| Step |
Hyp |
Ref |
Expression |
| 1 |
|
poimir.0 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 2 |
|
poimir.i |
⊢ 𝐼 = ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) |
| 3 |
|
poimir.r |
⊢ 𝑅 = ( ∏t ‘ ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) ) |
| 4 |
|
broucube.1 |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝑅 ↾t 𝐼 ) Cn ( 𝑅 ↾t 𝐼 ) ) ) |
| 5 |
|
elmapfn |
⊢ ( 𝑥 ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) → 𝑥 Fn ( 1 ... 𝑁 ) ) |
| 6 |
5 2
|
eleq2s |
⊢ ( 𝑥 ∈ 𝐼 → 𝑥 Fn ( 1 ... 𝑁 ) ) |
| 7 |
6
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑥 Fn ( 1 ... 𝑁 ) ) |
| 8 |
|
ovex |
⊢ ( 1 ... 𝑁 ) ∈ V |
| 9 |
|
retopon |
⊢ ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) |
| 10 |
3
|
pttoponconst |
⊢ ( ( ( 1 ... 𝑁 ) ∈ V ∧ ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) ) → 𝑅 ∈ ( TopOn ‘ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ) |
| 11 |
8 9 10
|
mp2an |
⊢ 𝑅 ∈ ( TopOn ‘ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) |
| 12 |
|
reex |
⊢ ℝ ∈ V |
| 13 |
|
unitssre |
⊢ ( 0 [,] 1 ) ⊆ ℝ |
| 14 |
|
mapss |
⊢ ( ( ℝ ∈ V ∧ ( 0 [,] 1 ) ⊆ ℝ ) → ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) ⊆ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) |
| 15 |
12 13 14
|
mp2an |
⊢ ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) ⊆ ( ℝ ↑m ( 1 ... 𝑁 ) ) |
| 16 |
2 15
|
eqsstri |
⊢ 𝐼 ⊆ ( ℝ ↑m ( 1 ... 𝑁 ) ) |
| 17 |
|
resttopon |
⊢ ( ( 𝑅 ∈ ( TopOn ‘ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝐼 ⊆ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) → ( 𝑅 ↾t 𝐼 ) ∈ ( TopOn ‘ 𝐼 ) ) |
| 18 |
11 16 17
|
mp2an |
⊢ ( 𝑅 ↾t 𝐼 ) ∈ ( TopOn ‘ 𝐼 ) |
| 19 |
18
|
toponunii |
⊢ 𝐼 = ∪ ( 𝑅 ↾t 𝐼 ) |
| 20 |
19 19
|
cnf |
⊢ ( 𝐹 ∈ ( ( 𝑅 ↾t 𝐼 ) Cn ( 𝑅 ↾t 𝐼 ) ) → 𝐹 : 𝐼 ⟶ 𝐼 ) |
| 21 |
4 20
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ 𝐼 ) |
| 22 |
21
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐼 ) |
| 23 |
|
elmapfn |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) Fn ( 1 ... 𝑁 ) ) |
| 24 |
23 2
|
eleq2s |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐼 → ( 𝐹 ‘ 𝑥 ) Fn ( 1 ... 𝑁 ) ) |
| 25 |
22 24
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑥 ) Fn ( 1 ... 𝑁 ) ) |
| 26 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 1 ... 𝑁 ) ∈ V ) |
| 27 |
|
inidm |
⊢ ( ( 1 ... 𝑁 ) ∩ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) |
| 28 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑥 ‘ 𝑛 ) = ( 𝑥 ‘ 𝑛 ) ) |
| 29 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑛 ) ) |
| 30 |
7 25 26 26 27 28 29
|
offval |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑥 ∘f − ( 𝐹 ‘ 𝑥 ) ) = ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( 𝑥 ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑛 ) ) ) ) |
| 31 |
30
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ ( 𝑥 ∘f − ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( 𝑥 ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑛 ) ) ) ) ) |
| 32 |
18
|
a1i |
⊢ ( 𝜑 → ( 𝑅 ↾t 𝐼 ) ∈ ( TopOn ‘ 𝐼 ) ) |
| 33 |
|
ovexd |
⊢ ( 𝜑 → ( 1 ... 𝑁 ) ∈ V ) |
| 34 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
| 35 |
34
|
fconst6 |
⊢ ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) : ( 1 ... 𝑁 ) ⟶ Top |
| 36 |
35
|
a1i |
⊢ ( 𝜑 → ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) : ( 1 ... 𝑁 ) ⟶ Top ) |
| 37 |
18
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑅 ↾t 𝐼 ) ∈ ( TopOn ‘ 𝐼 ) ) |
| 38 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 39 |
38
|
cnfldtop |
⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
| 40 |
|
cnrest2r |
⊢ ( ( TopOpen ‘ ℂfld ) ∈ Top → ( ( 𝑅 ↾t 𝐼 ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ⊆ ( ( 𝑅 ↾t 𝐼 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 41 |
39 40
|
ax-mp |
⊢ ( ( 𝑅 ↾t 𝐼 ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ⊆ ( ( 𝑅 ↾t 𝐼 ) Cn ( TopOpen ‘ ℂfld ) ) |
| 42 |
|
resmpt |
⊢ ( 𝐼 ⊆ ( ℝ ↑m ( 1 ... 𝑁 ) ) → ( ( 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ↦ ( 𝑥 ‘ 𝑛 ) ) ↾ 𝐼 ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑥 ‘ 𝑛 ) ) ) |
| 43 |
16 42
|
ax-mp |
⊢ ( ( 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ↦ ( 𝑥 ‘ 𝑛 ) ) ↾ 𝐼 ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑥 ‘ 𝑛 ) ) |
| 44 |
11
|
toponunii |
⊢ ( ℝ ↑m ( 1 ... 𝑁 ) ) = ∪ 𝑅 |
| 45 |
44 3
|
ptpjcn |
⊢ ( ( ( 1 ... 𝑁 ) ∈ V ∧ ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) : ( 1 ... 𝑁 ) ⟶ Top ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ↦ ( 𝑥 ‘ 𝑛 ) ) ∈ ( 𝑅 Cn ( ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) ‘ 𝑛 ) ) ) |
| 46 |
8 35 45
|
mp3an12 |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ↦ ( 𝑥 ‘ 𝑛 ) ) ∈ ( 𝑅 Cn ( ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) ‘ 𝑛 ) ) ) |
| 47 |
44
|
cnrest |
⊢ ( ( ( 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ↦ ( 𝑥 ‘ 𝑛 ) ) ∈ ( 𝑅 Cn ( ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) ‘ 𝑛 ) ) ∧ 𝐼 ⊆ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) → ( ( 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ↦ ( 𝑥 ‘ 𝑛 ) ) ↾ 𝐼 ) ∈ ( ( 𝑅 ↾t 𝐼 ) Cn ( ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) ‘ 𝑛 ) ) ) |
| 48 |
46 16 47
|
sylancl |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ↦ ( 𝑥 ‘ 𝑛 ) ) ↾ 𝐼 ) ∈ ( ( 𝑅 ↾t 𝐼 ) Cn ( ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) ‘ 𝑛 ) ) ) |
| 49 |
43 48
|
eqeltrrid |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( 𝑥 ∈ 𝐼 ↦ ( 𝑥 ‘ 𝑛 ) ) ∈ ( ( 𝑅 ↾t 𝐼 ) Cn ( ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) ‘ 𝑛 ) ) ) |
| 50 |
|
fvex |
⊢ ( topGen ‘ ran (,) ) ∈ V |
| 51 |
50
|
fvconst2 |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) ‘ 𝑛 ) = ( topGen ‘ ran (,) ) ) |
| 52 |
|
tgioo4 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
| 53 |
51 52
|
eqtrdi |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) ‘ 𝑛 ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) |
| 54 |
53
|
oveq2d |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( 𝑅 ↾t 𝐼 ) Cn ( ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) ‘ 𝑛 ) ) = ( ( 𝑅 ↾t 𝐼 ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) |
| 55 |
49 54
|
eleqtrd |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( 𝑥 ∈ 𝐼 ↦ ( 𝑥 ‘ 𝑛 ) ) ∈ ( ( 𝑅 ↾t 𝐼 ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) |
| 56 |
41 55
|
sselid |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( 𝑥 ∈ 𝐼 ↦ ( 𝑥 ‘ 𝑛 ) ) ∈ ( ( 𝑅 ↾t 𝐼 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 57 |
56
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑥 ∈ 𝐼 ↦ ( 𝑥 ‘ 𝑛 ) ) ∈ ( ( 𝑅 ↾t 𝐼 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 58 |
21
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐼 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 59 |
58 4
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ ( ( 𝑅 ↾t 𝐼 ) Cn ( 𝑅 ↾t 𝐼 ) ) ) |
| 60 |
59
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑥 ∈ 𝐼 ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ ( ( 𝑅 ↾t 𝐼 ) Cn ( 𝑅 ↾t 𝐼 ) ) ) |
| 61 |
|
fveq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ‘ 𝑛 ) = ( 𝑧 ‘ 𝑛 ) ) |
| 62 |
61
|
cbvmptv |
⊢ ( 𝑥 ∈ 𝐼 ↦ ( 𝑥 ‘ 𝑛 ) ) = ( 𝑧 ∈ 𝐼 ↦ ( 𝑧 ‘ 𝑛 ) ) |
| 63 |
62 57
|
eqeltrrid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑧 ∈ 𝐼 ↦ ( 𝑧 ‘ 𝑛 ) ) ∈ ( ( 𝑅 ↾t 𝐼 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 64 |
|
fveq1 |
⊢ ( 𝑧 = ( 𝐹 ‘ 𝑥 ) → ( 𝑧 ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑛 ) ) |
| 65 |
37 60 37 63 64
|
cnmpt11 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑛 ) ) ∈ ( ( 𝑅 ↾t 𝐼 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 66 |
38
|
subcn |
⊢ − ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
| 67 |
66
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → − ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 68 |
37 57 65 67
|
cnmpt12f |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑛 ) ) ) ∈ ( ( 𝑅 ↾t 𝐼 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 69 |
|
elmapi |
⊢ ( 𝑥 ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) → 𝑥 : ( 1 ... 𝑁 ) ⟶ ( 0 [,] 1 ) ) |
| 70 |
69 2
|
eleq2s |
⊢ ( 𝑥 ∈ 𝐼 → 𝑥 : ( 1 ... 𝑁 ) ⟶ ( 0 [,] 1 ) ) |
| 71 |
70
|
ffvelcdmda |
⊢ ( ( 𝑥 ∈ 𝐼 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑥 ‘ 𝑛 ) ∈ ( 0 [,] 1 ) ) |
| 72 |
13 71
|
sselid |
⊢ ( ( 𝑥 ∈ 𝐼 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑥 ‘ 𝑛 ) ∈ ℝ ) |
| 73 |
72
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑥 ‘ 𝑛 ) ∈ ℝ ) |
| 74 |
|
elmapi |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) : ( 1 ... 𝑁 ) ⟶ ( 0 [,] 1 ) ) |
| 75 |
74 2
|
eleq2s |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐼 → ( 𝐹 ‘ 𝑥 ) : ( 1 ... 𝑁 ) ⟶ ( 0 [,] 1 ) ) |
| 76 |
22 75
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑥 ) : ( 1 ... 𝑁 ) ⟶ ( 0 [,] 1 ) ) |
| 77 |
76
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑛 ) ∈ ( 0 [,] 1 ) ) |
| 78 |
13 77
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑛 ) ∈ ℝ ) |
| 79 |
73 78
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑥 ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑛 ) ) ∈ ℝ ) |
| 80 |
79
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑥 ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑛 ) ) ∈ ℝ ) |
| 81 |
80
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑛 ) ) ) : 𝐼 ⟶ ℝ ) |
| 82 |
|
frn |
⊢ ( ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑛 ) ) ) : 𝐼 ⟶ ℝ → ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑛 ) ) ) ⊆ ℝ ) |
| 83 |
38
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 84 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 85 |
|
cnrest2 |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑛 ) ) ) ⊆ ℝ ∧ ℝ ⊆ ℂ ) → ( ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑛 ) ) ) ∈ ( ( 𝑅 ↾t 𝐼 ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑛 ) ) ) ∈ ( ( 𝑅 ↾t 𝐼 ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) ) |
| 86 |
83 84 85
|
mp3an13 |
⊢ ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑛 ) ) ) ⊆ ℝ → ( ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑛 ) ) ) ∈ ( ( 𝑅 ↾t 𝐼 ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑛 ) ) ) ∈ ( ( 𝑅 ↾t 𝐼 ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) ) |
| 87 |
81 82 86
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑛 ) ) ) ∈ ( ( 𝑅 ↾t 𝐼 ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑛 ) ) ) ∈ ( ( 𝑅 ↾t 𝐼 ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) ) |
| 88 |
68 87
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑛 ) ) ) ∈ ( ( 𝑅 ↾t 𝐼 ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) |
| 89 |
54
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑅 ↾t 𝐼 ) Cn ( ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) ‘ 𝑛 ) ) = ( ( 𝑅 ↾t 𝐼 ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) |
| 90 |
88 89
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑛 ) ) ) ∈ ( ( 𝑅 ↾t 𝐼 ) Cn ( ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) ‘ 𝑛 ) ) ) |
| 91 |
3 32 33 36 90
|
ptcn |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( 𝑥 ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑛 ) ) ) ) ∈ ( ( 𝑅 ↾t 𝐼 ) Cn 𝑅 ) ) |
| 92 |
31 91
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ ( 𝑥 ∘f − ( 𝐹 ‘ 𝑥 ) ) ) ∈ ( ( 𝑅 ↾t 𝐼 ) Cn 𝑅 ) ) |
| 93 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ∈ 𝐼 ∧ ( 𝑧 ‘ 𝑛 ) = 0 ) ) → 𝑧 ∈ 𝐼 ) |
| 94 |
|
id |
⊢ ( 𝑥 = 𝑧 → 𝑥 = 𝑧 ) |
| 95 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 96 |
94 95
|
oveq12d |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∘f − ( 𝐹 ‘ 𝑥 ) ) = ( 𝑧 ∘f − ( 𝐹 ‘ 𝑧 ) ) ) |
| 97 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐼 ↦ ( 𝑥 ∘f − ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑥 ∘f − ( 𝐹 ‘ 𝑥 ) ) ) |
| 98 |
|
ovex |
⊢ ( 𝑧 ∘f − ( 𝐹 ‘ 𝑧 ) ) ∈ V |
| 99 |
96 97 98
|
fvmpt |
⊢ ( 𝑧 ∈ 𝐼 → ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑥 ∘f − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝑧 ) = ( 𝑧 ∘f − ( 𝐹 ‘ 𝑧 ) ) ) |
| 100 |
99
|
fveq1d |
⊢ ( 𝑧 ∈ 𝐼 → ( ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑥 ∘f − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝑧 ) ‘ 𝑛 ) = ( ( 𝑧 ∘f − ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑛 ) ) |
| 101 |
93 100
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ∈ 𝐼 ∧ ( 𝑧 ‘ 𝑛 ) = 0 ) ) → ( ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑥 ∘f − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝑧 ) ‘ 𝑛 ) = ( ( 𝑧 ∘f − ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑛 ) ) |
| 102 |
|
elmapfn |
⊢ ( 𝑧 ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) → 𝑧 Fn ( 1 ... 𝑁 ) ) |
| 103 |
102 2
|
eleq2s |
⊢ ( 𝑧 ∈ 𝐼 → 𝑧 Fn ( 1 ... 𝑁 ) ) |
| 104 |
103
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ‘ 𝑛 ) = 0 ) ∧ 𝑧 ∈ 𝐼 ) → 𝑧 Fn ( 1 ... 𝑁 ) ) |
| 105 |
21
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝐼 ) |
| 106 |
|
elmapfn |
⊢ ( ( 𝐹 ‘ 𝑧 ) ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑧 ) Fn ( 1 ... 𝑁 ) ) |
| 107 |
106 2
|
eleq2s |
⊢ ( ( 𝐹 ‘ 𝑧 ) ∈ 𝐼 → ( 𝐹 ‘ 𝑧 ) Fn ( 1 ... 𝑁 ) ) |
| 108 |
105 107
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑧 ) Fn ( 1 ... 𝑁 ) ) |
| 109 |
108
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ‘ 𝑛 ) = 0 ) ∧ 𝑧 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑧 ) Fn ( 1 ... 𝑁 ) ) |
| 110 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ‘ 𝑛 ) = 0 ) ∧ 𝑧 ∈ 𝐼 ) → ( 1 ... 𝑁 ) ∈ V ) |
| 111 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑧 ‘ 𝑛 ) = 0 ) ∧ 𝑧 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑧 ‘ 𝑛 ) = 0 ) |
| 112 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑧 ‘ 𝑛 ) = 0 ) ∧ 𝑧 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) |
| 113 |
104 109 110 110 27 111 112
|
ofval |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑧 ‘ 𝑛 ) = 0 ) ∧ 𝑧 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑧 ∘f − ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑛 ) = ( 0 − ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) ) |
| 114 |
|
df-neg |
⊢ - ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) = ( 0 − ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) |
| 115 |
113 114
|
eqtr4di |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑧 ‘ 𝑛 ) = 0 ) ∧ 𝑧 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑧 ∘f − ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑛 ) = - ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) |
| 116 |
115
|
exp41 |
⊢ ( 𝜑 → ( ( 𝑧 ‘ 𝑛 ) = 0 → ( 𝑧 ∈ 𝐼 → ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( 𝑧 ∘f − ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑛 ) = - ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) ) ) ) |
| 117 |
116
|
com24 |
⊢ ( 𝜑 → ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( 𝑧 ∈ 𝐼 → ( ( 𝑧 ‘ 𝑛 ) = 0 → ( ( 𝑧 ∘f − ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑛 ) = - ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) ) ) ) |
| 118 |
117
|
3imp2 |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ∈ 𝐼 ∧ ( 𝑧 ‘ 𝑛 ) = 0 ) ) → ( ( 𝑧 ∘f − ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑛 ) = - ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) |
| 119 |
101 118
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ∈ 𝐼 ∧ ( 𝑧 ‘ 𝑛 ) = 0 ) ) → ( ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑥 ∘f − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝑧 ) ‘ 𝑛 ) = - ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) |
| 120 |
|
elmapi |
⊢ ( ( 𝐹 ‘ 𝑧 ) ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑧 ) : ( 1 ... 𝑁 ) ⟶ ( 0 [,] 1 ) ) |
| 121 |
120 2
|
eleq2s |
⊢ ( ( 𝐹 ‘ 𝑧 ) ∈ 𝐼 → ( 𝐹 ‘ 𝑧 ) : ( 1 ... 𝑁 ) ⟶ ( 0 [,] 1 ) ) |
| 122 |
105 121
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑧 ) : ( 1 ... 𝑁 ) ⟶ ( 0 [,] 1 ) ) |
| 123 |
122
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ∈ ( 0 [,] 1 ) ) |
| 124 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 125 |
|
1xr |
⊢ 1 ∈ ℝ* |
| 126 |
|
iccgelb |
⊢ ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ∈ ( 0 [,] 1 ) ) → 0 ≤ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) |
| 127 |
124 125 126
|
mp3an12 |
⊢ ( ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ∈ ( 0 [,] 1 ) → 0 ≤ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) |
| 128 |
123 127
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → 0 ≤ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) |
| 129 |
13 123
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ∈ ℝ ) |
| 130 |
129
|
le0neg2d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 0 ≤ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ↔ - ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ≤ 0 ) ) |
| 131 |
128 130
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → - ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ≤ 0 ) |
| 132 |
131
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑧 ∈ 𝐼 ) → - ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ≤ 0 ) |
| 133 |
132
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ∈ 𝐼 ) ) → - ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ≤ 0 ) |
| 134 |
133
|
3adantr3 |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ∈ 𝐼 ∧ ( 𝑧 ‘ 𝑛 ) = 0 ) ) → - ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ≤ 0 ) |
| 135 |
119 134
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ∈ 𝐼 ∧ ( 𝑧 ‘ 𝑛 ) = 0 ) ) → ( ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑥 ∘f − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝑧 ) ‘ 𝑛 ) ≤ 0 ) |
| 136 |
|
iccleub |
⊢ ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ≤ 1 ) |
| 137 |
124 125 136
|
mp3an12 |
⊢ ( ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ∈ ( 0 [,] 1 ) → ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ≤ 1 ) |
| 138 |
123 137
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ≤ 1 ) |
| 139 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → 1 ∈ ℝ ) |
| 140 |
139 129
|
subge0d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 0 ≤ ( 1 − ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) ↔ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ≤ 1 ) ) |
| 141 |
138 140
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → 0 ≤ ( 1 − ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) ) |
| 142 |
141
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑧 ∈ 𝐼 ) → 0 ≤ ( 1 − ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) ) |
| 143 |
142
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ∈ 𝐼 ) ) → 0 ≤ ( 1 − ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) ) |
| 144 |
143
|
3adantr3 |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ∈ 𝐼 ∧ ( 𝑧 ‘ 𝑛 ) = 1 ) ) → 0 ≤ ( 1 − ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) ) |
| 145 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ∈ 𝐼 ∧ ( 𝑧 ‘ 𝑛 ) = 1 ) ) → 𝑧 ∈ 𝐼 ) |
| 146 |
145 100
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ∈ 𝐼 ∧ ( 𝑧 ‘ 𝑛 ) = 1 ) ) → ( ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑥 ∘f − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝑧 ) ‘ 𝑛 ) = ( ( 𝑧 ∘f − ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑛 ) ) |
| 147 |
103
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ‘ 𝑛 ) = 1 ) ∧ 𝑧 ∈ 𝐼 ) → 𝑧 Fn ( 1 ... 𝑁 ) ) |
| 148 |
108
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ‘ 𝑛 ) = 1 ) ∧ 𝑧 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑧 ) Fn ( 1 ... 𝑁 ) ) |
| 149 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ‘ 𝑛 ) = 1 ) ∧ 𝑧 ∈ 𝐼 ) → ( 1 ... 𝑁 ) ∈ V ) |
| 150 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑧 ‘ 𝑛 ) = 1 ) ∧ 𝑧 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑧 ‘ 𝑛 ) = 1 ) |
| 151 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑧 ‘ 𝑛 ) = 1 ) ∧ 𝑧 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) |
| 152 |
147 148 149 149 27 150 151
|
ofval |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑧 ‘ 𝑛 ) = 1 ) ∧ 𝑧 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑧 ∘f − ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑛 ) = ( 1 − ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) ) |
| 153 |
152
|
exp41 |
⊢ ( 𝜑 → ( ( 𝑧 ‘ 𝑛 ) = 1 → ( 𝑧 ∈ 𝐼 → ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( 𝑧 ∘f − ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑛 ) = ( 1 − ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) ) ) ) ) |
| 154 |
153
|
com24 |
⊢ ( 𝜑 → ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( 𝑧 ∈ 𝐼 → ( ( 𝑧 ‘ 𝑛 ) = 1 → ( ( 𝑧 ∘f − ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑛 ) = ( 1 − ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) ) ) ) ) |
| 155 |
154
|
3imp2 |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ∈ 𝐼 ∧ ( 𝑧 ‘ 𝑛 ) = 1 ) ) → ( ( 𝑧 ∘f − ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑛 ) = ( 1 − ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) ) |
| 156 |
146 155
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ∈ 𝐼 ∧ ( 𝑧 ‘ 𝑛 ) = 1 ) ) → ( ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑥 ∘f − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝑧 ) ‘ 𝑛 ) = ( 1 − ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) ) |
| 157 |
144 156
|
breqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ∈ 𝐼 ∧ ( 𝑧 ‘ 𝑛 ) = 1 ) ) → 0 ≤ ( ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑥 ∘f − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝑧 ) ‘ 𝑛 ) ) |
| 158 |
1 2 3 92 135 157
|
poimir |
⊢ ( 𝜑 → ∃ 𝑐 ∈ 𝐼 ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑥 ∘f − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝑐 ) = ( ( 1 ... 𝑁 ) × { 0 } ) ) |
| 159 |
|
id |
⊢ ( 𝑥 = 𝑐 → 𝑥 = 𝑐 ) |
| 160 |
|
fveq2 |
⊢ ( 𝑥 = 𝑐 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑐 ) ) |
| 161 |
159 160
|
oveq12d |
⊢ ( 𝑥 = 𝑐 → ( 𝑥 ∘f − ( 𝐹 ‘ 𝑥 ) ) = ( 𝑐 ∘f − ( 𝐹 ‘ 𝑐 ) ) ) |
| 162 |
|
ovex |
⊢ ( 𝑐 ∘f − ( 𝐹 ‘ 𝑐 ) ) ∈ V |
| 163 |
161 97 162
|
fvmpt |
⊢ ( 𝑐 ∈ 𝐼 → ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑥 ∘f − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝑐 ) = ( 𝑐 ∘f − ( 𝐹 ‘ 𝑐 ) ) ) |
| 164 |
163
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) → ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑥 ∘f − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝑐 ) = ( 𝑐 ∘f − ( 𝐹 ‘ 𝑐 ) ) ) |
| 165 |
164
|
eqeq1d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) → ( ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑥 ∘f − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝑐 ) = ( ( 1 ... 𝑁 ) × { 0 } ) ↔ ( 𝑐 ∘f − ( 𝐹 ‘ 𝑐 ) ) = ( ( 1 ... 𝑁 ) × { 0 } ) ) ) |
| 166 |
|
elmapfn |
⊢ ( 𝑐 ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) → 𝑐 Fn ( 1 ... 𝑁 ) ) |
| 167 |
166 2
|
eleq2s |
⊢ ( 𝑐 ∈ 𝐼 → 𝑐 Fn ( 1 ... 𝑁 ) ) |
| 168 |
167
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) → 𝑐 Fn ( 1 ... 𝑁 ) ) |
| 169 |
21
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑐 ) ∈ 𝐼 ) |
| 170 |
|
elmapfn |
⊢ ( ( 𝐹 ‘ 𝑐 ) ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑐 ) Fn ( 1 ... 𝑁 ) ) |
| 171 |
170 2
|
eleq2s |
⊢ ( ( 𝐹 ‘ 𝑐 ) ∈ 𝐼 → ( 𝐹 ‘ 𝑐 ) Fn ( 1 ... 𝑁 ) ) |
| 172 |
169 171
|
syl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑐 ) Fn ( 1 ... 𝑁 ) ) |
| 173 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) → ( 1 ... 𝑁 ) ∈ V ) |
| 174 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑐 ‘ 𝑛 ) = ( 𝑐 ‘ 𝑛 ) ) |
| 175 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑛 ) ) |
| 176 |
168 172 173 173 27 174 175
|
ofval |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑐 ∘f − ( 𝐹 ‘ 𝑐 ) ) ‘ 𝑛 ) = ( ( 𝑐 ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑛 ) ) ) |
| 177 |
|
c0ex |
⊢ 0 ∈ V |
| 178 |
177
|
fvconst2 |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( ( 1 ... 𝑁 ) × { 0 } ) ‘ 𝑛 ) = 0 ) |
| 179 |
178
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1 ... 𝑁 ) × { 0 } ) ‘ 𝑛 ) = 0 ) |
| 180 |
176 179
|
eqeq12d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 𝑐 ∘f − ( 𝐹 ‘ 𝑐 ) ) ‘ 𝑛 ) = ( ( ( 1 ... 𝑁 ) × { 0 } ) ‘ 𝑛 ) ↔ ( ( 𝑐 ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑛 ) ) = 0 ) ) |
| 181 |
13 84
|
sstri |
⊢ ( 0 [,] 1 ) ⊆ ℂ |
| 182 |
|
elmapi |
⊢ ( 𝑐 ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) → 𝑐 : ( 1 ... 𝑁 ) ⟶ ( 0 [,] 1 ) ) |
| 183 |
182 2
|
eleq2s |
⊢ ( 𝑐 ∈ 𝐼 → 𝑐 : ( 1 ... 𝑁 ) ⟶ ( 0 [,] 1 ) ) |
| 184 |
183
|
ffvelcdmda |
⊢ ( ( 𝑐 ∈ 𝐼 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑐 ‘ 𝑛 ) ∈ ( 0 [,] 1 ) ) |
| 185 |
181 184
|
sselid |
⊢ ( ( 𝑐 ∈ 𝐼 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑐 ‘ 𝑛 ) ∈ ℂ ) |
| 186 |
185
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑐 ‘ 𝑛 ) ∈ ℂ ) |
| 187 |
|
elmapi |
⊢ ( ( 𝐹 ‘ 𝑐 ) ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑐 ) : ( 1 ... 𝑁 ) ⟶ ( 0 [,] 1 ) ) |
| 188 |
187 2
|
eleq2s |
⊢ ( ( 𝐹 ‘ 𝑐 ) ∈ 𝐼 → ( 𝐹 ‘ 𝑐 ) : ( 1 ... 𝑁 ) ⟶ ( 0 [,] 1 ) ) |
| 189 |
169 188
|
syl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑐 ) : ( 1 ... 𝑁 ) ⟶ ( 0 [,] 1 ) ) |
| 190 |
189
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑛 ) ∈ ( 0 [,] 1 ) ) |
| 191 |
181 190
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑛 ) ∈ ℂ ) |
| 192 |
186 191
|
subeq0ad |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 𝑐 ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑛 ) ) = 0 ↔ ( 𝑐 ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑛 ) ) ) |
| 193 |
180 192
|
bitrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 𝑐 ∘f − ( 𝐹 ‘ 𝑐 ) ) ‘ 𝑛 ) = ( ( ( 1 ... 𝑁 ) × { 0 } ) ‘ 𝑛 ) ↔ ( 𝑐 ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑛 ) ) ) |
| 194 |
193
|
ralbidva |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) → ( ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( 𝑐 ∘f − ( 𝐹 ‘ 𝑐 ) ) ‘ 𝑛 ) = ( ( ( 1 ... 𝑁 ) × { 0 } ) ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( 𝑐 ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑛 ) ) ) |
| 195 |
168 172 173 173 27
|
offn |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) → ( 𝑐 ∘f − ( 𝐹 ‘ 𝑐 ) ) Fn ( 1 ... 𝑁 ) ) |
| 196 |
|
fnconstg |
⊢ ( 0 ∈ V → ( ( 1 ... 𝑁 ) × { 0 } ) Fn ( 1 ... 𝑁 ) ) |
| 197 |
177 196
|
ax-mp |
⊢ ( ( 1 ... 𝑁 ) × { 0 } ) Fn ( 1 ... 𝑁 ) |
| 198 |
|
eqfnfv |
⊢ ( ( ( 𝑐 ∘f − ( 𝐹 ‘ 𝑐 ) ) Fn ( 1 ... 𝑁 ) ∧ ( ( 1 ... 𝑁 ) × { 0 } ) Fn ( 1 ... 𝑁 ) ) → ( ( 𝑐 ∘f − ( 𝐹 ‘ 𝑐 ) ) = ( ( 1 ... 𝑁 ) × { 0 } ) ↔ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( 𝑐 ∘f − ( 𝐹 ‘ 𝑐 ) ) ‘ 𝑛 ) = ( ( ( 1 ... 𝑁 ) × { 0 } ) ‘ 𝑛 ) ) ) |
| 199 |
195 197 198
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) → ( ( 𝑐 ∘f − ( 𝐹 ‘ 𝑐 ) ) = ( ( 1 ... 𝑁 ) × { 0 } ) ↔ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( 𝑐 ∘f − ( 𝐹 ‘ 𝑐 ) ) ‘ 𝑛 ) = ( ( ( 1 ... 𝑁 ) × { 0 } ) ‘ 𝑛 ) ) ) |
| 200 |
|
eqfnfv |
⊢ ( ( 𝑐 Fn ( 1 ... 𝑁 ) ∧ ( 𝐹 ‘ 𝑐 ) Fn ( 1 ... 𝑁 ) ) → ( 𝑐 = ( 𝐹 ‘ 𝑐 ) ↔ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( 𝑐 ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑛 ) ) ) |
| 201 |
168 172 200
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) → ( 𝑐 = ( 𝐹 ‘ 𝑐 ) ↔ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( 𝑐 ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑛 ) ) ) |
| 202 |
194 199 201
|
3bitr4d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) → ( ( 𝑐 ∘f − ( 𝐹 ‘ 𝑐 ) ) = ( ( 1 ... 𝑁 ) × { 0 } ) ↔ 𝑐 = ( 𝐹 ‘ 𝑐 ) ) ) |
| 203 |
165 202
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) → ( ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑥 ∘f − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝑐 ) = ( ( 1 ... 𝑁 ) × { 0 } ) ↔ 𝑐 = ( 𝐹 ‘ 𝑐 ) ) ) |
| 204 |
203
|
rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑐 ∈ 𝐼 ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑥 ∘f − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝑐 ) = ( ( 1 ... 𝑁 ) × { 0 } ) ↔ ∃ 𝑐 ∈ 𝐼 𝑐 = ( 𝐹 ‘ 𝑐 ) ) ) |
| 205 |
158 204
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑐 ∈ 𝐼 𝑐 = ( 𝐹 ‘ 𝑐 ) ) |