Step |
Hyp |
Ref |
Expression |
1 |
|
sylow1.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
sylow1.g |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
3 |
|
sylow1.f |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
4 |
|
sylow1.p |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
5 |
|
sylow1.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
6 |
|
sylow1.d |
⊢ ( 𝜑 → ( 𝑃 ↑ 𝑁 ) ∥ ( ♯ ‘ 𝑋 ) ) |
7 |
|
sylow1lem.a |
⊢ + = ( +g ‘ 𝐺 ) |
8 |
|
sylow1lem.s |
⊢ 𝑆 = { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } |
9 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
10 |
4 9
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
11 |
10 5
|
nnexpcld |
⊢ ( 𝜑 → ( 𝑃 ↑ 𝑁 ) ∈ ℕ ) |
12 |
11
|
nnzd |
⊢ ( 𝜑 → ( 𝑃 ↑ 𝑁 ) ∈ ℤ ) |
13 |
|
hashbc |
⊢ ( ( 𝑋 ∈ Fin ∧ ( 𝑃 ↑ 𝑁 ) ∈ ℤ ) → ( ( ♯ ‘ 𝑋 ) C ( 𝑃 ↑ 𝑁 ) ) = ( ♯ ‘ { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } ) ) |
14 |
3 12 13
|
syl2anc |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑋 ) C ( 𝑃 ↑ 𝑁 ) ) = ( ♯ ‘ { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } ) ) |
15 |
8
|
fveq2i |
⊢ ( ♯ ‘ 𝑆 ) = ( ♯ ‘ { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } ) |
16 |
14 15
|
eqtr4di |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑋 ) C ( 𝑃 ↑ 𝑁 ) ) = ( ♯ ‘ 𝑆 ) ) |
17 |
1
|
grpbn0 |
⊢ ( 𝐺 ∈ Grp → 𝑋 ≠ ∅ ) |
18 |
2 17
|
syl |
⊢ ( 𝜑 → 𝑋 ≠ ∅ ) |
19 |
|
hasheq0 |
⊢ ( 𝑋 ∈ Fin → ( ( ♯ ‘ 𝑋 ) = 0 ↔ 𝑋 = ∅ ) ) |
20 |
3 19
|
syl |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑋 ) = 0 ↔ 𝑋 = ∅ ) ) |
21 |
20
|
necon3bbid |
⊢ ( 𝜑 → ( ¬ ( ♯ ‘ 𝑋 ) = 0 ↔ 𝑋 ≠ ∅ ) ) |
22 |
18 21
|
mpbird |
⊢ ( 𝜑 → ¬ ( ♯ ‘ 𝑋 ) = 0 ) |
23 |
|
hashcl |
⊢ ( 𝑋 ∈ Fin → ( ♯ ‘ 𝑋 ) ∈ ℕ0 ) |
24 |
3 23
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝑋 ) ∈ ℕ0 ) |
25 |
|
elnn0 |
⊢ ( ( ♯ ‘ 𝑋 ) ∈ ℕ0 ↔ ( ( ♯ ‘ 𝑋 ) ∈ ℕ ∨ ( ♯ ‘ 𝑋 ) = 0 ) ) |
26 |
24 25
|
sylib |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑋 ) ∈ ℕ ∨ ( ♯ ‘ 𝑋 ) = 0 ) ) |
27 |
26
|
ord |
⊢ ( 𝜑 → ( ¬ ( ♯ ‘ 𝑋 ) ∈ ℕ → ( ♯ ‘ 𝑋 ) = 0 ) ) |
28 |
22 27
|
mt3d |
⊢ ( 𝜑 → ( ♯ ‘ 𝑋 ) ∈ ℕ ) |
29 |
|
dvdsle |
⊢ ( ( ( 𝑃 ↑ 𝑁 ) ∈ ℤ ∧ ( ♯ ‘ 𝑋 ) ∈ ℕ ) → ( ( 𝑃 ↑ 𝑁 ) ∥ ( ♯ ‘ 𝑋 ) → ( 𝑃 ↑ 𝑁 ) ≤ ( ♯ ‘ 𝑋 ) ) ) |
30 |
12 28 29
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑃 ↑ 𝑁 ) ∥ ( ♯ ‘ 𝑋 ) → ( 𝑃 ↑ 𝑁 ) ≤ ( ♯ ‘ 𝑋 ) ) ) |
31 |
6 30
|
mpd |
⊢ ( 𝜑 → ( 𝑃 ↑ 𝑁 ) ≤ ( ♯ ‘ 𝑋 ) ) |
32 |
11
|
nnnn0d |
⊢ ( 𝜑 → ( 𝑃 ↑ 𝑁 ) ∈ ℕ0 ) |
33 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
34 |
32 33
|
eleqtrdi |
⊢ ( 𝜑 → ( 𝑃 ↑ 𝑁 ) ∈ ( ℤ≥ ‘ 0 ) ) |
35 |
24
|
nn0zd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑋 ) ∈ ℤ ) |
36 |
|
elfz5 |
⊢ ( ( ( 𝑃 ↑ 𝑁 ) ∈ ( ℤ≥ ‘ 0 ) ∧ ( ♯ ‘ 𝑋 ) ∈ ℤ ) → ( ( 𝑃 ↑ 𝑁 ) ∈ ( 0 ... ( ♯ ‘ 𝑋 ) ) ↔ ( 𝑃 ↑ 𝑁 ) ≤ ( ♯ ‘ 𝑋 ) ) ) |
37 |
34 35 36
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑃 ↑ 𝑁 ) ∈ ( 0 ... ( ♯ ‘ 𝑋 ) ) ↔ ( 𝑃 ↑ 𝑁 ) ≤ ( ♯ ‘ 𝑋 ) ) ) |
38 |
31 37
|
mpbird |
⊢ ( 𝜑 → ( 𝑃 ↑ 𝑁 ) ∈ ( 0 ... ( ♯ ‘ 𝑋 ) ) ) |
39 |
|
bccl2 |
⊢ ( ( 𝑃 ↑ 𝑁 ) ∈ ( 0 ... ( ♯ ‘ 𝑋 ) ) → ( ( ♯ ‘ 𝑋 ) C ( 𝑃 ↑ 𝑁 ) ) ∈ ℕ ) |
40 |
38 39
|
syl |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑋 ) C ( 𝑃 ↑ 𝑁 ) ) ∈ ℕ ) |
41 |
16 40
|
eqeltrrd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑆 ) ∈ ℕ ) |
42 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
43 |
11 42
|
eleqtrdi |
⊢ ( 𝜑 → ( 𝑃 ↑ 𝑁 ) ∈ ( ℤ≥ ‘ 1 ) ) |
44 |
|
elfz5 |
⊢ ( ( ( 𝑃 ↑ 𝑁 ) ∈ ( ℤ≥ ‘ 1 ) ∧ ( ♯ ‘ 𝑋 ) ∈ ℤ ) → ( ( 𝑃 ↑ 𝑁 ) ∈ ( 1 ... ( ♯ ‘ 𝑋 ) ) ↔ ( 𝑃 ↑ 𝑁 ) ≤ ( ♯ ‘ 𝑋 ) ) ) |
45 |
43 35 44
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑃 ↑ 𝑁 ) ∈ ( 1 ... ( ♯ ‘ 𝑋 ) ) ↔ ( 𝑃 ↑ 𝑁 ) ≤ ( ♯ ‘ 𝑋 ) ) ) |
46 |
31 45
|
mpbird |
⊢ ( 𝜑 → ( 𝑃 ↑ 𝑁 ) ∈ ( 1 ... ( ♯ ‘ 𝑋 ) ) ) |
47 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
48 |
|
fzsubel |
⊢ ( ( ( 1 ∈ ℤ ∧ ( ♯ ‘ 𝑋 ) ∈ ℤ ) ∧ ( ( 𝑃 ↑ 𝑁 ) ∈ ℤ ∧ 1 ∈ ℤ ) ) → ( ( 𝑃 ↑ 𝑁 ) ∈ ( 1 ... ( ♯ ‘ 𝑋 ) ) ↔ ( ( 𝑃 ↑ 𝑁 ) − 1 ) ∈ ( ( 1 − 1 ) ... ( ( ♯ ‘ 𝑋 ) − 1 ) ) ) ) |
49 |
47 35 12 47 48
|
syl22anc |
⊢ ( 𝜑 → ( ( 𝑃 ↑ 𝑁 ) ∈ ( 1 ... ( ♯ ‘ 𝑋 ) ) ↔ ( ( 𝑃 ↑ 𝑁 ) − 1 ) ∈ ( ( 1 − 1 ) ... ( ( ♯ ‘ 𝑋 ) − 1 ) ) ) ) |
50 |
46 49
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑃 ↑ 𝑁 ) − 1 ) ∈ ( ( 1 − 1 ) ... ( ( ♯ ‘ 𝑋 ) − 1 ) ) ) |
51 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
52 |
51
|
oveq1i |
⊢ ( ( 1 − 1 ) ... ( ( ♯ ‘ 𝑋 ) − 1 ) ) = ( 0 ... ( ( ♯ ‘ 𝑋 ) − 1 ) ) |
53 |
50 52
|
eleqtrdi |
⊢ ( 𝜑 → ( ( 𝑃 ↑ 𝑁 ) − 1 ) ∈ ( 0 ... ( ( ♯ ‘ 𝑋 ) − 1 ) ) ) |
54 |
|
bcp1nk |
⊢ ( ( ( 𝑃 ↑ 𝑁 ) − 1 ) ∈ ( 0 ... ( ( ♯ ‘ 𝑋 ) − 1 ) ) → ( ( ( ( ♯ ‘ 𝑋 ) − 1 ) + 1 ) C ( ( ( 𝑃 ↑ 𝑁 ) − 1 ) + 1 ) ) = ( ( ( ( ♯ ‘ 𝑋 ) − 1 ) C ( ( 𝑃 ↑ 𝑁 ) − 1 ) ) · ( ( ( ( ♯ ‘ 𝑋 ) − 1 ) + 1 ) / ( ( ( 𝑃 ↑ 𝑁 ) − 1 ) + 1 ) ) ) ) |
55 |
53 54
|
syl |
⊢ ( 𝜑 → ( ( ( ( ♯ ‘ 𝑋 ) − 1 ) + 1 ) C ( ( ( 𝑃 ↑ 𝑁 ) − 1 ) + 1 ) ) = ( ( ( ( ♯ ‘ 𝑋 ) − 1 ) C ( ( 𝑃 ↑ 𝑁 ) − 1 ) ) · ( ( ( ( ♯ ‘ 𝑋 ) − 1 ) + 1 ) / ( ( ( 𝑃 ↑ 𝑁 ) − 1 ) + 1 ) ) ) ) |
56 |
24
|
nn0cnd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑋 ) ∈ ℂ ) |
57 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
58 |
|
npcan |
⊢ ( ( ( ♯ ‘ 𝑋 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( ♯ ‘ 𝑋 ) − 1 ) + 1 ) = ( ♯ ‘ 𝑋 ) ) |
59 |
56 57 58
|
sylancl |
⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝑋 ) − 1 ) + 1 ) = ( ♯ ‘ 𝑋 ) ) |
60 |
11
|
nncnd |
⊢ ( 𝜑 → ( 𝑃 ↑ 𝑁 ) ∈ ℂ ) |
61 |
|
npcan |
⊢ ( ( ( 𝑃 ↑ 𝑁 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( 𝑃 ↑ 𝑁 ) − 1 ) + 1 ) = ( 𝑃 ↑ 𝑁 ) ) |
62 |
60 57 61
|
sylancl |
⊢ ( 𝜑 → ( ( ( 𝑃 ↑ 𝑁 ) − 1 ) + 1 ) = ( 𝑃 ↑ 𝑁 ) ) |
63 |
59 62
|
oveq12d |
⊢ ( 𝜑 → ( ( ( ( ♯ ‘ 𝑋 ) − 1 ) + 1 ) C ( ( ( 𝑃 ↑ 𝑁 ) − 1 ) + 1 ) ) = ( ( ♯ ‘ 𝑋 ) C ( 𝑃 ↑ 𝑁 ) ) ) |
64 |
59 62
|
oveq12d |
⊢ ( 𝜑 → ( ( ( ( ♯ ‘ 𝑋 ) − 1 ) + 1 ) / ( ( ( 𝑃 ↑ 𝑁 ) − 1 ) + 1 ) ) = ( ( ♯ ‘ 𝑋 ) / ( 𝑃 ↑ 𝑁 ) ) ) |
65 |
64
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ( ♯ ‘ 𝑋 ) − 1 ) C ( ( 𝑃 ↑ 𝑁 ) − 1 ) ) · ( ( ( ( ♯ ‘ 𝑋 ) − 1 ) + 1 ) / ( ( ( 𝑃 ↑ 𝑁 ) − 1 ) + 1 ) ) ) = ( ( ( ( ♯ ‘ 𝑋 ) − 1 ) C ( ( 𝑃 ↑ 𝑁 ) − 1 ) ) · ( ( ♯ ‘ 𝑋 ) / ( 𝑃 ↑ 𝑁 ) ) ) ) |
66 |
55 63 65
|
3eqtr3d |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑋 ) C ( 𝑃 ↑ 𝑁 ) ) = ( ( ( ( ♯ ‘ 𝑋 ) − 1 ) C ( ( 𝑃 ↑ 𝑁 ) − 1 ) ) · ( ( ♯ ‘ 𝑋 ) / ( 𝑃 ↑ 𝑁 ) ) ) ) |
67 |
66
|
oveq2d |
⊢ ( 𝜑 → ( 𝑃 pCnt ( ( ♯ ‘ 𝑋 ) C ( 𝑃 ↑ 𝑁 ) ) ) = ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − 1 ) C ( ( 𝑃 ↑ 𝑁 ) − 1 ) ) · ( ( ♯ ‘ 𝑋 ) / ( 𝑃 ↑ 𝑁 ) ) ) ) ) |
68 |
16
|
oveq2d |
⊢ ( 𝜑 → ( 𝑃 pCnt ( ( ♯ ‘ 𝑋 ) C ( 𝑃 ↑ 𝑁 ) ) ) = ( 𝑃 pCnt ( ♯ ‘ 𝑆 ) ) ) |
69 |
|
bccl2 |
⊢ ( ( ( 𝑃 ↑ 𝑁 ) − 1 ) ∈ ( 0 ... ( ( ♯ ‘ 𝑋 ) − 1 ) ) → ( ( ( ♯ ‘ 𝑋 ) − 1 ) C ( ( 𝑃 ↑ 𝑁 ) − 1 ) ) ∈ ℕ ) |
70 |
53 69
|
syl |
⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝑋 ) − 1 ) C ( ( 𝑃 ↑ 𝑁 ) − 1 ) ) ∈ ℕ ) |
71 |
70
|
nnzd |
⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝑋 ) − 1 ) C ( ( 𝑃 ↑ 𝑁 ) − 1 ) ) ∈ ℤ ) |
72 |
70
|
nnne0d |
⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝑋 ) − 1 ) C ( ( 𝑃 ↑ 𝑁 ) − 1 ) ) ≠ 0 ) |
73 |
11
|
nnne0d |
⊢ ( 𝜑 → ( 𝑃 ↑ 𝑁 ) ≠ 0 ) |
74 |
|
dvdsval2 |
⊢ ( ( ( 𝑃 ↑ 𝑁 ) ∈ ℤ ∧ ( 𝑃 ↑ 𝑁 ) ≠ 0 ∧ ( ♯ ‘ 𝑋 ) ∈ ℤ ) → ( ( 𝑃 ↑ 𝑁 ) ∥ ( ♯ ‘ 𝑋 ) ↔ ( ( ♯ ‘ 𝑋 ) / ( 𝑃 ↑ 𝑁 ) ) ∈ ℤ ) ) |
75 |
12 73 35 74
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑃 ↑ 𝑁 ) ∥ ( ♯ ‘ 𝑋 ) ↔ ( ( ♯ ‘ 𝑋 ) / ( 𝑃 ↑ 𝑁 ) ) ∈ ℤ ) ) |
76 |
6 75
|
mpbid |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑋 ) / ( 𝑃 ↑ 𝑁 ) ) ∈ ℤ ) |
77 |
28
|
nnne0d |
⊢ ( 𝜑 → ( ♯ ‘ 𝑋 ) ≠ 0 ) |
78 |
56 60 77 73
|
divne0d |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑋 ) / ( 𝑃 ↑ 𝑁 ) ) ≠ 0 ) |
79 |
|
pcmul |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( ( ( ( ♯ ‘ 𝑋 ) − 1 ) C ( ( 𝑃 ↑ 𝑁 ) − 1 ) ) ∈ ℤ ∧ ( ( ( ♯ ‘ 𝑋 ) − 1 ) C ( ( 𝑃 ↑ 𝑁 ) − 1 ) ) ≠ 0 ) ∧ ( ( ( ♯ ‘ 𝑋 ) / ( 𝑃 ↑ 𝑁 ) ) ∈ ℤ ∧ ( ( ♯ ‘ 𝑋 ) / ( 𝑃 ↑ 𝑁 ) ) ≠ 0 ) ) → ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − 1 ) C ( ( 𝑃 ↑ 𝑁 ) − 1 ) ) · ( ( ♯ ‘ 𝑋 ) / ( 𝑃 ↑ 𝑁 ) ) ) ) = ( ( 𝑃 pCnt ( ( ( ♯ ‘ 𝑋 ) − 1 ) C ( ( 𝑃 ↑ 𝑁 ) − 1 ) ) ) + ( 𝑃 pCnt ( ( ♯ ‘ 𝑋 ) / ( 𝑃 ↑ 𝑁 ) ) ) ) ) |
80 |
4 71 72 76 78 79
|
syl122anc |
⊢ ( 𝜑 → ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − 1 ) C ( ( 𝑃 ↑ 𝑁 ) − 1 ) ) · ( ( ♯ ‘ 𝑋 ) / ( 𝑃 ↑ 𝑁 ) ) ) ) = ( ( 𝑃 pCnt ( ( ( ♯ ‘ 𝑋 ) − 1 ) C ( ( 𝑃 ↑ 𝑁 ) − 1 ) ) ) + ( 𝑃 pCnt ( ( ♯ ‘ 𝑋 ) / ( 𝑃 ↑ 𝑁 ) ) ) ) ) |
81 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
82 |
56 60 81
|
npncand |
⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + ( ( 𝑃 ↑ 𝑁 ) − 1 ) ) = ( ( ♯ ‘ 𝑋 ) − 1 ) ) |
83 |
82
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + ( ( 𝑃 ↑ 𝑁 ) − 1 ) ) C ( ( 𝑃 ↑ 𝑁 ) − 1 ) ) = ( ( ( ♯ ‘ 𝑋 ) − 1 ) C ( ( 𝑃 ↑ 𝑁 ) − 1 ) ) ) |
84 |
83
|
oveq2d |
⊢ ( 𝜑 → ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + ( ( 𝑃 ↑ 𝑁 ) − 1 ) ) C ( ( 𝑃 ↑ 𝑁 ) − 1 ) ) ) = ( 𝑃 pCnt ( ( ( ♯ ‘ 𝑋 ) − 1 ) C ( ( 𝑃 ↑ 𝑁 ) − 1 ) ) ) ) |
85 |
11
|
nnred |
⊢ ( 𝜑 → ( 𝑃 ↑ 𝑁 ) ∈ ℝ ) |
86 |
85
|
ltm1d |
⊢ ( 𝜑 → ( ( 𝑃 ↑ 𝑁 ) − 1 ) < ( 𝑃 ↑ 𝑁 ) ) |
87 |
|
nnm1nn0 |
⊢ ( ( 𝑃 ↑ 𝑁 ) ∈ ℕ → ( ( 𝑃 ↑ 𝑁 ) − 1 ) ∈ ℕ0 ) |
88 |
11 87
|
syl |
⊢ ( 𝜑 → ( ( 𝑃 ↑ 𝑁 ) − 1 ) ∈ ℕ0 ) |
89 |
|
breq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 < ( 𝑃 ↑ 𝑁 ) ↔ 0 < ( 𝑃 ↑ 𝑁 ) ) ) |
90 |
|
bcxmaslem1 |
⊢ ( 𝑥 = 0 → ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑥 ) C 𝑥 ) = ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 0 ) C 0 ) ) |
91 |
90
|
oveq2d |
⊢ ( 𝑥 = 0 → ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑥 ) C 𝑥 ) ) = ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 0 ) C 0 ) ) ) |
92 |
91
|
eqeq1d |
⊢ ( 𝑥 = 0 → ( ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑥 ) C 𝑥 ) ) = 0 ↔ ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 0 ) C 0 ) ) = 0 ) ) |
93 |
89 92
|
imbi12d |
⊢ ( 𝑥 = 0 → ( ( 𝑥 < ( 𝑃 ↑ 𝑁 ) → ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑥 ) C 𝑥 ) ) = 0 ) ↔ ( 0 < ( 𝑃 ↑ 𝑁 ) → ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 0 ) C 0 ) ) = 0 ) ) ) |
94 |
93
|
imbi2d |
⊢ ( 𝑥 = 0 → ( ( 𝜑 → ( 𝑥 < ( 𝑃 ↑ 𝑁 ) → ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑥 ) C 𝑥 ) ) = 0 ) ) ↔ ( 𝜑 → ( 0 < ( 𝑃 ↑ 𝑁 ) → ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 0 ) C 0 ) ) = 0 ) ) ) ) |
95 |
|
breq1 |
⊢ ( 𝑥 = 𝑛 → ( 𝑥 < ( 𝑃 ↑ 𝑁 ) ↔ 𝑛 < ( 𝑃 ↑ 𝑁 ) ) ) |
96 |
|
bcxmaslem1 |
⊢ ( 𝑥 = 𝑛 → ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑥 ) C 𝑥 ) = ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) C 𝑛 ) ) |
97 |
96
|
oveq2d |
⊢ ( 𝑥 = 𝑛 → ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑥 ) C 𝑥 ) ) = ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) C 𝑛 ) ) ) |
98 |
97
|
eqeq1d |
⊢ ( 𝑥 = 𝑛 → ( ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑥 ) C 𝑥 ) ) = 0 ↔ ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) C 𝑛 ) ) = 0 ) ) |
99 |
95 98
|
imbi12d |
⊢ ( 𝑥 = 𝑛 → ( ( 𝑥 < ( 𝑃 ↑ 𝑁 ) → ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑥 ) C 𝑥 ) ) = 0 ) ↔ ( 𝑛 < ( 𝑃 ↑ 𝑁 ) → ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) C 𝑛 ) ) = 0 ) ) ) |
100 |
99
|
imbi2d |
⊢ ( 𝑥 = 𝑛 → ( ( 𝜑 → ( 𝑥 < ( 𝑃 ↑ 𝑁 ) → ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑥 ) C 𝑥 ) ) = 0 ) ) ↔ ( 𝜑 → ( 𝑛 < ( 𝑃 ↑ 𝑁 ) → ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) C 𝑛 ) ) = 0 ) ) ) ) |
101 |
|
breq1 |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 𝑥 < ( 𝑃 ↑ 𝑁 ) ↔ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) |
102 |
|
bcxmaslem1 |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑥 ) C 𝑥 ) = ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + ( 𝑛 + 1 ) ) C ( 𝑛 + 1 ) ) ) |
103 |
102
|
oveq2d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑥 ) C 𝑥 ) ) = ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + ( 𝑛 + 1 ) ) C ( 𝑛 + 1 ) ) ) ) |
104 |
103
|
eqeq1d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑥 ) C 𝑥 ) ) = 0 ↔ ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + ( 𝑛 + 1 ) ) C ( 𝑛 + 1 ) ) ) = 0 ) ) |
105 |
101 104
|
imbi12d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝑥 < ( 𝑃 ↑ 𝑁 ) → ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑥 ) C 𝑥 ) ) = 0 ) ↔ ( ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) → ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + ( 𝑛 + 1 ) ) C ( 𝑛 + 1 ) ) ) = 0 ) ) ) |
106 |
105
|
imbi2d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝜑 → ( 𝑥 < ( 𝑃 ↑ 𝑁 ) → ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑥 ) C 𝑥 ) ) = 0 ) ) ↔ ( 𝜑 → ( ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) → ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + ( 𝑛 + 1 ) ) C ( 𝑛 + 1 ) ) ) = 0 ) ) ) ) |
107 |
|
breq1 |
⊢ ( 𝑥 = ( ( 𝑃 ↑ 𝑁 ) − 1 ) → ( 𝑥 < ( 𝑃 ↑ 𝑁 ) ↔ ( ( 𝑃 ↑ 𝑁 ) − 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) |
108 |
|
bcxmaslem1 |
⊢ ( 𝑥 = ( ( 𝑃 ↑ 𝑁 ) − 1 ) → ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑥 ) C 𝑥 ) = ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + ( ( 𝑃 ↑ 𝑁 ) − 1 ) ) C ( ( 𝑃 ↑ 𝑁 ) − 1 ) ) ) |
109 |
108
|
oveq2d |
⊢ ( 𝑥 = ( ( 𝑃 ↑ 𝑁 ) − 1 ) → ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑥 ) C 𝑥 ) ) = ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + ( ( 𝑃 ↑ 𝑁 ) − 1 ) ) C ( ( 𝑃 ↑ 𝑁 ) − 1 ) ) ) ) |
110 |
109
|
eqeq1d |
⊢ ( 𝑥 = ( ( 𝑃 ↑ 𝑁 ) − 1 ) → ( ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑥 ) C 𝑥 ) ) = 0 ↔ ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + ( ( 𝑃 ↑ 𝑁 ) − 1 ) ) C ( ( 𝑃 ↑ 𝑁 ) − 1 ) ) ) = 0 ) ) |
111 |
107 110
|
imbi12d |
⊢ ( 𝑥 = ( ( 𝑃 ↑ 𝑁 ) − 1 ) → ( ( 𝑥 < ( 𝑃 ↑ 𝑁 ) → ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑥 ) C 𝑥 ) ) = 0 ) ↔ ( ( ( 𝑃 ↑ 𝑁 ) − 1 ) < ( 𝑃 ↑ 𝑁 ) → ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + ( ( 𝑃 ↑ 𝑁 ) − 1 ) ) C ( ( 𝑃 ↑ 𝑁 ) − 1 ) ) ) = 0 ) ) ) |
112 |
111
|
imbi2d |
⊢ ( 𝑥 = ( ( 𝑃 ↑ 𝑁 ) − 1 ) → ( ( 𝜑 → ( 𝑥 < ( 𝑃 ↑ 𝑁 ) → ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑥 ) C 𝑥 ) ) = 0 ) ) ↔ ( 𝜑 → ( ( ( 𝑃 ↑ 𝑁 ) − 1 ) < ( 𝑃 ↑ 𝑁 ) → ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + ( ( 𝑃 ↑ 𝑁 ) − 1 ) ) C ( ( 𝑃 ↑ 𝑁 ) − 1 ) ) ) = 0 ) ) ) ) |
113 |
|
znn0sub |
⊢ ( ( ( 𝑃 ↑ 𝑁 ) ∈ ℤ ∧ ( ♯ ‘ 𝑋 ) ∈ ℤ ) → ( ( 𝑃 ↑ 𝑁 ) ≤ ( ♯ ‘ 𝑋 ) ↔ ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) ∈ ℕ0 ) ) |
114 |
12 35 113
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑃 ↑ 𝑁 ) ≤ ( ♯ ‘ 𝑋 ) ↔ ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) ∈ ℕ0 ) ) |
115 |
31 114
|
mpbid |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) ∈ ℕ0 ) |
116 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
117 |
|
nn0addcl |
⊢ ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) ∈ ℕ0 ∧ 0 ∈ ℕ0 ) → ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 0 ) ∈ ℕ0 ) |
118 |
115 116 117
|
sylancl |
⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 0 ) ∈ ℕ0 ) |
119 |
|
bcn0 |
⊢ ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 0 ) ∈ ℕ0 → ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 0 ) C 0 ) = 1 ) |
120 |
118 119
|
syl |
⊢ ( 𝜑 → ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 0 ) C 0 ) = 1 ) |
121 |
120
|
oveq2d |
⊢ ( 𝜑 → ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 0 ) C 0 ) ) = ( 𝑃 pCnt 1 ) ) |
122 |
|
pc1 |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 pCnt 1 ) = 0 ) |
123 |
4 122
|
syl |
⊢ ( 𝜑 → ( 𝑃 pCnt 1 ) = 0 ) |
124 |
121 123
|
eqtrd |
⊢ ( 𝜑 → ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 0 ) C 0 ) ) = 0 ) |
125 |
124
|
a1d |
⊢ ( 𝜑 → ( 0 < ( 𝑃 ↑ 𝑁 ) → ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 0 ) C 0 ) ) = 0 ) ) |
126 |
|
nn0re |
⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℝ ) |
127 |
126
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → 𝑛 ∈ ℝ ) |
128 |
|
nn0p1nn |
⊢ ( 𝑛 ∈ ℕ0 → ( 𝑛 + 1 ) ∈ ℕ ) |
129 |
128
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → ( 𝑛 + 1 ) ∈ ℕ ) |
130 |
129
|
nnred |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → ( 𝑛 + 1 ) ∈ ℝ ) |
131 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → ( 𝑃 ↑ 𝑁 ) ∈ ℕ ) |
132 |
131
|
nnred |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → ( 𝑃 ↑ 𝑁 ) ∈ ℝ ) |
133 |
127
|
ltp1d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → 𝑛 < ( 𝑛 + 1 ) ) |
134 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) |
135 |
127 130 132 133 134
|
lttrd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → 𝑛 < ( 𝑃 ↑ 𝑁 ) ) |
136 |
135
|
expr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) → 𝑛 < ( 𝑃 ↑ 𝑁 ) ) ) |
137 |
136
|
imim1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑛 < ( 𝑃 ↑ 𝑁 ) → ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) C 𝑛 ) ) = 0 ) → ( ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) → ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) C 𝑛 ) ) = 0 ) ) ) |
138 |
|
oveq1 |
⊢ ( ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) C 𝑛 ) ) = 0 → ( ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) C 𝑛 ) ) + ( 𝑃 pCnt ( ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) + 1 ) / ( 𝑛 + 1 ) ) ) ) = ( 0 + ( 𝑃 pCnt ( ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) + 1 ) / ( 𝑛 + 1 ) ) ) ) ) |
139 |
115
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) ∈ ℕ0 ) |
140 |
139
|
nn0cnd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) ∈ ℂ ) |
141 |
|
nn0cn |
⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℂ ) |
142 |
141
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → 𝑛 ∈ ℂ ) |
143 |
|
1cnd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → 1 ∈ ℂ ) |
144 |
140 142 143
|
addassd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) + 1 ) = ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + ( 𝑛 + 1 ) ) ) |
145 |
144
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → ( ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) + 1 ) C ( 𝑛 + 1 ) ) = ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + ( 𝑛 + 1 ) ) C ( 𝑛 + 1 ) ) ) |
146 |
|
nn0addge2 |
⊢ ( ( 𝑛 ∈ ℝ ∧ ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) ∈ ℕ0 ) → 𝑛 ≤ ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) ) |
147 |
127 139 146
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → 𝑛 ≤ ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) ) |
148 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → 𝑛 ∈ ℕ0 ) |
149 |
148 33
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → 𝑛 ∈ ( ℤ≥ ‘ 0 ) ) |
150 |
139 148
|
nn0addcld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) ∈ ℕ0 ) |
151 |
150
|
nn0zd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) ∈ ℤ ) |
152 |
|
elfz5 |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 0 ) ∧ ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) ∈ ℤ ) → ( 𝑛 ∈ ( 0 ... ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) ) ↔ 𝑛 ≤ ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) ) ) |
153 |
149 151 152
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → ( 𝑛 ∈ ( 0 ... ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) ) ↔ 𝑛 ≤ ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) ) ) |
154 |
147 153
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → 𝑛 ∈ ( 0 ... ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) ) ) |
155 |
|
bcp1nk |
⊢ ( 𝑛 ∈ ( 0 ... ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) ) → ( ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) + 1 ) C ( 𝑛 + 1 ) ) = ( ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) C 𝑛 ) · ( ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) + 1 ) / ( 𝑛 + 1 ) ) ) ) |
156 |
154 155
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → ( ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) + 1 ) C ( 𝑛 + 1 ) ) = ( ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) C 𝑛 ) · ( ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) + 1 ) / ( 𝑛 + 1 ) ) ) ) |
157 |
145 156
|
eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + ( 𝑛 + 1 ) ) C ( 𝑛 + 1 ) ) = ( ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) C 𝑛 ) · ( ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) + 1 ) / ( 𝑛 + 1 ) ) ) ) |
158 |
157
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + ( 𝑛 + 1 ) ) C ( 𝑛 + 1 ) ) ) = ( 𝑃 pCnt ( ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) C 𝑛 ) · ( ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) + 1 ) / ( 𝑛 + 1 ) ) ) ) ) |
159 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → 𝑃 ∈ ℙ ) |
160 |
|
bccl2 |
⊢ ( 𝑛 ∈ ( 0 ... ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) ) → ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) C 𝑛 ) ∈ ℕ ) |
161 |
154 160
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) C 𝑛 ) ∈ ℕ ) |
162 |
|
nnq |
⊢ ( ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) C 𝑛 ) ∈ ℕ → ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) C 𝑛 ) ∈ ℚ ) |
163 |
161 162
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) C 𝑛 ) ∈ ℚ ) |
164 |
161
|
nnne0d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) C 𝑛 ) ≠ 0 ) |
165 |
151
|
peano2zd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) + 1 ) ∈ ℤ ) |
166 |
|
znq |
⊢ ( ( ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) + 1 ) ∈ ℤ ∧ ( 𝑛 + 1 ) ∈ ℕ ) → ( ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) + 1 ) / ( 𝑛 + 1 ) ) ∈ ℚ ) |
167 |
165 129 166
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → ( ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) + 1 ) / ( 𝑛 + 1 ) ) ∈ ℚ ) |
168 |
|
nn0p1nn |
⊢ ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) ∈ ℕ0 → ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) + 1 ) ∈ ℕ ) |
169 |
150 168
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) + 1 ) ∈ ℕ ) |
170 |
|
nnrp |
⊢ ( ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) + 1 ) ∈ ℕ → ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) + 1 ) ∈ ℝ+ ) |
171 |
|
nnrp |
⊢ ( ( 𝑛 + 1 ) ∈ ℕ → ( 𝑛 + 1 ) ∈ ℝ+ ) |
172 |
|
rpdivcl |
⊢ ( ( ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) + 1 ) ∈ ℝ+ ∧ ( 𝑛 + 1 ) ∈ ℝ+ ) → ( ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) + 1 ) / ( 𝑛 + 1 ) ) ∈ ℝ+ ) |
173 |
170 171 172
|
syl2an |
⊢ ( ( ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) + 1 ) ∈ ℕ ∧ ( 𝑛 + 1 ) ∈ ℕ ) → ( ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) + 1 ) / ( 𝑛 + 1 ) ) ∈ ℝ+ ) |
174 |
169 129 173
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → ( ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) + 1 ) / ( 𝑛 + 1 ) ) ∈ ℝ+ ) |
175 |
174
|
rpne0d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → ( ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) + 1 ) / ( 𝑛 + 1 ) ) ≠ 0 ) |
176 |
|
pcqmul |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) C 𝑛 ) ∈ ℚ ∧ ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) C 𝑛 ) ≠ 0 ) ∧ ( ( ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) + 1 ) / ( 𝑛 + 1 ) ) ∈ ℚ ∧ ( ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) + 1 ) / ( 𝑛 + 1 ) ) ≠ 0 ) ) → ( 𝑃 pCnt ( ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) C 𝑛 ) · ( ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) + 1 ) / ( 𝑛 + 1 ) ) ) ) = ( ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) C 𝑛 ) ) + ( 𝑃 pCnt ( ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) + 1 ) / ( 𝑛 + 1 ) ) ) ) ) |
177 |
159 163 164 167 175 176
|
syl122anc |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → ( 𝑃 pCnt ( ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) C 𝑛 ) · ( ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) + 1 ) / ( 𝑛 + 1 ) ) ) ) = ( ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) C 𝑛 ) ) + ( 𝑃 pCnt ( ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) + 1 ) / ( 𝑛 + 1 ) ) ) ) ) |
178 |
158 177
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + ( 𝑛 + 1 ) ) C ( 𝑛 + 1 ) ) ) = ( ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) C 𝑛 ) ) + ( 𝑃 pCnt ( ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) + 1 ) / ( 𝑛 + 1 ) ) ) ) ) |
179 |
169
|
nnne0d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) + 1 ) ≠ 0 ) |
180 |
|
pcdiv |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) + 1 ) ∈ ℤ ∧ ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) + 1 ) ≠ 0 ) ∧ ( 𝑛 + 1 ) ∈ ℕ ) → ( 𝑃 pCnt ( ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) + 1 ) / ( 𝑛 + 1 ) ) ) = ( ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) + 1 ) ) − ( 𝑃 pCnt ( 𝑛 + 1 ) ) ) ) |
181 |
159 165 179 129 180
|
syl121anc |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → ( 𝑃 pCnt ( ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) + 1 ) / ( 𝑛 + 1 ) ) ) = ( ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) + 1 ) ) − ( 𝑃 pCnt ( 𝑛 + 1 ) ) ) ) |
182 |
129
|
nncnd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → ( 𝑛 + 1 ) ∈ ℂ ) |
183 |
140 182 144
|
comraddd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) + 1 ) = ( ( 𝑛 + 1 ) + ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) ) ) |
184 |
183
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) + 1 ) ) = ( 𝑃 pCnt ( ( 𝑛 + 1 ) + ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) ) ) ) |
185 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) ∧ ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) = 0 ) → ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) = 0 ) |
186 |
185
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) ∧ ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) = 0 ) → ( ( 𝑛 + 1 ) + ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) ) = ( ( 𝑛 + 1 ) + 0 ) ) |
187 |
182
|
addid1d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → ( ( 𝑛 + 1 ) + 0 ) = ( 𝑛 + 1 ) ) |
188 |
187
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) ∧ ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) = 0 ) → ( ( 𝑛 + 1 ) + 0 ) = ( 𝑛 + 1 ) ) |
189 |
186 188
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) ∧ ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) = 0 ) → ( 𝑛 + 1 ) = ( ( 𝑛 + 1 ) + ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) ) ) |
190 |
189
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) ∧ ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) = 0 ) → ( 𝑃 pCnt ( 𝑛 + 1 ) ) = ( 𝑃 pCnt ( ( 𝑛 + 1 ) + ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) ) ) ) |
191 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) ∧ ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) ≠ 0 ) → 𝑃 ∈ ℙ ) |
192 |
|
nnq |
⊢ ( ( 𝑛 + 1 ) ∈ ℕ → ( 𝑛 + 1 ) ∈ ℚ ) |
193 |
129 192
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → ( 𝑛 + 1 ) ∈ ℚ ) |
194 |
193
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) ∧ ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) ≠ 0 ) → ( 𝑛 + 1 ) ∈ ℚ ) |
195 |
139
|
nn0zd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) ∈ ℤ ) |
196 |
|
zq |
⊢ ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) ∈ ℤ → ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) ∈ ℚ ) |
197 |
195 196
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) ∈ ℚ ) |
198 |
197
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) ∧ ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) ≠ 0 ) → ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) ∈ ℚ ) |
199 |
159 129
|
pccld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → ( 𝑃 pCnt ( 𝑛 + 1 ) ) ∈ ℕ0 ) |
200 |
199
|
nn0red |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → ( 𝑃 pCnt ( 𝑛 + 1 ) ) ∈ ℝ ) |
201 |
200
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) ∧ ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) ≠ 0 ) → ( 𝑃 pCnt ( 𝑛 + 1 ) ) ∈ ℝ ) |
202 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → 𝑁 ∈ ℕ0 ) |
203 |
202
|
nn0red |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → 𝑁 ∈ ℝ ) |
204 |
203
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) ∧ ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) ≠ 0 ) → 𝑁 ∈ ℝ ) |
205 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) ∧ ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) ≠ 0 ) → ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) ≠ 0 ) |
206 |
205
|
neneqd |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) ∧ ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) ≠ 0 ) → ¬ ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) = 0 ) |
207 |
115
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) ∧ ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) ≠ 0 ) → ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) ∈ ℕ0 ) |
208 |
|
elnn0 |
⊢ ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) ∈ ℕ0 ↔ ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) ∈ ℕ ∨ ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) = 0 ) ) |
209 |
207 208
|
sylib |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) ∧ ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) ≠ 0 ) → ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) ∈ ℕ ∨ ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) = 0 ) ) |
210 |
209
|
ord |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) ∧ ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) ≠ 0 ) → ( ¬ ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) ∈ ℕ → ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) = 0 ) ) |
211 |
206 210
|
mt3d |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) ∧ ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) ≠ 0 ) → ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) ∈ ℕ ) |
212 |
191 211
|
pccld |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) ∧ ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) ≠ 0 ) → ( 𝑃 pCnt ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) ) ∈ ℕ0 ) |
213 |
212
|
nn0red |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) ∧ ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) ≠ 0 ) → ( 𝑃 pCnt ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) ) ∈ ℝ ) |
214 |
129
|
nnzd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → ( 𝑛 + 1 ) ∈ ℤ ) |
215 |
|
pcdvdsb |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑛 + 1 ) ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 ≤ ( 𝑃 pCnt ( 𝑛 + 1 ) ) ↔ ( 𝑃 ↑ 𝑁 ) ∥ ( 𝑛 + 1 ) ) ) |
216 |
159 214 202 215
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → ( 𝑁 ≤ ( 𝑃 pCnt ( 𝑛 + 1 ) ) ↔ ( 𝑃 ↑ 𝑁 ) ∥ ( 𝑛 + 1 ) ) ) |
217 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → ( 𝑃 ↑ 𝑁 ) ∈ ℤ ) |
218 |
|
dvdsle |
⊢ ( ( ( 𝑃 ↑ 𝑁 ) ∈ ℤ ∧ ( 𝑛 + 1 ) ∈ ℕ ) → ( ( 𝑃 ↑ 𝑁 ) ∥ ( 𝑛 + 1 ) → ( 𝑃 ↑ 𝑁 ) ≤ ( 𝑛 + 1 ) ) ) |
219 |
217 129 218
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → ( ( 𝑃 ↑ 𝑁 ) ∥ ( 𝑛 + 1 ) → ( 𝑃 ↑ 𝑁 ) ≤ ( 𝑛 + 1 ) ) ) |
220 |
216 219
|
sylbid |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → ( 𝑁 ≤ ( 𝑃 pCnt ( 𝑛 + 1 ) ) → ( 𝑃 ↑ 𝑁 ) ≤ ( 𝑛 + 1 ) ) ) |
221 |
203 200
|
lenltd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → ( 𝑁 ≤ ( 𝑃 pCnt ( 𝑛 + 1 ) ) ↔ ¬ ( 𝑃 pCnt ( 𝑛 + 1 ) ) < 𝑁 ) ) |
222 |
132 130
|
lenltd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → ( ( 𝑃 ↑ 𝑁 ) ≤ ( 𝑛 + 1 ) ↔ ¬ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) |
223 |
220 221 222
|
3imtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → ( ¬ ( 𝑃 pCnt ( 𝑛 + 1 ) ) < 𝑁 → ¬ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) |
224 |
134 223
|
mt4d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → ( 𝑃 pCnt ( 𝑛 + 1 ) ) < 𝑁 ) |
225 |
224
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) ∧ ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) ≠ 0 ) → ( 𝑃 pCnt ( 𝑛 + 1 ) ) < 𝑁 ) |
226 |
|
dvdssubr |
⊢ ( ( ( 𝑃 ↑ 𝑁 ) ∈ ℤ ∧ ( ♯ ‘ 𝑋 ) ∈ ℤ ) → ( ( 𝑃 ↑ 𝑁 ) ∥ ( ♯ ‘ 𝑋 ) ↔ ( 𝑃 ↑ 𝑁 ) ∥ ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) ) ) |
227 |
12 35 226
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑃 ↑ 𝑁 ) ∥ ( ♯ ‘ 𝑋 ) ↔ ( 𝑃 ↑ 𝑁 ) ∥ ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) ) ) |
228 |
6 227
|
mpbid |
⊢ ( 𝜑 → ( 𝑃 ↑ 𝑁 ) ∥ ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) ) |
229 |
228
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) ∧ ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) ≠ 0 ) → ( 𝑃 ↑ 𝑁 ) ∥ ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) ) |
230 |
207
|
nn0zd |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) ∧ ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) ≠ 0 ) → ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) ∈ ℤ ) |
231 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) ∧ ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) ≠ 0 ) → 𝑁 ∈ ℕ0 ) |
232 |
|
pcdvdsb |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 ≤ ( 𝑃 pCnt ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) ) ↔ ( 𝑃 ↑ 𝑁 ) ∥ ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) ) ) |
233 |
191 230 231 232
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) ∧ ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) ≠ 0 ) → ( 𝑁 ≤ ( 𝑃 pCnt ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) ) ↔ ( 𝑃 ↑ 𝑁 ) ∥ ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) ) ) |
234 |
229 233
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) ∧ ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) ≠ 0 ) → 𝑁 ≤ ( 𝑃 pCnt ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) ) ) |
235 |
201 204 213 225 234
|
ltletrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) ∧ ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) ≠ 0 ) → ( 𝑃 pCnt ( 𝑛 + 1 ) ) < ( 𝑃 pCnt ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) ) ) |
236 |
191 194 198 235
|
pcadd2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) ∧ ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) ≠ 0 ) → ( 𝑃 pCnt ( 𝑛 + 1 ) ) = ( 𝑃 pCnt ( ( 𝑛 + 1 ) + ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) ) ) ) |
237 |
190 236
|
pm2.61dane |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → ( 𝑃 pCnt ( 𝑛 + 1 ) ) = ( 𝑃 pCnt ( ( 𝑛 + 1 ) + ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) ) ) ) |
238 |
184 237
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) + 1 ) ) = ( 𝑃 pCnt ( 𝑛 + 1 ) ) ) |
239 |
199
|
nn0cnd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → ( 𝑃 pCnt ( 𝑛 + 1 ) ) ∈ ℂ ) |
240 |
238 239
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) + 1 ) ) ∈ ℂ ) |
241 |
240 238
|
subeq0bd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → ( ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) + 1 ) ) − ( 𝑃 pCnt ( 𝑛 + 1 ) ) ) = 0 ) |
242 |
181 241
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → ( 𝑃 pCnt ( ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) + 1 ) / ( 𝑛 + 1 ) ) ) = 0 ) |
243 |
242
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → ( 0 + ( 𝑃 pCnt ( ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) + 1 ) / ( 𝑛 + 1 ) ) ) ) = ( 0 + 0 ) ) |
244 |
|
00id |
⊢ ( 0 + 0 ) = 0 |
245 |
243 244
|
eqtr2di |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → 0 = ( 0 + ( 𝑃 pCnt ( ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) + 1 ) / ( 𝑛 + 1 ) ) ) ) ) |
246 |
178 245
|
eqeq12d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → ( ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + ( 𝑛 + 1 ) ) C ( 𝑛 + 1 ) ) ) = 0 ↔ ( ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) C 𝑛 ) ) + ( 𝑃 pCnt ( ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) + 1 ) / ( 𝑛 + 1 ) ) ) ) = ( 0 + ( 𝑃 pCnt ( ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) + 1 ) / ( 𝑛 + 1 ) ) ) ) ) ) |
247 |
138 246
|
syl5ibr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) ) ) → ( ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) C 𝑛 ) ) = 0 → ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + ( 𝑛 + 1 ) ) C ( 𝑛 + 1 ) ) ) = 0 ) ) |
248 |
137 247
|
animpimp2impd |
⊢ ( 𝑛 ∈ ℕ0 → ( ( 𝜑 → ( 𝑛 < ( 𝑃 ↑ 𝑁 ) → ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + 𝑛 ) C 𝑛 ) ) = 0 ) ) → ( 𝜑 → ( ( 𝑛 + 1 ) < ( 𝑃 ↑ 𝑁 ) → ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + ( 𝑛 + 1 ) ) C ( 𝑛 + 1 ) ) ) = 0 ) ) ) ) |
249 |
94 100 106 112 125 248
|
nn0ind |
⊢ ( ( ( 𝑃 ↑ 𝑁 ) − 1 ) ∈ ℕ0 → ( 𝜑 → ( ( ( 𝑃 ↑ 𝑁 ) − 1 ) < ( 𝑃 ↑ 𝑁 ) → ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + ( ( 𝑃 ↑ 𝑁 ) − 1 ) ) C ( ( 𝑃 ↑ 𝑁 ) − 1 ) ) ) = 0 ) ) ) |
250 |
88 249
|
mpcom |
⊢ ( 𝜑 → ( ( ( 𝑃 ↑ 𝑁 ) − 1 ) < ( 𝑃 ↑ 𝑁 ) → ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + ( ( 𝑃 ↑ 𝑁 ) − 1 ) ) C ( ( 𝑃 ↑ 𝑁 ) − 1 ) ) ) = 0 ) ) |
251 |
86 250
|
mpd |
⊢ ( 𝜑 → ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − ( 𝑃 ↑ 𝑁 ) ) + ( ( 𝑃 ↑ 𝑁 ) − 1 ) ) C ( ( 𝑃 ↑ 𝑁 ) − 1 ) ) ) = 0 ) |
252 |
84 251
|
eqtr3d |
⊢ ( 𝜑 → ( 𝑃 pCnt ( ( ( ♯ ‘ 𝑋 ) − 1 ) C ( ( 𝑃 ↑ 𝑁 ) − 1 ) ) ) = 0 ) |
253 |
|
pcdiv |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( ( ♯ ‘ 𝑋 ) ∈ ℤ ∧ ( ♯ ‘ 𝑋 ) ≠ 0 ) ∧ ( 𝑃 ↑ 𝑁 ) ∈ ℕ ) → ( 𝑃 pCnt ( ( ♯ ‘ 𝑋 ) / ( 𝑃 ↑ 𝑁 ) ) ) = ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − ( 𝑃 pCnt ( 𝑃 ↑ 𝑁 ) ) ) ) |
254 |
4 35 77 11 253
|
syl121anc |
⊢ ( 𝜑 → ( 𝑃 pCnt ( ( ♯ ‘ 𝑋 ) / ( 𝑃 ↑ 𝑁 ) ) ) = ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − ( 𝑃 pCnt ( 𝑃 ↑ 𝑁 ) ) ) ) |
255 |
5
|
nn0zd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
256 |
|
pcid |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → ( 𝑃 pCnt ( 𝑃 ↑ 𝑁 ) ) = 𝑁 ) |
257 |
4 255 256
|
syl2anc |
⊢ ( 𝜑 → ( 𝑃 pCnt ( 𝑃 ↑ 𝑁 ) ) = 𝑁 ) |
258 |
257
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − ( 𝑃 pCnt ( 𝑃 ↑ 𝑁 ) ) ) = ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) |
259 |
254 258
|
eqtrd |
⊢ ( 𝜑 → ( 𝑃 pCnt ( ( ♯ ‘ 𝑋 ) / ( 𝑃 ↑ 𝑁 ) ) ) = ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) |
260 |
252 259
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝑃 pCnt ( ( ( ♯ ‘ 𝑋 ) − 1 ) C ( ( 𝑃 ↑ 𝑁 ) − 1 ) ) ) + ( 𝑃 pCnt ( ( ♯ ‘ 𝑋 ) / ( 𝑃 ↑ 𝑁 ) ) ) ) = ( 0 + ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ) |
261 |
4 28
|
pccld |
⊢ ( 𝜑 → ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ∈ ℕ0 ) |
262 |
261
|
nn0zd |
⊢ ( 𝜑 → ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ∈ ℤ ) |
263 |
262 255
|
zsubcld |
⊢ ( 𝜑 → ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ∈ ℤ ) |
264 |
263
|
zcnd |
⊢ ( 𝜑 → ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ∈ ℂ ) |
265 |
264
|
addid2d |
⊢ ( 𝜑 → ( 0 + ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) = ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) |
266 |
80 260 265
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑃 pCnt ( ( ( ( ♯ ‘ 𝑋 ) − 1 ) C ( ( 𝑃 ↑ 𝑁 ) − 1 ) ) · ( ( ♯ ‘ 𝑋 ) / ( 𝑃 ↑ 𝑁 ) ) ) ) = ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) |
267 |
67 68 266
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝑃 pCnt ( ♯ ‘ 𝑆 ) ) = ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) |
268 |
41 267
|
jca |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑆 ) ∈ ℕ ∧ ( 𝑃 pCnt ( ♯ ‘ 𝑆 ) ) = ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ) |