| Step |
Hyp |
Ref |
Expression |
| 1 |
|
poimir.0 |
|- ( ph -> N e. NN ) |
| 2 |
|
poimir.i |
|- I = ( ( 0 [,] 1 ) ^m ( 1 ... N ) ) |
| 3 |
|
poimir.r |
|- R = ( Xt_ ` ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ) |
| 4 |
|
broucube.1 |
|- ( ph -> F e. ( ( R |`t I ) Cn ( R |`t I ) ) ) |
| 5 |
|
elmapfn |
|- ( x e. ( ( 0 [,] 1 ) ^m ( 1 ... N ) ) -> x Fn ( 1 ... N ) ) |
| 6 |
5 2
|
eleq2s |
|- ( x e. I -> x Fn ( 1 ... N ) ) |
| 7 |
6
|
adantl |
|- ( ( ph /\ x e. I ) -> x Fn ( 1 ... N ) ) |
| 8 |
|
ovex |
|- ( 1 ... N ) e. _V |
| 9 |
|
retopon |
|- ( topGen ` ran (,) ) e. ( TopOn ` RR ) |
| 10 |
3
|
pttoponconst |
|- ( ( ( 1 ... N ) e. _V /\ ( topGen ` ran (,) ) e. ( TopOn ` RR ) ) -> R e. ( TopOn ` ( RR ^m ( 1 ... N ) ) ) ) |
| 11 |
8 9 10
|
mp2an |
|- R e. ( TopOn ` ( RR ^m ( 1 ... N ) ) ) |
| 12 |
|
reex |
|- RR e. _V |
| 13 |
|
unitssre |
|- ( 0 [,] 1 ) C_ RR |
| 14 |
|
mapss |
|- ( ( RR e. _V /\ ( 0 [,] 1 ) C_ RR ) -> ( ( 0 [,] 1 ) ^m ( 1 ... N ) ) C_ ( RR ^m ( 1 ... N ) ) ) |
| 15 |
12 13 14
|
mp2an |
|- ( ( 0 [,] 1 ) ^m ( 1 ... N ) ) C_ ( RR ^m ( 1 ... N ) ) |
| 16 |
2 15
|
eqsstri |
|- I C_ ( RR ^m ( 1 ... N ) ) |
| 17 |
|
resttopon |
|- ( ( R e. ( TopOn ` ( RR ^m ( 1 ... N ) ) ) /\ I C_ ( RR ^m ( 1 ... N ) ) ) -> ( R |`t I ) e. ( TopOn ` I ) ) |
| 18 |
11 16 17
|
mp2an |
|- ( R |`t I ) e. ( TopOn ` I ) |
| 19 |
18
|
toponunii |
|- I = U. ( R |`t I ) |
| 20 |
19 19
|
cnf |
|- ( F e. ( ( R |`t I ) Cn ( R |`t I ) ) -> F : I --> I ) |
| 21 |
4 20
|
syl |
|- ( ph -> F : I --> I ) |
| 22 |
21
|
ffvelcdmda |
|- ( ( ph /\ x e. I ) -> ( F ` x ) e. I ) |
| 23 |
|
elmapfn |
|- ( ( F ` x ) e. ( ( 0 [,] 1 ) ^m ( 1 ... N ) ) -> ( F ` x ) Fn ( 1 ... N ) ) |
| 24 |
23 2
|
eleq2s |
|- ( ( F ` x ) e. I -> ( F ` x ) Fn ( 1 ... N ) ) |
| 25 |
22 24
|
syl |
|- ( ( ph /\ x e. I ) -> ( F ` x ) Fn ( 1 ... N ) ) |
| 26 |
|
ovexd |
|- ( ( ph /\ x e. I ) -> ( 1 ... N ) e. _V ) |
| 27 |
|
inidm |
|- ( ( 1 ... N ) i^i ( 1 ... N ) ) = ( 1 ... N ) |
| 28 |
|
eqidd |
|- ( ( ( ph /\ x e. I ) /\ n e. ( 1 ... N ) ) -> ( x ` n ) = ( x ` n ) ) |
| 29 |
|
eqidd |
|- ( ( ( ph /\ x e. I ) /\ n e. ( 1 ... N ) ) -> ( ( F ` x ) ` n ) = ( ( F ` x ) ` n ) ) |
| 30 |
7 25 26 26 27 28 29
|
offval |
|- ( ( ph /\ x e. I ) -> ( x oF - ( F ` x ) ) = ( n e. ( 1 ... N ) |-> ( ( x ` n ) - ( ( F ` x ) ` n ) ) ) ) |
| 31 |
30
|
mpteq2dva |
|- ( ph -> ( x e. I |-> ( x oF - ( F ` x ) ) ) = ( x e. I |-> ( n e. ( 1 ... N ) |-> ( ( x ` n ) - ( ( F ` x ) ` n ) ) ) ) ) |
| 32 |
18
|
a1i |
|- ( ph -> ( R |`t I ) e. ( TopOn ` I ) ) |
| 33 |
|
ovexd |
|- ( ph -> ( 1 ... N ) e. _V ) |
| 34 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
| 35 |
34
|
fconst6 |
|- ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) : ( 1 ... N ) --> Top |
| 36 |
35
|
a1i |
|- ( ph -> ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) : ( 1 ... N ) --> Top ) |
| 37 |
18
|
a1i |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( R |`t I ) e. ( TopOn ` I ) ) |
| 38 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 39 |
38
|
cnfldtop |
|- ( TopOpen ` CCfld ) e. Top |
| 40 |
|
cnrest2r |
|- ( ( TopOpen ` CCfld ) e. Top -> ( ( R |`t I ) Cn ( ( TopOpen ` CCfld ) |`t RR ) ) C_ ( ( R |`t I ) Cn ( TopOpen ` CCfld ) ) ) |
| 41 |
39 40
|
ax-mp |
|- ( ( R |`t I ) Cn ( ( TopOpen ` CCfld ) |`t RR ) ) C_ ( ( R |`t I ) Cn ( TopOpen ` CCfld ) ) |
| 42 |
|
resmpt |
|- ( I C_ ( RR ^m ( 1 ... N ) ) -> ( ( x e. ( RR ^m ( 1 ... N ) ) |-> ( x ` n ) ) |` I ) = ( x e. I |-> ( x ` n ) ) ) |
| 43 |
16 42
|
ax-mp |
|- ( ( x e. ( RR ^m ( 1 ... N ) ) |-> ( x ` n ) ) |` I ) = ( x e. I |-> ( x ` n ) ) |
| 44 |
11
|
toponunii |
|- ( RR ^m ( 1 ... N ) ) = U. R |
| 45 |
44 3
|
ptpjcn |
|- ( ( ( 1 ... N ) e. _V /\ ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) : ( 1 ... N ) --> Top /\ n e. ( 1 ... N ) ) -> ( x e. ( RR ^m ( 1 ... N ) ) |-> ( x ` n ) ) e. ( R Cn ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) ) ) |
| 46 |
8 35 45
|
mp3an12 |
|- ( n e. ( 1 ... N ) -> ( x e. ( RR ^m ( 1 ... N ) ) |-> ( x ` n ) ) e. ( R Cn ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) ) ) |
| 47 |
44
|
cnrest |
|- ( ( ( x e. ( RR ^m ( 1 ... N ) ) |-> ( x ` n ) ) e. ( R Cn ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) ) /\ I C_ ( RR ^m ( 1 ... N ) ) ) -> ( ( x e. ( RR ^m ( 1 ... N ) ) |-> ( x ` n ) ) |` I ) e. ( ( R |`t I ) Cn ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) ) ) |
| 48 |
46 16 47
|
sylancl |
|- ( n e. ( 1 ... N ) -> ( ( x e. ( RR ^m ( 1 ... N ) ) |-> ( x ` n ) ) |` I ) e. ( ( R |`t I ) Cn ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) ) ) |
| 49 |
43 48
|
eqeltrrid |
|- ( n e. ( 1 ... N ) -> ( x e. I |-> ( x ` n ) ) e. ( ( R |`t I ) Cn ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) ) ) |
| 50 |
|
fvex |
|- ( topGen ` ran (,) ) e. _V |
| 51 |
50
|
fvconst2 |
|- ( n e. ( 1 ... N ) -> ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) = ( topGen ` ran (,) ) ) |
| 52 |
|
tgioo4 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 53 |
51 52
|
eqtrdi |
|- ( n e. ( 1 ... N ) -> ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) = ( ( TopOpen ` CCfld ) |`t RR ) ) |
| 54 |
53
|
oveq2d |
|- ( n e. ( 1 ... N ) -> ( ( R |`t I ) Cn ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) ) = ( ( R |`t I ) Cn ( ( TopOpen ` CCfld ) |`t RR ) ) ) |
| 55 |
49 54
|
eleqtrd |
|- ( n e. ( 1 ... N ) -> ( x e. I |-> ( x ` n ) ) e. ( ( R |`t I ) Cn ( ( TopOpen ` CCfld ) |`t RR ) ) ) |
| 56 |
41 55
|
sselid |
|- ( n e. ( 1 ... N ) -> ( x e. I |-> ( x ` n ) ) e. ( ( R |`t I ) Cn ( TopOpen ` CCfld ) ) ) |
| 57 |
56
|
adantl |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( x e. I |-> ( x ` n ) ) e. ( ( R |`t I ) Cn ( TopOpen ` CCfld ) ) ) |
| 58 |
21
|
feqmptd |
|- ( ph -> F = ( x e. I |-> ( F ` x ) ) ) |
| 59 |
58 4
|
eqeltrrd |
|- ( ph -> ( x e. I |-> ( F ` x ) ) e. ( ( R |`t I ) Cn ( R |`t I ) ) ) |
| 60 |
59
|
adantr |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( x e. I |-> ( F ` x ) ) e. ( ( R |`t I ) Cn ( R |`t I ) ) ) |
| 61 |
|
fveq1 |
|- ( x = z -> ( x ` n ) = ( z ` n ) ) |
| 62 |
61
|
cbvmptv |
|- ( x e. I |-> ( x ` n ) ) = ( z e. I |-> ( z ` n ) ) |
| 63 |
62 57
|
eqeltrrid |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( z e. I |-> ( z ` n ) ) e. ( ( R |`t I ) Cn ( TopOpen ` CCfld ) ) ) |
| 64 |
|
fveq1 |
|- ( z = ( F ` x ) -> ( z ` n ) = ( ( F ` x ) ` n ) ) |
| 65 |
37 60 37 63 64
|
cnmpt11 |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( x e. I |-> ( ( F ` x ) ` n ) ) e. ( ( R |`t I ) Cn ( TopOpen ` CCfld ) ) ) |
| 66 |
38
|
subcn |
|- - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
| 67 |
66
|
a1i |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 68 |
37 57 65 67
|
cnmpt12f |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( x e. I |-> ( ( x ` n ) - ( ( F ` x ) ` n ) ) ) e. ( ( R |`t I ) Cn ( TopOpen ` CCfld ) ) ) |
| 69 |
|
elmapi |
|- ( x e. ( ( 0 [,] 1 ) ^m ( 1 ... N ) ) -> x : ( 1 ... N ) --> ( 0 [,] 1 ) ) |
| 70 |
69 2
|
eleq2s |
|- ( x e. I -> x : ( 1 ... N ) --> ( 0 [,] 1 ) ) |
| 71 |
70
|
ffvelcdmda |
|- ( ( x e. I /\ n e. ( 1 ... N ) ) -> ( x ` n ) e. ( 0 [,] 1 ) ) |
| 72 |
13 71
|
sselid |
|- ( ( x e. I /\ n e. ( 1 ... N ) ) -> ( x ` n ) e. RR ) |
| 73 |
72
|
adantll |
|- ( ( ( ph /\ x e. I ) /\ n e. ( 1 ... N ) ) -> ( x ` n ) e. RR ) |
| 74 |
|
elmapi |
|- ( ( F ` x ) e. ( ( 0 [,] 1 ) ^m ( 1 ... N ) ) -> ( F ` x ) : ( 1 ... N ) --> ( 0 [,] 1 ) ) |
| 75 |
74 2
|
eleq2s |
|- ( ( F ` x ) e. I -> ( F ` x ) : ( 1 ... N ) --> ( 0 [,] 1 ) ) |
| 76 |
22 75
|
syl |
|- ( ( ph /\ x e. I ) -> ( F ` x ) : ( 1 ... N ) --> ( 0 [,] 1 ) ) |
| 77 |
76
|
ffvelcdmda |
|- ( ( ( ph /\ x e. I ) /\ n e. ( 1 ... N ) ) -> ( ( F ` x ) ` n ) e. ( 0 [,] 1 ) ) |
| 78 |
13 77
|
sselid |
|- ( ( ( ph /\ x e. I ) /\ n e. ( 1 ... N ) ) -> ( ( F ` x ) ` n ) e. RR ) |
| 79 |
73 78
|
resubcld |
|- ( ( ( ph /\ x e. I ) /\ n e. ( 1 ... N ) ) -> ( ( x ` n ) - ( ( F ` x ) ` n ) ) e. RR ) |
| 80 |
79
|
an32s |
|- ( ( ( ph /\ n e. ( 1 ... N ) ) /\ x e. I ) -> ( ( x ` n ) - ( ( F ` x ) ` n ) ) e. RR ) |
| 81 |
80
|
fmpttd |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( x e. I |-> ( ( x ` n ) - ( ( F ` x ) ` n ) ) ) : I --> RR ) |
| 82 |
|
frn |
|- ( ( x e. I |-> ( ( x ` n ) - ( ( F ` x ) ` n ) ) ) : I --> RR -> ran ( x e. I |-> ( ( x ` n ) - ( ( F ` x ) ` n ) ) ) C_ RR ) |
| 83 |
38
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 84 |
|
ax-resscn |
|- RR C_ CC |
| 85 |
|
cnrest2 |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ran ( x e. I |-> ( ( x ` n ) - ( ( F ` x ) ` n ) ) ) C_ RR /\ RR C_ CC ) -> ( ( x e. I |-> ( ( x ` n ) - ( ( F ` x ) ` n ) ) ) e. ( ( R |`t I ) Cn ( TopOpen ` CCfld ) ) <-> ( x e. I |-> ( ( x ` n ) - ( ( F ` x ) ` n ) ) ) e. ( ( R |`t I ) Cn ( ( TopOpen ` CCfld ) |`t RR ) ) ) ) |
| 86 |
83 84 85
|
mp3an13 |
|- ( ran ( x e. I |-> ( ( x ` n ) - ( ( F ` x ) ` n ) ) ) C_ RR -> ( ( x e. I |-> ( ( x ` n ) - ( ( F ` x ) ` n ) ) ) e. ( ( R |`t I ) Cn ( TopOpen ` CCfld ) ) <-> ( x e. I |-> ( ( x ` n ) - ( ( F ` x ) ` n ) ) ) e. ( ( R |`t I ) Cn ( ( TopOpen ` CCfld ) |`t RR ) ) ) ) |
| 87 |
81 82 86
|
3syl |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( x e. I |-> ( ( x ` n ) - ( ( F ` x ) ` n ) ) ) e. ( ( R |`t I ) Cn ( TopOpen ` CCfld ) ) <-> ( x e. I |-> ( ( x ` n ) - ( ( F ` x ) ` n ) ) ) e. ( ( R |`t I ) Cn ( ( TopOpen ` CCfld ) |`t RR ) ) ) ) |
| 88 |
68 87
|
mpbid |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( x e. I |-> ( ( x ` n ) - ( ( F ` x ) ` n ) ) ) e. ( ( R |`t I ) Cn ( ( TopOpen ` CCfld ) |`t RR ) ) ) |
| 89 |
54
|
adantl |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( R |`t I ) Cn ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) ) = ( ( R |`t I ) Cn ( ( TopOpen ` CCfld ) |`t RR ) ) ) |
| 90 |
88 89
|
eleqtrrd |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( x e. I |-> ( ( x ` n ) - ( ( F ` x ) ` n ) ) ) e. ( ( R |`t I ) Cn ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) ) ) |
| 91 |
3 32 33 36 90
|
ptcn |
|- ( ph -> ( x e. I |-> ( n e. ( 1 ... N ) |-> ( ( x ` n ) - ( ( F ` x ) ` n ) ) ) ) e. ( ( R |`t I ) Cn R ) ) |
| 92 |
31 91
|
eqeltrd |
|- ( ph -> ( x e. I |-> ( x oF - ( F ` x ) ) ) e. ( ( R |`t I ) Cn R ) ) |
| 93 |
|
simpr2 |
|- ( ( ph /\ ( n e. ( 1 ... N ) /\ z e. I /\ ( z ` n ) = 0 ) ) -> z e. I ) |
| 94 |
|
id |
|- ( x = z -> x = z ) |
| 95 |
|
fveq2 |
|- ( x = z -> ( F ` x ) = ( F ` z ) ) |
| 96 |
94 95
|
oveq12d |
|- ( x = z -> ( x oF - ( F ` x ) ) = ( z oF - ( F ` z ) ) ) |
| 97 |
|
eqid |
|- ( x e. I |-> ( x oF - ( F ` x ) ) ) = ( x e. I |-> ( x oF - ( F ` x ) ) ) |
| 98 |
|
ovex |
|- ( z oF - ( F ` z ) ) e. _V |
| 99 |
96 97 98
|
fvmpt |
|- ( z e. I -> ( ( x e. I |-> ( x oF - ( F ` x ) ) ) ` z ) = ( z oF - ( F ` z ) ) ) |
| 100 |
99
|
fveq1d |
|- ( z e. I -> ( ( ( x e. I |-> ( x oF - ( F ` x ) ) ) ` z ) ` n ) = ( ( z oF - ( F ` z ) ) ` n ) ) |
| 101 |
93 100
|
syl |
|- ( ( ph /\ ( n e. ( 1 ... N ) /\ z e. I /\ ( z ` n ) = 0 ) ) -> ( ( ( x e. I |-> ( x oF - ( F ` x ) ) ) ` z ) ` n ) = ( ( z oF - ( F ` z ) ) ` n ) ) |
| 102 |
|
elmapfn |
|- ( z e. ( ( 0 [,] 1 ) ^m ( 1 ... N ) ) -> z Fn ( 1 ... N ) ) |
| 103 |
102 2
|
eleq2s |
|- ( z e. I -> z Fn ( 1 ... N ) ) |
| 104 |
103
|
adantl |
|- ( ( ( ph /\ ( z ` n ) = 0 ) /\ z e. I ) -> z Fn ( 1 ... N ) ) |
| 105 |
21
|
ffvelcdmda |
|- ( ( ph /\ z e. I ) -> ( F ` z ) e. I ) |
| 106 |
|
elmapfn |
|- ( ( F ` z ) e. ( ( 0 [,] 1 ) ^m ( 1 ... N ) ) -> ( F ` z ) Fn ( 1 ... N ) ) |
| 107 |
106 2
|
eleq2s |
|- ( ( F ` z ) e. I -> ( F ` z ) Fn ( 1 ... N ) ) |
| 108 |
105 107
|
syl |
|- ( ( ph /\ z e. I ) -> ( F ` z ) Fn ( 1 ... N ) ) |
| 109 |
108
|
adantlr |
|- ( ( ( ph /\ ( z ` n ) = 0 ) /\ z e. I ) -> ( F ` z ) Fn ( 1 ... N ) ) |
| 110 |
|
ovexd |
|- ( ( ( ph /\ ( z ` n ) = 0 ) /\ z e. I ) -> ( 1 ... N ) e. _V ) |
| 111 |
|
simpllr |
|- ( ( ( ( ph /\ ( z ` n ) = 0 ) /\ z e. I ) /\ n e. ( 1 ... N ) ) -> ( z ` n ) = 0 ) |
| 112 |
|
eqidd |
|- ( ( ( ( ph /\ ( z ` n ) = 0 ) /\ z e. I ) /\ n e. ( 1 ... N ) ) -> ( ( F ` z ) ` n ) = ( ( F ` z ) ` n ) ) |
| 113 |
104 109 110 110 27 111 112
|
ofval |
|- ( ( ( ( ph /\ ( z ` n ) = 0 ) /\ z e. I ) /\ n e. ( 1 ... N ) ) -> ( ( z oF - ( F ` z ) ) ` n ) = ( 0 - ( ( F ` z ) ` n ) ) ) |
| 114 |
|
df-neg |
|- -u ( ( F ` z ) ` n ) = ( 0 - ( ( F ` z ) ` n ) ) |
| 115 |
113 114
|
eqtr4di |
|- ( ( ( ( ph /\ ( z ` n ) = 0 ) /\ z e. I ) /\ n e. ( 1 ... N ) ) -> ( ( z oF - ( F ` z ) ) ` n ) = -u ( ( F ` z ) ` n ) ) |
| 116 |
115
|
exp41 |
|- ( ph -> ( ( z ` n ) = 0 -> ( z e. I -> ( n e. ( 1 ... N ) -> ( ( z oF - ( F ` z ) ) ` n ) = -u ( ( F ` z ) ` n ) ) ) ) ) |
| 117 |
116
|
com24 |
|- ( ph -> ( n e. ( 1 ... N ) -> ( z e. I -> ( ( z ` n ) = 0 -> ( ( z oF - ( F ` z ) ) ` n ) = -u ( ( F ` z ) ` n ) ) ) ) ) |
| 118 |
117
|
3imp2 |
|- ( ( ph /\ ( n e. ( 1 ... N ) /\ z e. I /\ ( z ` n ) = 0 ) ) -> ( ( z oF - ( F ` z ) ) ` n ) = -u ( ( F ` z ) ` n ) ) |
| 119 |
101 118
|
eqtrd |
|- ( ( ph /\ ( n e. ( 1 ... N ) /\ z e. I /\ ( z ` n ) = 0 ) ) -> ( ( ( x e. I |-> ( x oF - ( F ` x ) ) ) ` z ) ` n ) = -u ( ( F ` z ) ` n ) ) |
| 120 |
|
elmapi |
|- ( ( F ` z ) e. ( ( 0 [,] 1 ) ^m ( 1 ... N ) ) -> ( F ` z ) : ( 1 ... N ) --> ( 0 [,] 1 ) ) |
| 121 |
120 2
|
eleq2s |
|- ( ( F ` z ) e. I -> ( F ` z ) : ( 1 ... N ) --> ( 0 [,] 1 ) ) |
| 122 |
105 121
|
syl |
|- ( ( ph /\ z e. I ) -> ( F ` z ) : ( 1 ... N ) --> ( 0 [,] 1 ) ) |
| 123 |
122
|
ffvelcdmda |
|- ( ( ( ph /\ z e. I ) /\ n e. ( 1 ... N ) ) -> ( ( F ` z ) ` n ) e. ( 0 [,] 1 ) ) |
| 124 |
|
0xr |
|- 0 e. RR* |
| 125 |
|
1xr |
|- 1 e. RR* |
| 126 |
|
iccgelb |
|- ( ( 0 e. RR* /\ 1 e. RR* /\ ( ( F ` z ) ` n ) e. ( 0 [,] 1 ) ) -> 0 <_ ( ( F ` z ) ` n ) ) |
| 127 |
124 125 126
|
mp3an12 |
|- ( ( ( F ` z ) ` n ) e. ( 0 [,] 1 ) -> 0 <_ ( ( F ` z ) ` n ) ) |
| 128 |
123 127
|
syl |
|- ( ( ( ph /\ z e. I ) /\ n e. ( 1 ... N ) ) -> 0 <_ ( ( F ` z ) ` n ) ) |
| 129 |
13 123
|
sselid |
|- ( ( ( ph /\ z e. I ) /\ n e. ( 1 ... N ) ) -> ( ( F ` z ) ` n ) e. RR ) |
| 130 |
129
|
le0neg2d |
|- ( ( ( ph /\ z e. I ) /\ n e. ( 1 ... N ) ) -> ( 0 <_ ( ( F ` z ) ` n ) <-> -u ( ( F ` z ) ` n ) <_ 0 ) ) |
| 131 |
128 130
|
mpbid |
|- ( ( ( ph /\ z e. I ) /\ n e. ( 1 ... N ) ) -> -u ( ( F ` z ) ` n ) <_ 0 ) |
| 132 |
131
|
an32s |
|- ( ( ( ph /\ n e. ( 1 ... N ) ) /\ z e. I ) -> -u ( ( F ` z ) ` n ) <_ 0 ) |
| 133 |
132
|
anasss |
|- ( ( ph /\ ( n e. ( 1 ... N ) /\ z e. I ) ) -> -u ( ( F ` z ) ` n ) <_ 0 ) |
| 134 |
133
|
3adantr3 |
|- ( ( ph /\ ( n e. ( 1 ... N ) /\ z e. I /\ ( z ` n ) = 0 ) ) -> -u ( ( F ` z ) ` n ) <_ 0 ) |
| 135 |
119 134
|
eqbrtrd |
|- ( ( ph /\ ( n e. ( 1 ... N ) /\ z e. I /\ ( z ` n ) = 0 ) ) -> ( ( ( x e. I |-> ( x oF - ( F ` x ) ) ) ` z ) ` n ) <_ 0 ) |
| 136 |
|
iccleub |
|- ( ( 0 e. RR* /\ 1 e. RR* /\ ( ( F ` z ) ` n ) e. ( 0 [,] 1 ) ) -> ( ( F ` z ) ` n ) <_ 1 ) |
| 137 |
124 125 136
|
mp3an12 |
|- ( ( ( F ` z ) ` n ) e. ( 0 [,] 1 ) -> ( ( F ` z ) ` n ) <_ 1 ) |
| 138 |
123 137
|
syl |
|- ( ( ( ph /\ z e. I ) /\ n e. ( 1 ... N ) ) -> ( ( F ` z ) ` n ) <_ 1 ) |
| 139 |
|
1red |
|- ( ( ( ph /\ z e. I ) /\ n e. ( 1 ... N ) ) -> 1 e. RR ) |
| 140 |
139 129
|
subge0d |
|- ( ( ( ph /\ z e. I ) /\ n e. ( 1 ... N ) ) -> ( 0 <_ ( 1 - ( ( F ` z ) ` n ) ) <-> ( ( F ` z ) ` n ) <_ 1 ) ) |
| 141 |
138 140
|
mpbird |
|- ( ( ( ph /\ z e. I ) /\ n e. ( 1 ... N ) ) -> 0 <_ ( 1 - ( ( F ` z ) ` n ) ) ) |
| 142 |
141
|
an32s |
|- ( ( ( ph /\ n e. ( 1 ... N ) ) /\ z e. I ) -> 0 <_ ( 1 - ( ( F ` z ) ` n ) ) ) |
| 143 |
142
|
anasss |
|- ( ( ph /\ ( n e. ( 1 ... N ) /\ z e. I ) ) -> 0 <_ ( 1 - ( ( F ` z ) ` n ) ) ) |
| 144 |
143
|
3adantr3 |
|- ( ( ph /\ ( n e. ( 1 ... N ) /\ z e. I /\ ( z ` n ) = 1 ) ) -> 0 <_ ( 1 - ( ( F ` z ) ` n ) ) ) |
| 145 |
|
simpr2 |
|- ( ( ph /\ ( n e. ( 1 ... N ) /\ z e. I /\ ( z ` n ) = 1 ) ) -> z e. I ) |
| 146 |
145 100
|
syl |
|- ( ( ph /\ ( n e. ( 1 ... N ) /\ z e. I /\ ( z ` n ) = 1 ) ) -> ( ( ( x e. I |-> ( x oF - ( F ` x ) ) ) ` z ) ` n ) = ( ( z oF - ( F ` z ) ) ` n ) ) |
| 147 |
103
|
adantl |
|- ( ( ( ph /\ ( z ` n ) = 1 ) /\ z e. I ) -> z Fn ( 1 ... N ) ) |
| 148 |
108
|
adantlr |
|- ( ( ( ph /\ ( z ` n ) = 1 ) /\ z e. I ) -> ( F ` z ) Fn ( 1 ... N ) ) |
| 149 |
|
ovexd |
|- ( ( ( ph /\ ( z ` n ) = 1 ) /\ z e. I ) -> ( 1 ... N ) e. _V ) |
| 150 |
|
simpllr |
|- ( ( ( ( ph /\ ( z ` n ) = 1 ) /\ z e. I ) /\ n e. ( 1 ... N ) ) -> ( z ` n ) = 1 ) |
| 151 |
|
eqidd |
|- ( ( ( ( ph /\ ( z ` n ) = 1 ) /\ z e. I ) /\ n e. ( 1 ... N ) ) -> ( ( F ` z ) ` n ) = ( ( F ` z ) ` n ) ) |
| 152 |
147 148 149 149 27 150 151
|
ofval |
|- ( ( ( ( ph /\ ( z ` n ) = 1 ) /\ z e. I ) /\ n e. ( 1 ... N ) ) -> ( ( z oF - ( F ` z ) ) ` n ) = ( 1 - ( ( F ` z ) ` n ) ) ) |
| 153 |
152
|
exp41 |
|- ( ph -> ( ( z ` n ) = 1 -> ( z e. I -> ( n e. ( 1 ... N ) -> ( ( z oF - ( F ` z ) ) ` n ) = ( 1 - ( ( F ` z ) ` n ) ) ) ) ) ) |
| 154 |
153
|
com24 |
|- ( ph -> ( n e. ( 1 ... N ) -> ( z e. I -> ( ( z ` n ) = 1 -> ( ( z oF - ( F ` z ) ) ` n ) = ( 1 - ( ( F ` z ) ` n ) ) ) ) ) ) |
| 155 |
154
|
3imp2 |
|- ( ( ph /\ ( n e. ( 1 ... N ) /\ z e. I /\ ( z ` n ) = 1 ) ) -> ( ( z oF - ( F ` z ) ) ` n ) = ( 1 - ( ( F ` z ) ` n ) ) ) |
| 156 |
146 155
|
eqtrd |
|- ( ( ph /\ ( n e. ( 1 ... N ) /\ z e. I /\ ( z ` n ) = 1 ) ) -> ( ( ( x e. I |-> ( x oF - ( F ` x ) ) ) ` z ) ` n ) = ( 1 - ( ( F ` z ) ` n ) ) ) |
| 157 |
144 156
|
breqtrrd |
|- ( ( ph /\ ( n e. ( 1 ... N ) /\ z e. I /\ ( z ` n ) = 1 ) ) -> 0 <_ ( ( ( x e. I |-> ( x oF - ( F ` x ) ) ) ` z ) ` n ) ) |
| 158 |
1 2 3 92 135 157
|
poimir |
|- ( ph -> E. c e. I ( ( x e. I |-> ( x oF - ( F ` x ) ) ) ` c ) = ( ( 1 ... N ) X. { 0 } ) ) |
| 159 |
|
id |
|- ( x = c -> x = c ) |
| 160 |
|
fveq2 |
|- ( x = c -> ( F ` x ) = ( F ` c ) ) |
| 161 |
159 160
|
oveq12d |
|- ( x = c -> ( x oF - ( F ` x ) ) = ( c oF - ( F ` c ) ) ) |
| 162 |
|
ovex |
|- ( c oF - ( F ` c ) ) e. _V |
| 163 |
161 97 162
|
fvmpt |
|- ( c e. I -> ( ( x e. I |-> ( x oF - ( F ` x ) ) ) ` c ) = ( c oF - ( F ` c ) ) ) |
| 164 |
163
|
adantl |
|- ( ( ph /\ c e. I ) -> ( ( x e. I |-> ( x oF - ( F ` x ) ) ) ` c ) = ( c oF - ( F ` c ) ) ) |
| 165 |
164
|
eqeq1d |
|- ( ( ph /\ c e. I ) -> ( ( ( x e. I |-> ( x oF - ( F ` x ) ) ) ` c ) = ( ( 1 ... N ) X. { 0 } ) <-> ( c oF - ( F ` c ) ) = ( ( 1 ... N ) X. { 0 } ) ) ) |
| 166 |
|
elmapfn |
|- ( c e. ( ( 0 [,] 1 ) ^m ( 1 ... N ) ) -> c Fn ( 1 ... N ) ) |
| 167 |
166 2
|
eleq2s |
|- ( c e. I -> c Fn ( 1 ... N ) ) |
| 168 |
167
|
adantl |
|- ( ( ph /\ c e. I ) -> c Fn ( 1 ... N ) ) |
| 169 |
21
|
ffvelcdmda |
|- ( ( ph /\ c e. I ) -> ( F ` c ) e. I ) |
| 170 |
|
elmapfn |
|- ( ( F ` c ) e. ( ( 0 [,] 1 ) ^m ( 1 ... N ) ) -> ( F ` c ) Fn ( 1 ... N ) ) |
| 171 |
170 2
|
eleq2s |
|- ( ( F ` c ) e. I -> ( F ` c ) Fn ( 1 ... N ) ) |
| 172 |
169 171
|
syl |
|- ( ( ph /\ c e. I ) -> ( F ` c ) Fn ( 1 ... N ) ) |
| 173 |
|
ovexd |
|- ( ( ph /\ c e. I ) -> ( 1 ... N ) e. _V ) |
| 174 |
|
eqidd |
|- ( ( ( ph /\ c e. I ) /\ n e. ( 1 ... N ) ) -> ( c ` n ) = ( c ` n ) ) |
| 175 |
|
eqidd |
|- ( ( ( ph /\ c e. I ) /\ n e. ( 1 ... N ) ) -> ( ( F ` c ) ` n ) = ( ( F ` c ) ` n ) ) |
| 176 |
168 172 173 173 27 174 175
|
ofval |
|- ( ( ( ph /\ c e. I ) /\ n e. ( 1 ... N ) ) -> ( ( c oF - ( F ` c ) ) ` n ) = ( ( c ` n ) - ( ( F ` c ) ` n ) ) ) |
| 177 |
|
c0ex |
|- 0 e. _V |
| 178 |
177
|
fvconst2 |
|- ( n e. ( 1 ... N ) -> ( ( ( 1 ... N ) X. { 0 } ) ` n ) = 0 ) |
| 179 |
178
|
adantl |
|- ( ( ( ph /\ c e. I ) /\ n e. ( 1 ... N ) ) -> ( ( ( 1 ... N ) X. { 0 } ) ` n ) = 0 ) |
| 180 |
176 179
|
eqeq12d |
|- ( ( ( ph /\ c e. I ) /\ n e. ( 1 ... N ) ) -> ( ( ( c oF - ( F ` c ) ) ` n ) = ( ( ( 1 ... N ) X. { 0 } ) ` n ) <-> ( ( c ` n ) - ( ( F ` c ) ` n ) ) = 0 ) ) |
| 181 |
13 84
|
sstri |
|- ( 0 [,] 1 ) C_ CC |
| 182 |
|
elmapi |
|- ( c e. ( ( 0 [,] 1 ) ^m ( 1 ... N ) ) -> c : ( 1 ... N ) --> ( 0 [,] 1 ) ) |
| 183 |
182 2
|
eleq2s |
|- ( c e. I -> c : ( 1 ... N ) --> ( 0 [,] 1 ) ) |
| 184 |
183
|
ffvelcdmda |
|- ( ( c e. I /\ n e. ( 1 ... N ) ) -> ( c ` n ) e. ( 0 [,] 1 ) ) |
| 185 |
181 184
|
sselid |
|- ( ( c e. I /\ n e. ( 1 ... N ) ) -> ( c ` n ) e. CC ) |
| 186 |
185
|
adantll |
|- ( ( ( ph /\ c e. I ) /\ n e. ( 1 ... N ) ) -> ( c ` n ) e. CC ) |
| 187 |
|
elmapi |
|- ( ( F ` c ) e. ( ( 0 [,] 1 ) ^m ( 1 ... N ) ) -> ( F ` c ) : ( 1 ... N ) --> ( 0 [,] 1 ) ) |
| 188 |
187 2
|
eleq2s |
|- ( ( F ` c ) e. I -> ( F ` c ) : ( 1 ... N ) --> ( 0 [,] 1 ) ) |
| 189 |
169 188
|
syl |
|- ( ( ph /\ c e. I ) -> ( F ` c ) : ( 1 ... N ) --> ( 0 [,] 1 ) ) |
| 190 |
189
|
ffvelcdmda |
|- ( ( ( ph /\ c e. I ) /\ n e. ( 1 ... N ) ) -> ( ( F ` c ) ` n ) e. ( 0 [,] 1 ) ) |
| 191 |
181 190
|
sselid |
|- ( ( ( ph /\ c e. I ) /\ n e. ( 1 ... N ) ) -> ( ( F ` c ) ` n ) e. CC ) |
| 192 |
186 191
|
subeq0ad |
|- ( ( ( ph /\ c e. I ) /\ n e. ( 1 ... N ) ) -> ( ( ( c ` n ) - ( ( F ` c ) ` n ) ) = 0 <-> ( c ` n ) = ( ( F ` c ) ` n ) ) ) |
| 193 |
180 192
|
bitrd |
|- ( ( ( ph /\ c e. I ) /\ n e. ( 1 ... N ) ) -> ( ( ( c oF - ( F ` c ) ) ` n ) = ( ( ( 1 ... N ) X. { 0 } ) ` n ) <-> ( c ` n ) = ( ( F ` c ) ` n ) ) ) |
| 194 |
193
|
ralbidva |
|- ( ( ph /\ c e. I ) -> ( A. n e. ( 1 ... N ) ( ( c oF - ( F ` c ) ) ` n ) = ( ( ( 1 ... N ) X. { 0 } ) ` n ) <-> A. n e. ( 1 ... N ) ( c ` n ) = ( ( F ` c ) ` n ) ) ) |
| 195 |
168 172 173 173 27
|
offn |
|- ( ( ph /\ c e. I ) -> ( c oF - ( F ` c ) ) Fn ( 1 ... N ) ) |
| 196 |
|
fnconstg |
|- ( 0 e. _V -> ( ( 1 ... N ) X. { 0 } ) Fn ( 1 ... N ) ) |
| 197 |
177 196
|
ax-mp |
|- ( ( 1 ... N ) X. { 0 } ) Fn ( 1 ... N ) |
| 198 |
|
eqfnfv |
|- ( ( ( c oF - ( F ` c ) ) Fn ( 1 ... N ) /\ ( ( 1 ... N ) X. { 0 } ) Fn ( 1 ... N ) ) -> ( ( c oF - ( F ` c ) ) = ( ( 1 ... N ) X. { 0 } ) <-> A. n e. ( 1 ... N ) ( ( c oF - ( F ` c ) ) ` n ) = ( ( ( 1 ... N ) X. { 0 } ) ` n ) ) ) |
| 199 |
195 197 198
|
sylancl |
|- ( ( ph /\ c e. I ) -> ( ( c oF - ( F ` c ) ) = ( ( 1 ... N ) X. { 0 } ) <-> A. n e. ( 1 ... N ) ( ( c oF - ( F ` c ) ) ` n ) = ( ( ( 1 ... N ) X. { 0 } ) ` n ) ) ) |
| 200 |
|
eqfnfv |
|- ( ( c Fn ( 1 ... N ) /\ ( F ` c ) Fn ( 1 ... N ) ) -> ( c = ( F ` c ) <-> A. n e. ( 1 ... N ) ( c ` n ) = ( ( F ` c ) ` n ) ) ) |
| 201 |
168 172 200
|
syl2anc |
|- ( ( ph /\ c e. I ) -> ( c = ( F ` c ) <-> A. n e. ( 1 ... N ) ( c ` n ) = ( ( F ` c ) ` n ) ) ) |
| 202 |
194 199 201
|
3bitr4d |
|- ( ( ph /\ c e. I ) -> ( ( c oF - ( F ` c ) ) = ( ( 1 ... N ) X. { 0 } ) <-> c = ( F ` c ) ) ) |
| 203 |
165 202
|
bitrd |
|- ( ( ph /\ c e. I ) -> ( ( ( x e. I |-> ( x oF - ( F ` x ) ) ) ` c ) = ( ( 1 ... N ) X. { 0 } ) <-> c = ( F ` c ) ) ) |
| 204 |
203
|
rexbidva |
|- ( ph -> ( E. c e. I ( ( x e. I |-> ( x oF - ( F ` x ) ) ) ` c ) = ( ( 1 ... N ) X. { 0 } ) <-> E. c e. I c = ( F ` c ) ) ) |
| 205 |
158 204
|
mpbid |
|- ( ph -> E. c e. I c = ( F ` c ) ) |