| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ttukeylem.1 |
⊢ ( 𝜑 → 𝐹 : ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) –1-1-onto→ ( ∪ 𝐴 ∖ 𝐵 ) ) |
| 2 |
|
ttukeylem.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) |
| 3 |
|
ttukeylem.3 |
⊢ ( 𝜑 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) ) |
| 4 |
|
ttukeylem.4 |
⊢ 𝐺 = recs ( ( 𝑧 ∈ V ↦ if ( dom 𝑧 = ∪ dom 𝑧 , if ( dom 𝑧 = ∅ , 𝐵 , ∪ ran 𝑧 ) , ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ if ( ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ { ( 𝐹 ‘ ∪ dom 𝑧 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ dom 𝑧 ) } , ∅ ) ) ) ) ) |
| 5 |
|
fvex |
⊢ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∈ V |
| 6 |
5
|
sucid |
⊢ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) |
| 7 |
1 2 3 4
|
ttukeylem6 |
⊢ ( ( 𝜑 ∧ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∈ suc ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) → ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ∈ 𝐴 ) |
| 8 |
6 7
|
mpan2 |
⊢ ( 𝜑 → ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ∈ 𝐴 ) |
| 9 |
1 2 3 4
|
ttukeylem4 |
⊢ ( 𝜑 → ( 𝐺 ‘ ∅ ) = 𝐵 ) |
| 10 |
|
0elon |
⊢ ∅ ∈ On |
| 11 |
|
cardon |
⊢ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∈ On |
| 12 |
|
0ss |
⊢ ∅ ⊆ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) |
| 13 |
10 11 12
|
3pm3.2i |
⊢ ( ∅ ∈ On ∧ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∈ On ∧ ∅ ⊆ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) |
| 14 |
1 2 3 4
|
ttukeylem5 |
⊢ ( ( 𝜑 ∧ ( ∅ ∈ On ∧ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∈ On ∧ ∅ ⊆ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ) → ( 𝐺 ‘ ∅ ) ⊆ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ) |
| 15 |
13 14
|
mpan2 |
⊢ ( 𝜑 → ( 𝐺 ‘ ∅ ) ⊆ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ) |
| 16 |
9 15
|
eqsstrrd |
⊢ ( 𝜑 → 𝐵 ⊆ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ) |
| 17 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ) → ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) |
| 18 |
|
ssun1 |
⊢ 𝑦 ⊆ ( 𝑦 ∪ 𝐵 ) |
| 19 |
|
undif1 |
⊢ ( ( 𝑦 ∖ 𝐵 ) ∪ 𝐵 ) = ( 𝑦 ∪ 𝐵 ) |
| 20 |
18 19
|
sseqtrri |
⊢ 𝑦 ⊆ ( ( 𝑦 ∖ 𝐵 ) ∪ 𝐵 ) |
| 21 |
|
simpl |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → 𝜑 ) |
| 22 |
|
f1ocnv |
⊢ ( 𝐹 : ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) –1-1-onto→ ( ∪ 𝐴 ∖ 𝐵 ) → ◡ 𝐹 : ( ∪ 𝐴 ∖ 𝐵 ) –1-1-onto→ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) |
| 23 |
|
f1of |
⊢ ( ◡ 𝐹 : ( ∪ 𝐴 ∖ 𝐵 ) –1-1-onto→ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) → ◡ 𝐹 : ( ∪ 𝐴 ∖ 𝐵 ) ⟶ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) |
| 24 |
1 22 23
|
3syl |
⊢ ( 𝜑 → ◡ 𝐹 : ( ∪ 𝐴 ∖ 𝐵 ) ⟶ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) |
| 25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → ◡ 𝐹 : ( ∪ 𝐴 ∖ 𝐵 ) ⟶ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) |
| 26 |
|
eldifi |
⊢ ( 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) → 𝑎 ∈ 𝑦 ) |
| 27 |
26
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → 𝑎 ∈ 𝑦 ) |
| 28 |
|
simprll |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → 𝑦 ∈ 𝐴 ) |
| 29 |
|
elunii |
⊢ ( ( 𝑎 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑎 ∈ ∪ 𝐴 ) |
| 30 |
27 28 29
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → 𝑎 ∈ ∪ 𝐴 ) |
| 31 |
|
eldifn |
⊢ ( 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) → ¬ 𝑎 ∈ 𝐵 ) |
| 32 |
31
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → ¬ 𝑎 ∈ 𝐵 ) |
| 33 |
30 32
|
eldifd |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → 𝑎 ∈ ( ∪ 𝐴 ∖ 𝐵 ) ) |
| 34 |
25 33
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → ( ◡ 𝐹 ‘ 𝑎 ) ∈ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) |
| 35 |
|
onelon |
⊢ ( ( ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∈ On ∧ ( ◡ 𝐹 ‘ 𝑎 ) ∈ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) → ( ◡ 𝐹 ‘ 𝑎 ) ∈ On ) |
| 36 |
11 34 35
|
sylancr |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → ( ◡ 𝐹 ‘ 𝑎 ) ∈ On ) |
| 37 |
|
onsuc |
⊢ ( ( ◡ 𝐹 ‘ 𝑎 ) ∈ On → suc ( ◡ 𝐹 ‘ 𝑎 ) ∈ On ) |
| 38 |
36 37
|
syl |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → suc ( ◡ 𝐹 ‘ 𝑎 ) ∈ On ) |
| 39 |
11
|
a1i |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∈ On ) |
| 40 |
11
|
onordi |
⊢ Ord ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) |
| 41 |
|
ordsucss |
⊢ ( Ord ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) → ( ( ◡ 𝐹 ‘ 𝑎 ) ∈ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) → suc ( ◡ 𝐹 ‘ 𝑎 ) ⊆ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ) |
| 42 |
40 34 41
|
mpsyl |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → suc ( ◡ 𝐹 ‘ 𝑎 ) ⊆ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) |
| 43 |
1 2 3 4
|
ttukeylem5 |
⊢ ( ( 𝜑 ∧ ( suc ( ◡ 𝐹 ‘ 𝑎 ) ∈ On ∧ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∈ On ∧ suc ( ◡ 𝐹 ‘ 𝑎 ) ⊆ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ) → ( 𝐺 ‘ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ⊆ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ) |
| 44 |
21 38 39 42 43
|
syl13anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → ( 𝐺 ‘ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ⊆ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ) |
| 45 |
|
ssun2 |
⊢ if ( ( ( 𝐺 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ∪ { ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) } , ∅ ) ⊆ ( ( 𝐺 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ∪ if ( ( ( 𝐺 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ∪ { ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) } , ∅ ) ) |
| 46 |
|
eloni |
⊢ ( ( ◡ 𝐹 ‘ 𝑎 ) ∈ On → Ord ( ◡ 𝐹 ‘ 𝑎 ) ) |
| 47 |
|
ordunisuc |
⊢ ( Ord ( ◡ 𝐹 ‘ 𝑎 ) → ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) = ( ◡ 𝐹 ‘ 𝑎 ) ) |
| 48 |
36 46 47
|
3syl |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) = ( ◡ 𝐹 ‘ 𝑎 ) ) |
| 49 |
48
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) = ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑎 ) ) ) |
| 50 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → 𝐹 : ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) –1-1-onto→ ( ∪ 𝐴 ∖ 𝐵 ) ) |
| 51 |
|
f1ocnvfv2 |
⊢ ( ( 𝐹 : ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) –1-1-onto→ ( ∪ 𝐴 ∖ 𝐵 ) ∧ 𝑎 ∈ ( ∪ 𝐴 ∖ 𝐵 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑎 ) ) = 𝑎 ) |
| 52 |
50 33 51
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑎 ) ) = 𝑎 ) |
| 53 |
49 52
|
eqtr2d |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → 𝑎 = ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ) |
| 54 |
|
velsn |
⊢ ( 𝑎 ∈ { ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) } ↔ 𝑎 = ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ) |
| 55 |
53 54
|
sylibr |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → 𝑎 ∈ { ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) } ) |
| 56 |
48
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → ( 𝐺 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) = ( 𝐺 ‘ ( ◡ 𝐹 ‘ 𝑎 ) ) ) |
| 57 |
|
ordelss |
⊢ ( ( Ord ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∧ ( ◡ 𝐹 ‘ 𝑎 ) ∈ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) → ( ◡ 𝐹 ‘ 𝑎 ) ⊆ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) |
| 58 |
40 34 57
|
sylancr |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → ( ◡ 𝐹 ‘ 𝑎 ) ⊆ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) |
| 59 |
1 2 3 4
|
ttukeylem5 |
⊢ ( ( 𝜑 ∧ ( ( ◡ 𝐹 ‘ 𝑎 ) ∈ On ∧ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∈ On ∧ ( ◡ 𝐹 ‘ 𝑎 ) ⊆ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ) → ( 𝐺 ‘ ( ◡ 𝐹 ‘ 𝑎 ) ) ⊆ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ) |
| 60 |
21 36 39 58 59
|
syl13anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → ( 𝐺 ‘ ( ◡ 𝐹 ‘ 𝑎 ) ) ⊆ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ) |
| 61 |
56 60
|
eqsstrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → ( 𝐺 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ⊆ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ) |
| 62 |
|
simprlr |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) |
| 63 |
61 62
|
sstrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → ( 𝐺 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ⊆ 𝑦 ) |
| 64 |
53 27
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ∈ 𝑦 ) |
| 65 |
64
|
snssd |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → { ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) } ⊆ 𝑦 ) |
| 66 |
63 65
|
unssd |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → ( ( 𝐺 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ∪ { ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) } ) ⊆ 𝑦 ) |
| 67 |
1 2 3
|
ttukeylem2 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ ( ( 𝐺 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ∪ { ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) } ) ⊆ 𝑦 ) ) → ( ( 𝐺 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ∪ { ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) } ) ∈ 𝐴 ) |
| 68 |
21 28 66 67
|
syl12anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → ( ( 𝐺 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ∪ { ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) } ) ∈ 𝐴 ) |
| 69 |
68
|
iftrued |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → if ( ( ( 𝐺 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ∪ { ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) } , ∅ ) = { ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) } ) |
| 70 |
55 69
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → 𝑎 ∈ if ( ( ( 𝐺 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ∪ { ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) } , ∅ ) ) |
| 71 |
45 70
|
sselid |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → 𝑎 ∈ ( ( 𝐺 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ∪ if ( ( ( 𝐺 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ∪ { ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) } , ∅ ) ) ) |
| 72 |
1 2 3 4
|
ttukeylem3 |
⊢ ( ( 𝜑 ∧ suc ( ◡ 𝐹 ‘ 𝑎 ) ∈ On ) → ( 𝐺 ‘ suc ( ◡ 𝐹 ‘ 𝑎 ) ) = if ( suc ( ◡ 𝐹 ‘ 𝑎 ) = ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) , if ( suc ( ◡ 𝐹 ‘ 𝑎 ) = ∅ , 𝐵 , ∪ ( 𝐺 “ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ) , ( ( 𝐺 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ∪ if ( ( ( 𝐺 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ∪ { ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) } , ∅ ) ) ) ) |
| 73 |
38 72
|
syldan |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → ( 𝐺 ‘ suc ( ◡ 𝐹 ‘ 𝑎 ) ) = if ( suc ( ◡ 𝐹 ‘ 𝑎 ) = ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) , if ( suc ( ◡ 𝐹 ‘ 𝑎 ) = ∅ , 𝐵 , ∪ ( 𝐺 “ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ) , ( ( 𝐺 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ∪ if ( ( ( 𝐺 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ∪ { ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) } , ∅ ) ) ) ) |
| 74 |
|
sucidg |
⊢ ( ( ◡ 𝐹 ‘ 𝑎 ) ∈ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) → ( ◡ 𝐹 ‘ 𝑎 ) ∈ suc ( ◡ 𝐹 ‘ 𝑎 ) ) |
| 75 |
34 74
|
syl |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → ( ◡ 𝐹 ‘ 𝑎 ) ∈ suc ( ◡ 𝐹 ‘ 𝑎 ) ) |
| 76 |
|
ordirr |
⊢ ( Ord ( ◡ 𝐹 ‘ 𝑎 ) → ¬ ( ◡ 𝐹 ‘ 𝑎 ) ∈ ( ◡ 𝐹 ‘ 𝑎 ) ) |
| 77 |
36 46 76
|
3syl |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → ¬ ( ◡ 𝐹 ‘ 𝑎 ) ∈ ( ◡ 𝐹 ‘ 𝑎 ) ) |
| 78 |
|
nelne1 |
⊢ ( ( ( ◡ 𝐹 ‘ 𝑎 ) ∈ suc ( ◡ 𝐹 ‘ 𝑎 ) ∧ ¬ ( ◡ 𝐹 ‘ 𝑎 ) ∈ ( ◡ 𝐹 ‘ 𝑎 ) ) → suc ( ◡ 𝐹 ‘ 𝑎 ) ≠ ( ◡ 𝐹 ‘ 𝑎 ) ) |
| 79 |
75 77 78
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → suc ( ◡ 𝐹 ‘ 𝑎 ) ≠ ( ◡ 𝐹 ‘ 𝑎 ) ) |
| 80 |
79 48
|
neeqtrrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → suc ( ◡ 𝐹 ‘ 𝑎 ) ≠ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) |
| 81 |
80
|
neneqd |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → ¬ suc ( ◡ 𝐹 ‘ 𝑎 ) = ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) |
| 82 |
81
|
iffalsed |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → if ( suc ( ◡ 𝐹 ‘ 𝑎 ) = ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) , if ( suc ( ◡ 𝐹 ‘ 𝑎 ) = ∅ , 𝐵 , ∪ ( 𝐺 “ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ) , ( ( 𝐺 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ∪ if ( ( ( 𝐺 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ∪ { ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) } , ∅ ) ) ) = ( ( 𝐺 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ∪ if ( ( ( 𝐺 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ∪ { ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) } , ∅ ) ) ) |
| 83 |
73 82
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → ( 𝐺 ‘ suc ( ◡ 𝐹 ‘ 𝑎 ) ) = ( ( 𝐺 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ∪ if ( ( ( 𝐺 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ∪ { ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ suc ( ◡ 𝐹 ‘ 𝑎 ) ) } , ∅ ) ) ) |
| 84 |
71 83
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → 𝑎 ∈ ( 𝐺 ‘ suc ( ◡ 𝐹 ‘ 𝑎 ) ) ) |
| 85 |
44 84
|
sseldd |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ∧ 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) ) ) → 𝑎 ∈ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ) |
| 86 |
85
|
expr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ) → ( 𝑎 ∈ ( 𝑦 ∖ 𝐵 ) → 𝑎 ∈ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ) ) |
| 87 |
86
|
ssrdv |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ) → ( 𝑦 ∖ 𝐵 ) ⊆ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ) |
| 88 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ) → 𝐵 ⊆ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ) |
| 89 |
87 88
|
unssd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ) → ( ( 𝑦 ∖ 𝐵 ) ∪ 𝐵 ) ⊆ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ) |
| 90 |
20 89
|
sstrid |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ) → 𝑦 ⊆ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ) |
| 91 |
17 90
|
eqssd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 ) ) → ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) = 𝑦 ) |
| 92 |
91
|
expr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 → ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) = 𝑦 ) ) |
| 93 |
|
npss |
⊢ ( ¬ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊊ 𝑦 ↔ ( ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊆ 𝑦 → ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) = 𝑦 ) ) |
| 94 |
92 93
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ¬ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊊ 𝑦 ) |
| 95 |
94
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐴 ¬ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊊ 𝑦 ) |
| 96 |
|
sseq2 |
⊢ ( 𝑥 = ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) → ( 𝐵 ⊆ 𝑥 ↔ 𝐵 ⊆ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ) ) |
| 97 |
|
psseq1 |
⊢ ( 𝑥 = ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) → ( 𝑥 ⊊ 𝑦 ↔ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊊ 𝑦 ) ) |
| 98 |
97
|
notbid |
⊢ ( 𝑥 = ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) → ( ¬ 𝑥 ⊊ 𝑦 ↔ ¬ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊊ 𝑦 ) ) |
| 99 |
98
|
ralbidv |
⊢ ( 𝑥 = ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) → ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ↔ ∀ 𝑦 ∈ 𝐴 ¬ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊊ 𝑦 ) ) |
| 100 |
96 99
|
anbi12d |
⊢ ( 𝑥 = ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) → ( ( 𝐵 ⊆ 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) ↔ ( 𝐵 ⊆ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ∧ ∀ 𝑦 ∈ 𝐴 ¬ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊊ 𝑦 ) ) ) |
| 101 |
100
|
rspcev |
⊢ ( ( ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ∈ 𝐴 ∧ ( 𝐵 ⊆ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ∧ ∀ 𝑦 ∈ 𝐴 ¬ ( 𝐺 ‘ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ) ⊊ 𝑦 ) ) → ∃ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) ) |
| 102 |
8 16 95 101
|
syl12anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) ) |