / 3 ) -> ( exp ` ( _i x. x ) ) = ( exp ` ( _i x. ( _pi / 3 ) ) ) ) |
| 141 |
140 135 136
|
fvmpt3i |
|- ( ( _pi / 3 ) e. ( 0 [,] ( _pi / 3 ) ) -> ( ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ` ( _pi / 3 ) ) = ( exp ` ( _i x. ( _pi / 3 ) ) ) ) |
| 142 |
16 141
|
ax-mp |
|- ( ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ` ( _pi / 3 ) ) = ( exp ` ( _i x. ( _pi / 3 ) ) ) |
| 143 |
138 142
|
oveq12i |
|- ( ( ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ` 0 ) - ( ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ` ( _pi / 3 ) ) ) = ( 1 - ( exp ` ( _i x. ( _pi / 3 ) ) ) ) |
| 144 |
23
|
recni |
|- ( _pi / 3 ) e. CC |
| 145 |
34 144
|
mulcli |
|- ( _i x. ( _pi / 3 ) ) e. CC |
| 146 |
|
efcl |
|- ( ( _i x. ( _pi / 3 ) ) e. CC -> ( exp ` ( _i x. ( _pi / 3 ) ) ) e. CC ) |
| 147 |
145 146
|
ax-mp |
|- ( exp ` ( _i x. ( _pi / 3 ) ) ) e. CC |
| 148 |
|
negicn |
|- -u _i e. CC |
| 149 |
148 144
|
mulcli |
|- ( -u _i x. ( _pi / 3 ) ) e. CC |
| 150 |
|
efcl |
|- ( ( -u _i x. ( _pi / 3 ) ) e. CC -> ( exp ` ( -u _i x. ( _pi / 3 ) ) ) e. CC ) |
| 151 |
149 150
|
ax-mp |
|- ( exp ` ( -u _i x. ( _pi / 3 ) ) ) e. CC |
| 152 |
|
cosval |
|- ( ( _pi / 3 ) e. CC -> ( cos ` ( _pi / 3 ) ) = ( ( ( exp ` ( _i x. ( _pi / 3 ) ) ) + ( exp ` ( -u _i x. ( _pi / 3 ) ) ) ) / 2 ) ) |
| 153 |
144 152
|
ax-mp |
|- ( cos ` ( _pi / 3 ) ) = ( ( ( exp ` ( _i x. ( _pi / 3 ) ) ) + ( exp ` ( -u _i x. ( _pi / 3 ) ) ) ) / 2 ) |
| 154 |
|
sincos3rdpi |
|- ( ( sin ` ( _pi / 3 ) ) = ( ( sqrt ` 3 ) / 2 ) /\ ( cos ` ( _pi / 3 ) ) = ( 1 / 2 ) ) |
| 155 |
154
|
simpri |
|- ( cos ` ( _pi / 3 ) ) = ( 1 / 2 ) |
| 156 |
153 155
|
eqtr3i |
|- ( ( ( exp ` ( _i x. ( _pi / 3 ) ) ) + ( exp ` ( -u _i x. ( _pi / 3 ) ) ) ) / 2 ) = ( 1 / 2 ) |
| 157 |
147 151
|
addcli |
|- ( ( exp ` ( _i x. ( _pi / 3 ) ) ) + ( exp ` ( -u _i x. ( _pi / 3 ) ) ) ) e. CC |
| 158 |
|
2cn |
|- 2 e. CC |
| 159 |
|
2ne0 |
|- 2 =/= 0 |
| 160 |
157 41 158 159
|
div11i |
|- ( ( ( ( exp ` ( _i x. ( _pi / 3 ) ) ) + ( exp ` ( -u _i x. ( _pi / 3 ) ) ) ) / 2 ) = ( 1 / 2 ) <-> ( ( exp ` ( _i x. ( _pi / 3 ) ) ) + ( exp ` ( -u _i x. ( _pi / 3 ) ) ) ) = 1 ) |
| 161 |
156 160
|
mpbi |
|- ( ( exp ` ( _i x. ( _pi / 3 ) ) ) + ( exp ` ( -u _i x. ( _pi / 3 ) ) ) ) = 1 |
| 162 |
41 147 151 161
|
subaddrii |
|- ( 1 - ( exp ` ( _i x. ( _pi / 3 ) ) ) ) = ( exp ` ( -u _i x. ( _pi / 3 ) ) ) |
| 163 |
|
mulneg12 |
|- ( ( _i e. CC /\ ( _pi / 3 ) e. CC ) -> ( -u _i x. ( _pi / 3 ) ) = ( _i x. -u ( _pi / 3 ) ) ) |
| 164 |
34 144 163
|
mp2an |
|- ( -u _i x. ( _pi / 3 ) ) = ( _i x. -u ( _pi / 3 ) ) |
| 165 |
164
|
fveq2i |
|- ( exp ` ( -u _i x. ( _pi / 3 ) ) ) = ( exp ` ( _i x. -u ( _pi / 3 ) ) ) |
| 166 |
143 162 165
|
3eqtri |
|- ( ( ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ` 0 ) - ( ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ` ( _pi / 3 ) ) ) = ( exp ` ( _i x. -u ( _pi / 3 ) ) ) |
| 167 |
166
|
fveq2i |
|- ( abs ` ( ( ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ` 0 ) - ( ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ` ( _pi / 3 ) ) ) ) = ( abs ` ( exp ` ( _i x. -u ( _pi / 3 ) ) ) ) |
| 168 |
144
|
absnegi |
|- ( abs ` -u ( _pi / 3 ) ) = ( abs ` ( _pi / 3 ) ) |
| 169 |
|
df-neg |
|- -u ( _pi / 3 ) = ( 0 - ( _pi / 3 ) ) |
| 170 |
169
|
fveq2i |
|- ( abs ` -u ( _pi / 3 ) ) = ( abs ` ( 0 - ( _pi / 3 ) ) ) |
| 171 |
168 170
|
eqtr3i |
|- ( abs ` ( _pi / 3 ) ) = ( abs ` ( 0 - ( _pi / 3 ) ) ) |
| 172 |
|
rprege0 |
|- ( ( _pi / 3 ) e. RR+ -> ( ( _pi / 3 ) e. RR /\ 0 <_ ( _pi / 3 ) ) ) |
| 173 |
|
absid |
|- ( ( ( _pi / 3 ) e. RR /\ 0 <_ ( _pi / 3 ) ) -> ( abs ` ( _pi / 3 ) ) = ( _pi / 3 ) ) |
| 174 |
8 172 173
|
mp2b |
|- ( abs ` ( _pi / 3 ) ) = ( _pi / 3 ) |
| 175 |
171 174
|
eqtr3i |
|- ( abs ` ( 0 - ( _pi / 3 ) ) ) = ( _pi / 3 ) |
| 176 |
175
|
oveq2i |
|- ( 1 x. ( abs ` ( 0 - ( _pi / 3 ) ) ) ) = ( 1 x. ( _pi / 3 ) ) |
| 177 |
128 167 176
|
3brtr3i |
|- ( abs ` ( exp ` ( _i x. -u ( _pi / 3 ) ) ) ) <_ ( 1 x. ( _pi / 3 ) ) |
| 178 |
23
|
renegcli |
|- -u ( _pi / 3 ) e. RR |
| 179 |
|
absefi |
|- ( -u ( _pi / 3 ) e. RR -> ( abs ` ( exp ` ( _i x. -u ( _pi / 3 ) ) ) ) = 1 ) |
| 180 |
178 179
|
ax-mp |
|- ( abs ` ( exp ` ( _i x. -u ( _pi / 3 ) ) ) ) = 1 |
| 181 |
144
|
mullidi |
|- ( 1 x. ( _pi / 3 ) ) = ( _pi / 3 ) |
| 182 |
177 180 181
|
3brtr3i |
|- 1 <_ ( _pi / 3 ) |
| 183 |
|
3pos |
|- 0 < 3 |
| 184 |
21 183
|
pm3.2i |
|- ( 3 e. RR /\ 0 < 3 ) |
| 185 |
|
lemuldiv |
|- ( ( 1 e. RR /\ _pi e. RR /\ ( 3 e. RR /\ 0 < 3 ) ) -> ( ( 1 x. 3 ) <_ _pi <-> 1 <_ ( _pi / 3 ) ) ) |
| 186 |
98 20 184 185
|
mp3an |
|- ( ( 1 x. 3 ) <_ _pi <-> 1 <_ ( _pi / 3 ) ) |
| 187 |
182 186
|
mpbir |
|- ( 1 x. 3 ) <_ _pi |
| 188 |
2 187
|
eqbrtrri |
|- 3 <_ _pi |