Step |
Hyp |
Ref |
Expression |
1 |
|
poimir.0 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
2 |
|
poimir.i |
⊢ 𝐼 = ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) |
3 |
|
poimir.r |
⊢ 𝑅 = ( ∏t ‘ ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) ) |
4 |
|
broucube.1 |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝑅 ↾t 𝐼 ) Cn ( 𝑅 ↾t 𝐼 ) ) ) |
5 |
|
elmapfn |
⊢ ( 𝑥 ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) → 𝑥 Fn ( 1 ... 𝑁 ) ) |
6 |
5 2
|
eleq2s |
⊢ ( 𝑥 ∈ 𝐼 → 𝑥 Fn ( 1 ... 𝑁 ) ) |
7 |
6
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑥 Fn ( 1 ... 𝑁 ) ) |
8 |
|
ovex |
⊢ ( 1 ... 𝑁 ) ∈ V |
9 |
|
retopon |
⊢ ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) |
10 |
3
|
pttoponconst |
⊢ ( ( ( 1 ... 𝑁 ) ∈ V ∧ ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) ) → 𝑅 ∈ ( TopOn ‘ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ) |
11 |
8 9 10
|
mp2an |
⊢ 𝑅 ∈ ( TopOn ‘ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) |
12 |
|
reex |
⊢ ℝ ∈ V |
13 |
|
unitssre |
⊢ ( 0 [,] 1 ) ⊆ ℝ |
14 |
|
mapss |
⊢ ( ( ℝ ∈ V ∧ ( 0 [,] 1 ) ⊆ ℝ ) → ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) ⊆ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) |
15 |
12 13 14
|
mp2an |
⊢ ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) ⊆ ( ℝ ↑m ( 1 ... 𝑁 ) ) |
16 |
2 15
|
eqsstri |
⊢ 𝐼 ⊆ ( ℝ ↑m ( 1 ... 𝑁 ) ) |
17 |
|
resttopon |
⊢ ( ( 𝑅 ∈ ( TopOn ‘ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝐼 ⊆ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) → ( 𝑅 ↾t 𝐼 ) ∈ ( TopOn ‘ 𝐼 ) ) |
18 |
11 16 17
|
mp2an |
⊢ ( 𝑅 ↾t 𝐼 ) ∈ ( TopOn ‘ 𝐼 ) |
19 |
18
|
toponunii |
⊢ 𝐼 = ∪ ( 𝑅 ↾t 𝐼 ) |
20 |
19 19
|
cnf |
⊢ ( 𝐹 ∈ ( ( 𝑅 ↾t 𝐼 ) Cn ( 𝑅 ↾t 𝐼 ) ) → 𝐹 : 𝐼 ⟶ 𝐼 ) |
21 |
4 20
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ 𝐼 ) |
22 |
21
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐼 ) |
23 |
|
elmapfn |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) Fn ( 1 ... 𝑁 ) ) |
24 |
23 2
|
eleq2s |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐼 → ( 𝐹 ‘ 𝑥 ) Fn ( 1 ... 𝑁 ) ) |
25 |
22 24
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑥 ) Fn ( 1 ... 𝑁 ) ) |
26 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 1 ... 𝑁 ) ∈ V ) |
27 |
|
inidm |
⊢ ( ( 1 ... 𝑁 ) ∩ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) |
28 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑥 ‘ 𝑛 ) = ( 𝑥 ‘ 𝑛 ) ) |
29 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑛 ) ) |
30 |
7 25 26 26 27 28 29
|
offval |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑥 ∘f − ( 𝐹 ‘ 𝑥 ) ) = ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( 𝑥 ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑛 ) ) ) ) |
31 |
30
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ ( 𝑥 ∘f − ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( 𝑥 ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑛 ) ) ) ) ) |
32 |
18
|
a1i |
⊢ ( 𝜑 → ( 𝑅 ↾t 𝐼 ) ∈ ( TopOn ‘ 𝐼 ) ) |
33 |
|
ovexd |
⊢ ( 𝜑 → ( 1 ... 𝑁 ) ∈ V ) |
34 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
35 |
34
|
fconst6 |
⊢ ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) : ( 1 ... 𝑁 ) ⟶ Top |
36 |
35
|
a1i |
⊢ ( 𝜑 → ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) : ( 1 ... 𝑁 ) ⟶ Top ) |
37 |
18
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑅 ↾t 𝐼 ) ∈ ( TopOn ‘ 𝐼 ) ) |
38 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
39 |
38
|
cnfldtop |
⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
40 |
|
cnrest2r |
⊢ ( ( TopOpen ‘ ℂfld ) ∈ Top → ( ( 𝑅 ↾t 𝐼 ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ⊆ ( ( 𝑅 ↾t 𝐼 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
41 |
39 40
|
ax-mp |
⊢ ( ( 𝑅 ↾t 𝐼 ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ⊆ ( ( 𝑅 ↾t 𝐼 ) Cn ( TopOpen ‘ ℂfld ) ) |
42 |
|
resmpt |
⊢ ( 𝐼 ⊆ ( ℝ ↑m ( 1 ... 𝑁 ) ) → ( ( 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ↦ ( 𝑥 ‘ 𝑛 ) ) ↾ 𝐼 ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑥 ‘ 𝑛 ) ) ) |
43 |
16 42
|
ax-mp |
⊢ ( ( 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ↦ ( 𝑥 ‘ 𝑛 ) ) ↾ 𝐼 ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑥 ‘ 𝑛 ) ) |
44 |
11
|
toponunii |
⊢ ( ℝ ↑m ( 1 ... 𝑁 ) ) = ∪ 𝑅 |
45 |
44 3
|
ptpjcn |
⊢ ( ( ( 1 ... 𝑁 ) ∈ V ∧ ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) : ( 1 ... 𝑁 ) ⟶ Top ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ↦ ( 𝑥 ‘ 𝑛 ) ) ∈ ( 𝑅 Cn ( ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) ‘ 𝑛 ) ) ) |
46 |
8 35 45
|
mp3an12 |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ↦ ( 𝑥 ‘ 𝑛 ) ) ∈ ( 𝑅 Cn ( ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) ‘ 𝑛 ) ) ) |
47 |
44
|
cnrest |
⊢ ( ( ( 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ↦ ( 𝑥 ‘ 𝑛 ) ) ∈ ( 𝑅 Cn ( ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) ‘ 𝑛 ) ) ∧ 𝐼 ⊆ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) → ( ( 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ↦ ( 𝑥 ‘ 𝑛 ) ) ↾ 𝐼 ) ∈ ( ( 𝑅 ↾t 𝐼 ) Cn ( ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) ‘ 𝑛 ) ) ) |
48 |
46 16 47
|
sylancl |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ↦ ( 𝑥 ‘ 𝑛 ) ) ↾ 𝐼 ) ∈ ( ( 𝑅 ↾t 𝐼 ) Cn ( ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) ‘ 𝑛 ) ) ) |
49 |
43 48
|
eqeltrrid |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( 𝑥 ∈ 𝐼 ↦ ( 𝑥 ‘ 𝑛 ) ) ∈ ( ( 𝑅 ↾t 𝐼 ) Cn ( ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) ‘ 𝑛 ) ) ) |
50 |
|
fvex |
⊢ ( topGen ‘ ran (,) ) ∈ V |
51 |
50
|
fvconst2 |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) ‘ 𝑛 ) = ( topGen ‘ ran (,) ) ) |
52 |
38
|
tgioo2 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
53 |
51 52
|
eqtrdi |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) ‘ 𝑛 ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) |
54 |
53
|
oveq2d |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( 𝑅 ↾t 𝐼 ) Cn ( ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) ‘ 𝑛 ) ) = ( ( 𝑅 ↾t 𝐼 ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) |
55 |
49 54
|
eleqtrd |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( 𝑥 ∈ 𝐼 ↦ ( 𝑥 ‘ 𝑛 ) ) ∈ ( ( 𝑅 ↾t 𝐼 ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) |
56 |
41 55
|
sselid |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( 𝑥 ∈ 𝐼 ↦ ( 𝑥 ‘ 𝑛 ) ) ∈ ( ( 𝑅 ↾t 𝐼 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
57 |
56
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑥 ∈ 𝐼 ↦ ( 𝑥 ‘ 𝑛 ) ) ∈ ( ( 𝑅 ↾t 𝐼 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
58 |
21
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐼 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
59 |
58 4
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ ( ( 𝑅 ↾t 𝐼 ) Cn ( 𝑅 ↾t 𝐼 ) ) ) |
60 |
59
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑥 ∈ 𝐼 ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ ( ( 𝑅 ↾t 𝐼 ) Cn ( 𝑅 ↾t 𝐼 ) ) ) |
61 |
|
fveq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ‘ 𝑛 ) = ( 𝑧 ‘ 𝑛 ) ) |
62 |
61
|
cbvmptv |
⊢ ( 𝑥 ∈ 𝐼 ↦ ( 𝑥 ‘ 𝑛 ) ) = ( 𝑧 ∈ 𝐼 ↦ ( 𝑧 ‘ 𝑛 ) ) |
63 |
62 57
|
eqeltrrid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑧 ∈ 𝐼 ↦ ( 𝑧 ‘ 𝑛 ) ) ∈ ( ( 𝑅 ↾t 𝐼 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
64 |
|
fveq1 |
⊢ ( 𝑧 = ( 𝐹 ‘ 𝑥 ) → ( 𝑧 ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑛 ) ) |
65 |
37 60 37 63 64
|
cnmpt11 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑛 ) ) ∈ ( ( 𝑅 ↾t 𝐼 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
66 |
38
|
subcn |
⊢ − ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
67 |
66
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → − ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
68 |
37 57 65 67
|
cnmpt12f |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑛 ) ) ) ∈ ( ( 𝑅 ↾t 𝐼 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
69 |
|
elmapi |
⊢ ( 𝑥 ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) → 𝑥 : ( 1 ... 𝑁 ) ⟶ ( 0 [,] 1 ) ) |
70 |
69 2
|
eleq2s |
⊢ ( 𝑥 ∈ 𝐼 → 𝑥 : ( 1 ... 𝑁 ) ⟶ ( 0 [,] 1 ) ) |
71 |
70
|
ffvelrnda |
⊢ ( ( 𝑥 ∈ 𝐼 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑥 ‘ 𝑛 ) ∈ ( 0 [,] 1 ) ) |
72 |
13 71
|
sselid |
⊢ ( ( 𝑥 ∈ 𝐼 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑥 ‘ 𝑛 ) ∈ ℝ ) |
73 |
72
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑥 ‘ 𝑛 ) ∈ ℝ ) |
74 |
|
elmapi |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) : ( 1 ... 𝑁 ) ⟶ ( 0 [,] 1 ) ) |
75 |
74 2
|
eleq2s |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐼 → ( 𝐹 ‘ 𝑥 ) : ( 1 ... 𝑁 ) ⟶ ( 0 [,] 1 ) ) |
76 |
22 75
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑥 ) : ( 1 ... 𝑁 ) ⟶ ( 0 [,] 1 ) ) |
77 |
76
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑛 ) ∈ ( 0 [,] 1 ) ) |
78 |
13 77
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑛 ) ∈ ℝ ) |
79 |
73 78
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑥 ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑛 ) ) ∈ ℝ ) |
80 |
79
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑥 ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑛 ) ) ∈ ℝ ) |
81 |
80
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑛 ) ) ) : 𝐼 ⟶ ℝ ) |
82 |
|
frn |
⊢ ( ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑛 ) ) ) : 𝐼 ⟶ ℝ → ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑛 ) ) ) ⊆ ℝ ) |
83 |
38
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
84 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
85 |
|
cnrest2 |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑛 ) ) ) ⊆ ℝ ∧ ℝ ⊆ ℂ ) → ( ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑛 ) ) ) ∈ ( ( 𝑅 ↾t 𝐼 ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑛 ) ) ) ∈ ( ( 𝑅 ↾t 𝐼 ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) ) |
86 |
83 84 85
|
mp3an13 |
⊢ ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑛 ) ) ) ⊆ ℝ → ( ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑛 ) ) ) ∈ ( ( 𝑅 ↾t 𝐼 ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑛 ) ) ) ∈ ( ( 𝑅 ↾t 𝐼 ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) ) |
87 |
81 82 86
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑛 ) ) ) ∈ ( ( 𝑅 ↾t 𝐼 ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑛 ) ) ) ∈ ( ( 𝑅 ↾t 𝐼 ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) ) |
88 |
68 87
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑛 ) ) ) ∈ ( ( 𝑅 ↾t 𝐼 ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) |
89 |
54
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑅 ↾t 𝐼 ) Cn ( ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) ‘ 𝑛 ) ) = ( ( 𝑅 ↾t 𝐼 ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) |
90 |
88 89
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑛 ) ) ) ∈ ( ( 𝑅 ↾t 𝐼 ) Cn ( ( ( 1 ... 𝑁 ) × { ( topGen ‘ ran (,) ) } ) ‘ 𝑛 ) ) ) |
91 |
3 32 33 36 90
|
ptcn |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( 𝑥 ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑛 ) ) ) ) ∈ ( ( 𝑅 ↾t 𝐼 ) Cn 𝑅 ) ) |
92 |
31 91
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ ( 𝑥 ∘f − ( 𝐹 ‘ 𝑥 ) ) ) ∈ ( ( 𝑅 ↾t 𝐼 ) Cn 𝑅 ) ) |
93 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ∈ 𝐼 ∧ ( 𝑧 ‘ 𝑛 ) = 0 ) ) → 𝑧 ∈ 𝐼 ) |
94 |
|
id |
⊢ ( 𝑥 = 𝑧 → 𝑥 = 𝑧 ) |
95 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑧 ) ) |
96 |
94 95
|
oveq12d |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∘f − ( 𝐹 ‘ 𝑥 ) ) = ( 𝑧 ∘f − ( 𝐹 ‘ 𝑧 ) ) ) |
97 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐼 ↦ ( 𝑥 ∘f − ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑥 ∘f − ( 𝐹 ‘ 𝑥 ) ) ) |
98 |
|
ovex |
⊢ ( 𝑧 ∘f − ( 𝐹 ‘ 𝑧 ) ) ∈ V |
99 |
96 97 98
|
fvmpt |
⊢ ( 𝑧 ∈ 𝐼 → ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑥 ∘f − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝑧 ) = ( 𝑧 ∘f − ( 𝐹 ‘ 𝑧 ) ) ) |
100 |
99
|
fveq1d |
⊢ ( 𝑧 ∈ 𝐼 → ( ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑥 ∘f − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝑧 ) ‘ 𝑛 ) = ( ( 𝑧 ∘f − ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑛 ) ) |
101 |
93 100
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ∈ 𝐼 ∧ ( 𝑧 ‘ 𝑛 ) = 0 ) ) → ( ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑥 ∘f − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝑧 ) ‘ 𝑛 ) = ( ( 𝑧 ∘f − ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑛 ) ) |
102 |
|
elmapfn |
⊢ ( 𝑧 ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) → 𝑧 Fn ( 1 ... 𝑁 ) ) |
103 |
102 2
|
eleq2s |
⊢ ( 𝑧 ∈ 𝐼 → 𝑧 Fn ( 1 ... 𝑁 ) ) |
104 |
103
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ‘ 𝑛 ) = 0 ) ∧ 𝑧 ∈ 𝐼 ) → 𝑧 Fn ( 1 ... 𝑁 ) ) |
105 |
21
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝐼 ) |
106 |
|
elmapfn |
⊢ ( ( 𝐹 ‘ 𝑧 ) ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑧 ) Fn ( 1 ... 𝑁 ) ) |
107 |
106 2
|
eleq2s |
⊢ ( ( 𝐹 ‘ 𝑧 ) ∈ 𝐼 → ( 𝐹 ‘ 𝑧 ) Fn ( 1 ... 𝑁 ) ) |
108 |
105 107
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑧 ) Fn ( 1 ... 𝑁 ) ) |
109 |
108
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ‘ 𝑛 ) = 0 ) ∧ 𝑧 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑧 ) Fn ( 1 ... 𝑁 ) ) |
110 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ‘ 𝑛 ) = 0 ) ∧ 𝑧 ∈ 𝐼 ) → ( 1 ... 𝑁 ) ∈ V ) |
111 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑧 ‘ 𝑛 ) = 0 ) ∧ 𝑧 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑧 ‘ 𝑛 ) = 0 ) |
112 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑧 ‘ 𝑛 ) = 0 ) ∧ 𝑧 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) |
113 |
104 109 110 110 27 111 112
|
ofval |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑧 ‘ 𝑛 ) = 0 ) ∧ 𝑧 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑧 ∘f − ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑛 ) = ( 0 − ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) ) |
114 |
|
df-neg |
⊢ - ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) = ( 0 − ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) |
115 |
113 114
|
eqtr4di |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑧 ‘ 𝑛 ) = 0 ) ∧ 𝑧 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑧 ∘f − ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑛 ) = - ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) |
116 |
115
|
exp41 |
⊢ ( 𝜑 → ( ( 𝑧 ‘ 𝑛 ) = 0 → ( 𝑧 ∈ 𝐼 → ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( 𝑧 ∘f − ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑛 ) = - ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) ) ) ) |
117 |
116
|
com24 |
⊢ ( 𝜑 → ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( 𝑧 ∈ 𝐼 → ( ( 𝑧 ‘ 𝑛 ) = 0 → ( ( 𝑧 ∘f − ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑛 ) = - ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) ) ) ) |
118 |
117
|
3imp2 |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ∈ 𝐼 ∧ ( 𝑧 ‘ 𝑛 ) = 0 ) ) → ( ( 𝑧 ∘f − ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑛 ) = - ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) |
119 |
101 118
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ∈ 𝐼 ∧ ( 𝑧 ‘ 𝑛 ) = 0 ) ) → ( ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑥 ∘f − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝑧 ) ‘ 𝑛 ) = - ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) |
120 |
|
elmapi |
⊢ ( ( 𝐹 ‘ 𝑧 ) ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑧 ) : ( 1 ... 𝑁 ) ⟶ ( 0 [,] 1 ) ) |
121 |
120 2
|
eleq2s |
⊢ ( ( 𝐹 ‘ 𝑧 ) ∈ 𝐼 → ( 𝐹 ‘ 𝑧 ) : ( 1 ... 𝑁 ) ⟶ ( 0 [,] 1 ) ) |
122 |
105 121
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑧 ) : ( 1 ... 𝑁 ) ⟶ ( 0 [,] 1 ) ) |
123 |
122
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ∈ ( 0 [,] 1 ) ) |
124 |
|
0xr |
⊢ 0 ∈ ℝ* |
125 |
|
1xr |
⊢ 1 ∈ ℝ* |
126 |
|
iccgelb |
⊢ ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ∈ ( 0 [,] 1 ) ) → 0 ≤ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) |
127 |
124 125 126
|
mp3an12 |
⊢ ( ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ∈ ( 0 [,] 1 ) → 0 ≤ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) |
128 |
123 127
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → 0 ≤ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) |
129 |
13 123
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ∈ ℝ ) |
130 |
129
|
le0neg2d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 0 ≤ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ↔ - ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ≤ 0 ) ) |
131 |
128 130
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → - ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ≤ 0 ) |
132 |
131
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑧 ∈ 𝐼 ) → - ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ≤ 0 ) |
133 |
132
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ∈ 𝐼 ) ) → - ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ≤ 0 ) |
134 |
133
|
3adantr3 |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ∈ 𝐼 ∧ ( 𝑧 ‘ 𝑛 ) = 0 ) ) → - ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ≤ 0 ) |
135 |
119 134
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ∈ 𝐼 ∧ ( 𝑧 ‘ 𝑛 ) = 0 ) ) → ( ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑥 ∘f − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝑧 ) ‘ 𝑛 ) ≤ 0 ) |
136 |
|
iccleub |
⊢ ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ≤ 1 ) |
137 |
124 125 136
|
mp3an12 |
⊢ ( ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ∈ ( 0 [,] 1 ) → ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ≤ 1 ) |
138 |
123 137
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ≤ 1 ) |
139 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → 1 ∈ ℝ ) |
140 |
139 129
|
subge0d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 0 ≤ ( 1 − ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) ↔ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ≤ 1 ) ) |
141 |
138 140
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → 0 ≤ ( 1 − ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) ) |
142 |
141
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑧 ∈ 𝐼 ) → 0 ≤ ( 1 − ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) ) |
143 |
142
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ∈ 𝐼 ) ) → 0 ≤ ( 1 − ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) ) |
144 |
143
|
3adantr3 |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ∈ 𝐼 ∧ ( 𝑧 ‘ 𝑛 ) = 1 ) ) → 0 ≤ ( 1 − ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) ) |
145 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ∈ 𝐼 ∧ ( 𝑧 ‘ 𝑛 ) = 1 ) ) → 𝑧 ∈ 𝐼 ) |
146 |
145 100
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ∈ 𝐼 ∧ ( 𝑧 ‘ 𝑛 ) = 1 ) ) → ( ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑥 ∘f − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝑧 ) ‘ 𝑛 ) = ( ( 𝑧 ∘f − ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑛 ) ) |
147 |
103
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ‘ 𝑛 ) = 1 ) ∧ 𝑧 ∈ 𝐼 ) → 𝑧 Fn ( 1 ... 𝑁 ) ) |
148 |
108
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ‘ 𝑛 ) = 1 ) ∧ 𝑧 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑧 ) Fn ( 1 ... 𝑁 ) ) |
149 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ‘ 𝑛 ) = 1 ) ∧ 𝑧 ∈ 𝐼 ) → ( 1 ... 𝑁 ) ∈ V ) |
150 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑧 ‘ 𝑛 ) = 1 ) ∧ 𝑧 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑧 ‘ 𝑛 ) = 1 ) |
151 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑧 ‘ 𝑛 ) = 1 ) ∧ 𝑧 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) |
152 |
147 148 149 149 27 150 151
|
ofval |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑧 ‘ 𝑛 ) = 1 ) ∧ 𝑧 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑧 ∘f − ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑛 ) = ( 1 − ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) ) |
153 |
152
|
exp41 |
⊢ ( 𝜑 → ( ( 𝑧 ‘ 𝑛 ) = 1 → ( 𝑧 ∈ 𝐼 → ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( 𝑧 ∘f − ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑛 ) = ( 1 − ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) ) ) ) ) |
154 |
153
|
com24 |
⊢ ( 𝜑 → ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( 𝑧 ∈ 𝐼 → ( ( 𝑧 ‘ 𝑛 ) = 1 → ( ( 𝑧 ∘f − ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑛 ) = ( 1 − ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) ) ) ) ) |
155 |
154
|
3imp2 |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ∈ 𝐼 ∧ ( 𝑧 ‘ 𝑛 ) = 1 ) ) → ( ( 𝑧 ∘f − ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑛 ) = ( 1 − ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) ) |
156 |
146 155
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ∈ 𝐼 ∧ ( 𝑧 ‘ 𝑛 ) = 1 ) ) → ( ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑥 ∘f − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝑧 ) ‘ 𝑛 ) = ( 1 − ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑛 ) ) ) |
157 |
144 156
|
breqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ∈ 𝐼 ∧ ( 𝑧 ‘ 𝑛 ) = 1 ) ) → 0 ≤ ( ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑥 ∘f − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝑧 ) ‘ 𝑛 ) ) |
158 |
1 2 3 92 135 157
|
poimir |
⊢ ( 𝜑 → ∃ 𝑐 ∈ 𝐼 ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑥 ∘f − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝑐 ) = ( ( 1 ... 𝑁 ) × { 0 } ) ) |
159 |
|
id |
⊢ ( 𝑥 = 𝑐 → 𝑥 = 𝑐 ) |
160 |
|
fveq2 |
⊢ ( 𝑥 = 𝑐 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑐 ) ) |
161 |
159 160
|
oveq12d |
⊢ ( 𝑥 = 𝑐 → ( 𝑥 ∘f − ( 𝐹 ‘ 𝑥 ) ) = ( 𝑐 ∘f − ( 𝐹 ‘ 𝑐 ) ) ) |
162 |
|
ovex |
⊢ ( 𝑐 ∘f − ( 𝐹 ‘ 𝑐 ) ) ∈ V |
163 |
161 97 162
|
fvmpt |
⊢ ( 𝑐 ∈ 𝐼 → ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑥 ∘f − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝑐 ) = ( 𝑐 ∘f − ( 𝐹 ‘ 𝑐 ) ) ) |
164 |
163
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) → ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑥 ∘f − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝑐 ) = ( 𝑐 ∘f − ( 𝐹 ‘ 𝑐 ) ) ) |
165 |
164
|
eqeq1d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) → ( ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑥 ∘f − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝑐 ) = ( ( 1 ... 𝑁 ) × { 0 } ) ↔ ( 𝑐 ∘f − ( 𝐹 ‘ 𝑐 ) ) = ( ( 1 ... 𝑁 ) × { 0 } ) ) ) |
166 |
|
elmapfn |
⊢ ( 𝑐 ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) → 𝑐 Fn ( 1 ... 𝑁 ) ) |
167 |
166 2
|
eleq2s |
⊢ ( 𝑐 ∈ 𝐼 → 𝑐 Fn ( 1 ... 𝑁 ) ) |
168 |
167
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) → 𝑐 Fn ( 1 ... 𝑁 ) ) |
169 |
21
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑐 ) ∈ 𝐼 ) |
170 |
|
elmapfn |
⊢ ( ( 𝐹 ‘ 𝑐 ) ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑐 ) Fn ( 1 ... 𝑁 ) ) |
171 |
170 2
|
eleq2s |
⊢ ( ( 𝐹 ‘ 𝑐 ) ∈ 𝐼 → ( 𝐹 ‘ 𝑐 ) Fn ( 1 ... 𝑁 ) ) |
172 |
169 171
|
syl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑐 ) Fn ( 1 ... 𝑁 ) ) |
173 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) → ( 1 ... 𝑁 ) ∈ V ) |
174 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑐 ‘ 𝑛 ) = ( 𝑐 ‘ 𝑛 ) ) |
175 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑛 ) ) |
176 |
168 172 173 173 27 174 175
|
ofval |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑐 ∘f − ( 𝐹 ‘ 𝑐 ) ) ‘ 𝑛 ) = ( ( 𝑐 ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑛 ) ) ) |
177 |
|
c0ex |
⊢ 0 ∈ V |
178 |
177
|
fvconst2 |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( ( 1 ... 𝑁 ) × { 0 } ) ‘ 𝑛 ) = 0 ) |
179 |
178
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1 ... 𝑁 ) × { 0 } ) ‘ 𝑛 ) = 0 ) |
180 |
176 179
|
eqeq12d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 𝑐 ∘f − ( 𝐹 ‘ 𝑐 ) ) ‘ 𝑛 ) = ( ( ( 1 ... 𝑁 ) × { 0 } ) ‘ 𝑛 ) ↔ ( ( 𝑐 ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑛 ) ) = 0 ) ) |
181 |
13 84
|
sstri |
⊢ ( 0 [,] 1 ) ⊆ ℂ |
182 |
|
elmapi |
⊢ ( 𝑐 ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) → 𝑐 : ( 1 ... 𝑁 ) ⟶ ( 0 [,] 1 ) ) |
183 |
182 2
|
eleq2s |
⊢ ( 𝑐 ∈ 𝐼 → 𝑐 : ( 1 ... 𝑁 ) ⟶ ( 0 [,] 1 ) ) |
184 |
183
|
ffvelrnda |
⊢ ( ( 𝑐 ∈ 𝐼 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑐 ‘ 𝑛 ) ∈ ( 0 [,] 1 ) ) |
185 |
181 184
|
sselid |
⊢ ( ( 𝑐 ∈ 𝐼 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑐 ‘ 𝑛 ) ∈ ℂ ) |
186 |
185
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑐 ‘ 𝑛 ) ∈ ℂ ) |
187 |
|
elmapi |
⊢ ( ( 𝐹 ‘ 𝑐 ) ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑐 ) : ( 1 ... 𝑁 ) ⟶ ( 0 [,] 1 ) ) |
188 |
187 2
|
eleq2s |
⊢ ( ( 𝐹 ‘ 𝑐 ) ∈ 𝐼 → ( 𝐹 ‘ 𝑐 ) : ( 1 ... 𝑁 ) ⟶ ( 0 [,] 1 ) ) |
189 |
169 188
|
syl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑐 ) : ( 1 ... 𝑁 ) ⟶ ( 0 [,] 1 ) ) |
190 |
189
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑛 ) ∈ ( 0 [,] 1 ) ) |
191 |
181 190
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑛 ) ∈ ℂ ) |
192 |
186 191
|
subeq0ad |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 𝑐 ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑛 ) ) = 0 ↔ ( 𝑐 ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑛 ) ) ) |
193 |
180 192
|
bitrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 𝑐 ∘f − ( 𝐹 ‘ 𝑐 ) ) ‘ 𝑛 ) = ( ( ( 1 ... 𝑁 ) × { 0 } ) ‘ 𝑛 ) ↔ ( 𝑐 ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑛 ) ) ) |
194 |
193
|
ralbidva |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) → ( ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( 𝑐 ∘f − ( 𝐹 ‘ 𝑐 ) ) ‘ 𝑛 ) = ( ( ( 1 ... 𝑁 ) × { 0 } ) ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( 𝑐 ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑛 ) ) ) |
195 |
168 172 173 173 27
|
offn |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) → ( 𝑐 ∘f − ( 𝐹 ‘ 𝑐 ) ) Fn ( 1 ... 𝑁 ) ) |
196 |
|
fnconstg |
⊢ ( 0 ∈ V → ( ( 1 ... 𝑁 ) × { 0 } ) Fn ( 1 ... 𝑁 ) ) |
197 |
177 196
|
ax-mp |
⊢ ( ( 1 ... 𝑁 ) × { 0 } ) Fn ( 1 ... 𝑁 ) |
198 |
|
eqfnfv |
⊢ ( ( ( 𝑐 ∘f − ( 𝐹 ‘ 𝑐 ) ) Fn ( 1 ... 𝑁 ) ∧ ( ( 1 ... 𝑁 ) × { 0 } ) Fn ( 1 ... 𝑁 ) ) → ( ( 𝑐 ∘f − ( 𝐹 ‘ 𝑐 ) ) = ( ( 1 ... 𝑁 ) × { 0 } ) ↔ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( 𝑐 ∘f − ( 𝐹 ‘ 𝑐 ) ) ‘ 𝑛 ) = ( ( ( 1 ... 𝑁 ) × { 0 } ) ‘ 𝑛 ) ) ) |
199 |
195 197 198
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) → ( ( 𝑐 ∘f − ( 𝐹 ‘ 𝑐 ) ) = ( ( 1 ... 𝑁 ) × { 0 } ) ↔ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( 𝑐 ∘f − ( 𝐹 ‘ 𝑐 ) ) ‘ 𝑛 ) = ( ( ( 1 ... 𝑁 ) × { 0 } ) ‘ 𝑛 ) ) ) |
200 |
|
eqfnfv |
⊢ ( ( 𝑐 Fn ( 1 ... 𝑁 ) ∧ ( 𝐹 ‘ 𝑐 ) Fn ( 1 ... 𝑁 ) ) → ( 𝑐 = ( 𝐹 ‘ 𝑐 ) ↔ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( 𝑐 ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑛 ) ) ) |
201 |
168 172 200
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) → ( 𝑐 = ( 𝐹 ‘ 𝑐 ) ↔ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( 𝑐 ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑛 ) ) ) |
202 |
194 199 201
|
3bitr4d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) → ( ( 𝑐 ∘f − ( 𝐹 ‘ 𝑐 ) ) = ( ( 1 ... 𝑁 ) × { 0 } ) ↔ 𝑐 = ( 𝐹 ‘ 𝑐 ) ) ) |
203 |
165 202
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) → ( ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑥 ∘f − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝑐 ) = ( ( 1 ... 𝑁 ) × { 0 } ) ↔ 𝑐 = ( 𝐹 ‘ 𝑐 ) ) ) |
204 |
203
|
rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑐 ∈ 𝐼 ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑥 ∘f − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝑐 ) = ( ( 1 ... 𝑁 ) × { 0 } ) ↔ ∃ 𝑐 ∈ 𝐼 𝑐 = ( 𝐹 ‘ 𝑐 ) ) ) |
205 |
158 204
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑐 ∈ 𝐼 𝑐 = ( 𝐹 ‘ 𝑐 ) ) |