| Step |
Hyp |
Ref |
Expression |
| 1 |
|
heicant.c |
⊢ ( 𝜑 → 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 2 |
|
heicant.d |
⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) |
| 3 |
|
heicant.j |
⊢ ( 𝜑 → ( MetOpen ‘ 𝐶 ) ∈ Comp ) |
| 4 |
|
heicant.x |
⊢ ( 𝜑 → 𝑋 ≠ ∅ ) |
| 5 |
|
heicant.y |
⊢ ( 𝜑 → 𝑌 ≠ ∅ ) |
| 6 |
|
breq2 |
⊢ ( 𝑑 = 𝑦 → ( ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) ) |
| 7 |
6
|
imbi2d |
⊢ ( 𝑑 = 𝑦 → ( ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ↔ ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) ) ) |
| 8 |
7
|
2ralbidv |
⊢ ( 𝑑 = 𝑦 → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) ) ) |
| 9 |
8
|
rexbidv |
⊢ ( 𝑑 = 𝑦 → ( ∃ 𝑧 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ↔ ∃ 𝑧 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) ) ) |
| 10 |
9
|
cbvralvw |
⊢ ( ∀ 𝑑 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ↔ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) ) |
| 11 |
|
r19.12 |
⊢ ( ∃ 𝑧 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) → ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) ) |
| 12 |
11
|
ralimi |
⊢ ( ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) → ∀ 𝑦 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) ) |
| 13 |
10 12
|
sylbi |
⊢ ( ∀ 𝑑 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) → ∀ 𝑦 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) ) |
| 14 |
|
rphalfcl |
⊢ ( 𝑑 ∈ ℝ+ → ( 𝑑 / 2 ) ∈ ℝ+ ) |
| 15 |
|
breq2 |
⊢ ( 𝑦 = ( 𝑑 / 2 ) → ( ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) |
| 16 |
15
|
imbi2d |
⊢ ( 𝑦 = ( 𝑑 / 2 ) → ( ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) ↔ ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) ) |
| 17 |
16
|
ralbidv |
⊢ ( 𝑦 = ( 𝑑 / 2 ) → ( ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) ↔ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) ) |
| 18 |
17
|
rexbidv |
⊢ ( 𝑦 = ( 𝑑 / 2 ) → ( ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) ↔ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) ) |
| 19 |
18
|
ralbidv |
⊢ ( 𝑦 = ( 𝑑 / 2 ) → ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) ↔ ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) ) |
| 20 |
19
|
rspcva |
⊢ ( ( ( 𝑑 / 2 ) ∈ ℝ+ ∧ ∀ 𝑦 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) ) → ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) |
| 21 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → ( MetOpen ‘ 𝐶 ) ∈ Comp ) |
| 22 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) → 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 23 |
22
|
anim1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ) |
| 24 |
|
rphalfcl |
⊢ ( 𝑧 ∈ ℝ+ → ( 𝑧 / 2 ) ∈ ℝ+ ) |
| 25 |
24
|
rpxrd |
⊢ ( 𝑧 ∈ ℝ+ → ( 𝑧 / 2 ) ∈ ℝ* ) |
| 26 |
|
eqid |
⊢ ( MetOpen ‘ 𝐶 ) = ( MetOpen ‘ 𝐶 ) |
| 27 |
26
|
blopn |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ ( 𝑧 / 2 ) ∈ ℝ* ) → ( 𝑥 ( ball ‘ 𝐶 ) ( 𝑧 / 2 ) ) ∈ ( MetOpen ‘ 𝐶 ) ) |
| 28 |
27
|
3expa |
⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑧 / 2 ) ∈ ℝ* ) → ( 𝑥 ( ball ‘ 𝐶 ) ( 𝑧 / 2 ) ) ∈ ( MetOpen ‘ 𝐶 ) ) |
| 29 |
23 25 28
|
syl2an |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑧 ∈ ℝ+ ) → ( 𝑥 ( ball ‘ 𝐶 ) ( 𝑧 / 2 ) ) ∈ ( MetOpen ‘ 𝐶 ) ) |
| 30 |
29
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → ( 𝑥 ( ball ‘ 𝐶 ) ( 𝑧 / 2 ) ) ∈ ( MetOpen ‘ 𝐶 ) ) |
| 31 |
24
|
rpgt0d |
⊢ ( 𝑧 ∈ ℝ+ → 0 < ( 𝑧 / 2 ) ) |
| 32 |
25 31
|
jca |
⊢ ( 𝑧 ∈ ℝ+ → ( ( 𝑧 / 2 ) ∈ ℝ* ∧ 0 < ( 𝑧 / 2 ) ) ) |
| 33 |
|
xblcntr |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ ( ( 𝑧 / 2 ) ∈ ℝ* ∧ 0 < ( 𝑧 / 2 ) ) ) → 𝑥 ∈ ( 𝑥 ( ball ‘ 𝐶 ) ( 𝑧 / 2 ) ) ) |
| 34 |
33
|
3expa |
⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑧 / 2 ) ∈ ℝ* ∧ 0 < ( 𝑧 / 2 ) ) ) → 𝑥 ∈ ( 𝑥 ( ball ‘ 𝐶 ) ( 𝑧 / 2 ) ) ) |
| 35 |
23 32 34
|
syl2an |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑧 ∈ ℝ+ ) → 𝑥 ∈ ( 𝑥 ( ball ‘ 𝐶 ) ( 𝑧 / 2 ) ) ) |
| 36 |
35
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → 𝑥 ∈ ( 𝑥 ( ball ‘ 𝐶 ) ( 𝑧 / 2 ) ) ) |
| 37 |
|
opelxpi |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑧 / 2 ) ∈ ℝ+ ) → 〈 𝑥 , ( 𝑧 / 2 ) 〉 ∈ ( 𝑋 × ℝ+ ) ) |
| 38 |
24 37
|
sylan2 |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ ℝ+ ) → 〈 𝑥 , ( 𝑧 / 2 ) 〉 ∈ ( 𝑋 × ℝ+ ) ) |
| 39 |
38
|
ad4ant23 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → 〈 𝑥 , ( 𝑧 / 2 ) 〉 ∈ ( 𝑋 × ℝ+ ) ) |
| 40 |
|
rpcn |
⊢ ( 𝑧 ∈ ℝ+ → 𝑧 ∈ ℂ ) |
| 41 |
40
|
2halvesd |
⊢ ( 𝑧 ∈ ℝ+ → ( ( 𝑧 / 2 ) + ( 𝑧 / 2 ) ) = 𝑧 ) |
| 42 |
41
|
breq2d |
⊢ ( 𝑧 ∈ ℝ+ → ( ( 𝑥 𝐶 𝑐 ) < ( ( 𝑧 / 2 ) + ( 𝑧 / 2 ) ) ↔ ( 𝑥 𝐶 𝑐 ) < 𝑧 ) ) |
| 43 |
42
|
imbi1d |
⊢ ( 𝑧 ∈ ℝ+ → ( ( ( 𝑥 𝐶 𝑐 ) < ( ( 𝑧 / 2 ) + ( 𝑧 / 2 ) ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ↔ ( ( 𝑥 𝐶 𝑐 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) |
| 44 |
43
|
ralbidv |
⊢ ( 𝑧 ∈ ℝ+ → ( ∀ 𝑐 ∈ 𝑋 ( ( 𝑥 𝐶 𝑐 ) < ( ( 𝑧 / 2 ) + ( 𝑧 / 2 ) ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ↔ ∀ 𝑐 ∈ 𝑋 ( ( 𝑥 𝐶 𝑐 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) |
| 45 |
|
oveq2 |
⊢ ( 𝑐 = 𝑤 → ( 𝑥 𝐶 𝑐 ) = ( 𝑥 𝐶 𝑤 ) ) |
| 46 |
45
|
breq1d |
⊢ ( 𝑐 = 𝑤 → ( ( 𝑥 𝐶 𝑐 ) < 𝑧 ↔ ( 𝑥 𝐶 𝑤 ) < 𝑧 ) ) |
| 47 |
|
fveq2 |
⊢ ( 𝑐 = 𝑤 → ( 𝑓 ‘ 𝑐 ) = ( 𝑓 ‘ 𝑤 ) ) |
| 48 |
47
|
oveq2d |
⊢ ( 𝑐 = 𝑤 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) = ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) |
| 49 |
48
|
breq1d |
⊢ ( 𝑐 = 𝑤 → ( ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) |
| 50 |
46 49
|
imbi12d |
⊢ ( 𝑐 = 𝑤 → ( ( ( 𝑥 𝐶 𝑐 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ↔ ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) ) |
| 51 |
50
|
cbvralvw |
⊢ ( ∀ 𝑐 ∈ 𝑋 ( ( 𝑥 𝐶 𝑐 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ↔ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) |
| 52 |
44 51
|
bitrdi |
⊢ ( 𝑧 ∈ ℝ+ → ( ∀ 𝑐 ∈ 𝑋 ( ( 𝑥 𝐶 𝑐 ) < ( ( 𝑧 / 2 ) + ( 𝑧 / 2 ) ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ↔ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) ) |
| 53 |
52
|
biimpar |
⊢ ( ( 𝑧 ∈ ℝ+ ∧ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → ∀ 𝑐 ∈ 𝑋 ( ( 𝑥 𝐶 𝑐 ) < ( ( 𝑧 / 2 ) + ( 𝑧 / 2 ) ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) |
| 54 |
53
|
adantll |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → ∀ 𝑐 ∈ 𝑋 ( ( 𝑥 𝐶 𝑐 ) < ( ( 𝑧 / 2 ) + ( 𝑧 / 2 ) ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) |
| 55 |
|
vex |
⊢ 𝑥 ∈ V |
| 56 |
|
ovex |
⊢ ( 𝑧 / 2 ) ∈ V |
| 57 |
55 56
|
op1std |
⊢ ( 𝑝 = 〈 𝑥 , ( 𝑧 / 2 ) 〉 → ( 1st ‘ 𝑝 ) = 𝑥 ) |
| 58 |
55 56
|
op2ndd |
⊢ ( 𝑝 = 〈 𝑥 , ( 𝑧 / 2 ) 〉 → ( 2nd ‘ 𝑝 ) = ( 𝑧 / 2 ) ) |
| 59 |
57 58
|
oveq12d |
⊢ ( 𝑝 = 〈 𝑥 , ( 𝑧 / 2 ) 〉 → ( ( 1st ‘ 𝑝 ) ( ball ‘ 𝐶 ) ( 2nd ‘ 𝑝 ) ) = ( 𝑥 ( ball ‘ 𝐶 ) ( 𝑧 / 2 ) ) ) |
| 60 |
59
|
eqcomd |
⊢ ( 𝑝 = 〈 𝑥 , ( 𝑧 / 2 ) 〉 → ( 𝑥 ( ball ‘ 𝐶 ) ( 𝑧 / 2 ) ) = ( ( 1st ‘ 𝑝 ) ( ball ‘ 𝐶 ) ( 2nd ‘ 𝑝 ) ) ) |
| 61 |
60
|
biantrurd |
⊢ ( 𝑝 = 〈 𝑥 , ( 𝑧 / 2 ) 〉 → ( ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) < ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ↔ ( ( 𝑥 ( ball ‘ 𝐶 ) ( 𝑧 / 2 ) ) = ( ( 1st ‘ 𝑝 ) ( ball ‘ 𝐶 ) ( 2nd ‘ 𝑝 ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) < ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ) |
| 62 |
57
|
oveq1d |
⊢ ( 𝑝 = 〈 𝑥 , ( 𝑧 / 2 ) 〉 → ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) = ( 𝑥 𝐶 𝑐 ) ) |
| 63 |
58 58
|
oveq12d |
⊢ ( 𝑝 = 〈 𝑥 , ( 𝑧 / 2 ) 〉 → ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) = ( ( 𝑧 / 2 ) + ( 𝑧 / 2 ) ) ) |
| 64 |
62 63
|
breq12d |
⊢ ( 𝑝 = 〈 𝑥 , ( 𝑧 / 2 ) 〉 → ( ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) < ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) ↔ ( 𝑥 𝐶 𝑐 ) < ( ( 𝑧 / 2 ) + ( 𝑧 / 2 ) ) ) ) |
| 65 |
57
|
fveq2d |
⊢ ( 𝑝 = 〈 𝑥 , ( 𝑧 / 2 ) 〉 → ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) = ( 𝑓 ‘ 𝑥 ) ) |
| 66 |
65
|
oveq1d |
⊢ ( 𝑝 = 〈 𝑥 , ( 𝑧 / 2 ) 〉 → ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) = ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) ) |
| 67 |
66
|
breq1d |
⊢ ( 𝑝 = 〈 𝑥 , ( 𝑧 / 2 ) 〉 → ( ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) |
| 68 |
64 67
|
imbi12d |
⊢ ( 𝑝 = 〈 𝑥 , ( 𝑧 / 2 ) 〉 → ( ( ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) < ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ↔ ( ( 𝑥 𝐶 𝑐 ) < ( ( 𝑧 / 2 ) + ( 𝑧 / 2 ) ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) |
| 69 |
68
|
ralbidv |
⊢ ( 𝑝 = 〈 𝑥 , ( 𝑧 / 2 ) 〉 → ( ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) < ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ↔ ∀ 𝑐 ∈ 𝑋 ( ( 𝑥 𝐶 𝑐 ) < ( ( 𝑧 / 2 ) + ( 𝑧 / 2 ) ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) |
| 70 |
61 69
|
bitr3d |
⊢ ( 𝑝 = 〈 𝑥 , ( 𝑧 / 2 ) 〉 → ( ( ( 𝑥 ( ball ‘ 𝐶 ) ( 𝑧 / 2 ) ) = ( ( 1st ‘ 𝑝 ) ( ball ‘ 𝐶 ) ( 2nd ‘ 𝑝 ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) < ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ↔ ∀ 𝑐 ∈ 𝑋 ( ( 𝑥 𝐶 𝑐 ) < ( ( 𝑧 / 2 ) + ( 𝑧 / 2 ) ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) |
| 71 |
70
|
rspcev |
⊢ ( ( 〈 𝑥 , ( 𝑧 / 2 ) 〉 ∈ ( 𝑋 × ℝ+ ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( 𝑥 𝐶 𝑐 ) < ( ( 𝑧 / 2 ) + ( 𝑧 / 2 ) ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) → ∃ 𝑝 ∈ ( 𝑋 × ℝ+ ) ( ( 𝑥 ( ball ‘ 𝐶 ) ( 𝑧 / 2 ) ) = ( ( 1st ‘ 𝑝 ) ( ball ‘ 𝐶 ) ( 2nd ‘ 𝑝 ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) < ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) |
| 72 |
39 54 71
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → ∃ 𝑝 ∈ ( 𝑋 × ℝ+ ) ( ( 𝑥 ( ball ‘ 𝐶 ) ( 𝑧 / 2 ) ) = ( ( 1st ‘ 𝑝 ) ( ball ‘ 𝐶 ) ( 2nd ‘ 𝑝 ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) < ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) |
| 73 |
|
eleq2 |
⊢ ( 𝑏 = ( 𝑥 ( ball ‘ 𝐶 ) ( 𝑧 / 2 ) ) → ( 𝑥 ∈ 𝑏 ↔ 𝑥 ∈ ( 𝑥 ( ball ‘ 𝐶 ) ( 𝑧 / 2 ) ) ) ) |
| 74 |
|
eqeq1 |
⊢ ( 𝑏 = ( 𝑥 ( ball ‘ 𝐶 ) ( 𝑧 / 2 ) ) → ( 𝑏 = ( ( 1st ‘ 𝑝 ) ( ball ‘ 𝐶 ) ( 2nd ‘ 𝑝 ) ) ↔ ( 𝑥 ( ball ‘ 𝐶 ) ( 𝑧 / 2 ) ) = ( ( 1st ‘ 𝑝 ) ( ball ‘ 𝐶 ) ( 2nd ‘ 𝑝 ) ) ) ) |
| 75 |
74
|
anbi1d |
⊢ ( 𝑏 = ( 𝑥 ( ball ‘ 𝐶 ) ( 𝑧 / 2 ) ) → ( ( 𝑏 = ( ( 1st ‘ 𝑝 ) ( ball ‘ 𝐶 ) ( 2nd ‘ 𝑝 ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) < ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ↔ ( ( 𝑥 ( ball ‘ 𝐶 ) ( 𝑧 / 2 ) ) = ( ( 1st ‘ 𝑝 ) ( ball ‘ 𝐶 ) ( 2nd ‘ 𝑝 ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) < ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ) |
| 76 |
75
|
rexbidv |
⊢ ( 𝑏 = ( 𝑥 ( ball ‘ 𝐶 ) ( 𝑧 / 2 ) ) → ( ∃ 𝑝 ∈ ( 𝑋 × ℝ+ ) ( 𝑏 = ( ( 1st ‘ 𝑝 ) ( ball ‘ 𝐶 ) ( 2nd ‘ 𝑝 ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) < ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ↔ ∃ 𝑝 ∈ ( 𝑋 × ℝ+ ) ( ( 𝑥 ( ball ‘ 𝐶 ) ( 𝑧 / 2 ) ) = ( ( 1st ‘ 𝑝 ) ( ball ‘ 𝐶 ) ( 2nd ‘ 𝑝 ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) < ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ) |
| 77 |
73 76
|
anbi12d |
⊢ ( 𝑏 = ( 𝑥 ( ball ‘ 𝐶 ) ( 𝑧 / 2 ) ) → ( ( 𝑥 ∈ 𝑏 ∧ ∃ 𝑝 ∈ ( 𝑋 × ℝ+ ) ( 𝑏 = ( ( 1st ‘ 𝑝 ) ( ball ‘ 𝐶 ) ( 2nd ‘ 𝑝 ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) < ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ↔ ( 𝑥 ∈ ( 𝑥 ( ball ‘ 𝐶 ) ( 𝑧 / 2 ) ) ∧ ∃ 𝑝 ∈ ( 𝑋 × ℝ+ ) ( ( 𝑥 ( ball ‘ 𝐶 ) ( 𝑧 / 2 ) ) = ( ( 1st ‘ 𝑝 ) ( ball ‘ 𝐶 ) ( 2nd ‘ 𝑝 ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) < ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ) ) |
| 78 |
77
|
rspcev |
⊢ ( ( ( 𝑥 ( ball ‘ 𝐶 ) ( 𝑧 / 2 ) ) ∈ ( MetOpen ‘ 𝐶 ) ∧ ( 𝑥 ∈ ( 𝑥 ( ball ‘ 𝐶 ) ( 𝑧 / 2 ) ) ∧ ∃ 𝑝 ∈ ( 𝑋 × ℝ+ ) ( ( 𝑥 ( ball ‘ 𝐶 ) ( 𝑧 / 2 ) ) = ( ( 1st ‘ 𝑝 ) ( ball ‘ 𝐶 ) ( 2nd ‘ 𝑝 ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) < ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ) → ∃ 𝑏 ∈ ( MetOpen ‘ 𝐶 ) ( 𝑥 ∈ 𝑏 ∧ ∃ 𝑝 ∈ ( 𝑋 × ℝ+ ) ( 𝑏 = ( ( 1st ‘ 𝑝 ) ( ball ‘ 𝐶 ) ( 2nd ‘ 𝑝 ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) < ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ) |
| 79 |
30 36 72 78
|
syl12anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → ∃ 𝑏 ∈ ( MetOpen ‘ 𝐶 ) ( 𝑥 ∈ 𝑏 ∧ ∃ 𝑝 ∈ ( 𝑋 × ℝ+ ) ( 𝑏 = ( ( 1st ‘ 𝑝 ) ( ball ‘ 𝐶 ) ( 2nd ‘ 𝑝 ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) < ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ) |
| 80 |
79
|
rexlimdva2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) → ( ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) → ∃ 𝑏 ∈ ( MetOpen ‘ 𝐶 ) ( 𝑥 ∈ 𝑏 ∧ ∃ 𝑝 ∈ ( 𝑋 × ℝ+ ) ( 𝑏 = ( ( 1st ‘ 𝑝 ) ( ball ‘ 𝐶 ) ( 2nd ‘ 𝑝 ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) < ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ) ) |
| 81 |
80
|
ralimdva |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) → ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) → ∀ 𝑥 ∈ 𝑋 ∃ 𝑏 ∈ ( MetOpen ‘ 𝐶 ) ( 𝑥 ∈ 𝑏 ∧ ∃ 𝑝 ∈ ( 𝑋 × ℝ+ ) ( 𝑏 = ( ( 1st ‘ 𝑝 ) ( ball ‘ 𝐶 ) ( 2nd ‘ 𝑝 ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) < ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ) ) |
| 82 |
81
|
imp |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → ∀ 𝑥 ∈ 𝑋 ∃ 𝑏 ∈ ( MetOpen ‘ 𝐶 ) ( 𝑥 ∈ 𝑏 ∧ ∃ 𝑝 ∈ ( 𝑋 × ℝ+ ) ( 𝑏 = ( ( 1st ‘ 𝑝 ) ( ball ‘ 𝐶 ) ( 2nd ‘ 𝑝 ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) < ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ) |
| 83 |
26
|
mopnuni |
⊢ ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = ∪ ( MetOpen ‘ 𝐶 ) ) |
| 84 |
1 83
|
syl |
⊢ ( 𝜑 → 𝑋 = ∪ ( MetOpen ‘ 𝐶 ) ) |
| 85 |
84
|
raleqdv |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑏 ∈ ( MetOpen ‘ 𝐶 ) ( 𝑥 ∈ 𝑏 ∧ ∃ 𝑝 ∈ ( 𝑋 × ℝ+ ) ( 𝑏 = ( ( 1st ‘ 𝑝 ) ( ball ‘ 𝐶 ) ( 2nd ‘ 𝑝 ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) < ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ↔ ∀ 𝑥 ∈ ∪ ( MetOpen ‘ 𝐶 ) ∃ 𝑏 ∈ ( MetOpen ‘ 𝐶 ) ( 𝑥 ∈ 𝑏 ∧ ∃ 𝑝 ∈ ( 𝑋 × ℝ+ ) ( 𝑏 = ( ( 1st ‘ 𝑝 ) ( ball ‘ 𝐶 ) ( 2nd ‘ 𝑝 ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) < ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ) ) |
| 86 |
85
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑏 ∈ ( MetOpen ‘ 𝐶 ) ( 𝑥 ∈ 𝑏 ∧ ∃ 𝑝 ∈ ( 𝑋 × ℝ+ ) ( 𝑏 = ( ( 1st ‘ 𝑝 ) ( ball ‘ 𝐶 ) ( 2nd ‘ 𝑝 ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) < ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ↔ ∀ 𝑥 ∈ ∪ ( MetOpen ‘ 𝐶 ) ∃ 𝑏 ∈ ( MetOpen ‘ 𝐶 ) ( 𝑥 ∈ 𝑏 ∧ ∃ 𝑝 ∈ ( 𝑋 × ℝ+ ) ( 𝑏 = ( ( 1st ‘ 𝑝 ) ( ball ‘ 𝐶 ) ( 2nd ‘ 𝑝 ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) < ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ) ) |
| 87 |
82 86
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → ∀ 𝑥 ∈ ∪ ( MetOpen ‘ 𝐶 ) ∃ 𝑏 ∈ ( MetOpen ‘ 𝐶 ) ( 𝑥 ∈ 𝑏 ∧ ∃ 𝑝 ∈ ( 𝑋 × ℝ+ ) ( 𝑏 = ( ( 1st ‘ 𝑝 ) ( ball ‘ 𝐶 ) ( 2nd ‘ 𝑝 ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) < ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ) |
| 88 |
|
eqid |
⊢ ∪ ( MetOpen ‘ 𝐶 ) = ∪ ( MetOpen ‘ 𝐶 ) |
| 89 |
|
fveq2 |
⊢ ( 𝑝 = ( 𝑔 ‘ 𝑏 ) → ( 1st ‘ 𝑝 ) = ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) |
| 90 |
|
fveq2 |
⊢ ( 𝑝 = ( 𝑔 ‘ 𝑏 ) → ( 2nd ‘ 𝑝 ) = ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) |
| 91 |
89 90
|
oveq12d |
⊢ ( 𝑝 = ( 𝑔 ‘ 𝑏 ) → ( ( 1st ‘ 𝑝 ) ( ball ‘ 𝐶 ) ( 2nd ‘ 𝑝 ) ) = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) |
| 92 |
91
|
eqeq2d |
⊢ ( 𝑝 = ( 𝑔 ‘ 𝑏 ) → ( 𝑏 = ( ( 1st ‘ 𝑝 ) ( ball ‘ 𝐶 ) ( 2nd ‘ 𝑝 ) ) ↔ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ) |
| 93 |
89
|
oveq1d |
⊢ ( 𝑝 = ( 𝑔 ‘ 𝑏 ) → ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) ) |
| 94 |
90 90
|
oveq12d |
⊢ ( 𝑝 = ( 𝑔 ‘ 𝑏 ) → ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) = ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) |
| 95 |
93 94
|
breq12d |
⊢ ( 𝑝 = ( 𝑔 ‘ 𝑏 ) → ( ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) < ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) ↔ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ) |
| 96 |
89
|
fveq2d |
⊢ ( 𝑝 = ( 𝑔 ‘ 𝑏 ) → ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) = ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) |
| 97 |
96
|
oveq1d |
⊢ ( 𝑝 = ( 𝑔 ‘ 𝑏 ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) = ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) ) |
| 98 |
97
|
breq1d |
⊢ ( 𝑝 = ( 𝑔 ‘ 𝑏 ) → ( ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ↔ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) |
| 99 |
95 98
|
imbi12d |
⊢ ( 𝑝 = ( 𝑔 ‘ 𝑏 ) → ( ( ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) < ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ↔ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) |
| 100 |
99
|
ralbidv |
⊢ ( 𝑝 = ( 𝑔 ‘ 𝑏 ) → ( ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) < ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ↔ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) |
| 101 |
92 100
|
anbi12d |
⊢ ( 𝑝 = ( 𝑔 ‘ 𝑏 ) → ( ( 𝑏 = ( ( 1st ‘ 𝑝 ) ( ball ‘ 𝐶 ) ( 2nd ‘ 𝑝 ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) < ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ↔ ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ) |
| 102 |
88 101
|
cmpcovf |
⊢ ( ( ( MetOpen ‘ 𝐶 ) ∈ Comp ∧ ∀ 𝑥 ∈ ∪ ( MetOpen ‘ 𝐶 ) ∃ 𝑏 ∈ ( MetOpen ‘ 𝐶 ) ( 𝑥 ∈ 𝑏 ∧ ∃ 𝑝 ∈ ( 𝑋 × ℝ+ ) ( 𝑏 = ( ( 1st ‘ 𝑝 ) ( ball ‘ 𝐶 ) ( 2nd ‘ 𝑝 ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) < ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ) → ∃ 𝑠 ∈ ( 𝒫 ( MetOpen ‘ 𝐶 ) ∩ Fin ) ( ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ∧ ∃ 𝑔 ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ∧ ∀ 𝑏 ∈ 𝑠 ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ) ) |
| 103 |
21 87 102
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → ∃ 𝑠 ∈ ( 𝒫 ( MetOpen ‘ 𝐶 ) ∩ Fin ) ( ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ∧ ∃ 𝑔 ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ∧ ∀ 𝑏 ∈ 𝑠 ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ) ) |
| 104 |
103
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) → ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) → ∃ 𝑠 ∈ ( 𝒫 ( MetOpen ‘ 𝐶 ) ∩ Fin ) ( ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ∧ ∃ 𝑔 ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ∧ ∀ 𝑏 ∈ 𝑠 ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ) ) ) |
| 105 |
|
elinel2 |
⊢ ( 𝑠 ∈ ( 𝒫 ( MetOpen ‘ 𝐶 ) ∩ Fin ) → 𝑠 ∈ Fin ) |
| 106 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) → 𝜑 ) |
| 107 |
106
|
anim1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑠 ∈ Fin ) → ( 𝜑 ∧ 𝑠 ∈ Fin ) ) |
| 108 |
|
frn |
⊢ ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) → ran 𝑔 ⊆ ( 𝑋 × ℝ+ ) ) |
| 109 |
|
rnss |
⊢ ( ran 𝑔 ⊆ ( 𝑋 × ℝ+ ) → ran ran 𝑔 ⊆ ran ( 𝑋 × ℝ+ ) ) |
| 110 |
108 109
|
syl |
⊢ ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) → ran ran 𝑔 ⊆ ran ( 𝑋 × ℝ+ ) ) |
| 111 |
|
rnxpss |
⊢ ran ( 𝑋 × ℝ+ ) ⊆ ℝ+ |
| 112 |
110 111
|
sstrdi |
⊢ ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) → ran ran 𝑔 ⊆ ℝ+ ) |
| 113 |
112
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) → ran ran 𝑔 ⊆ ℝ+ ) |
| 114 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) → 𝑠 ∈ Fin ) |
| 115 |
|
ffun |
⊢ ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) → Fun 𝑔 ) |
| 116 |
|
vex |
⊢ 𝑔 ∈ V |
| 117 |
116
|
fundmen |
⊢ ( Fun 𝑔 → dom 𝑔 ≈ 𝑔 ) |
| 118 |
117
|
ensymd |
⊢ ( Fun 𝑔 → 𝑔 ≈ dom 𝑔 ) |
| 119 |
115 118
|
syl |
⊢ ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) → 𝑔 ≈ dom 𝑔 ) |
| 120 |
|
fdm |
⊢ ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) → dom 𝑔 = 𝑠 ) |
| 121 |
119 120
|
breqtrd |
⊢ ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) → 𝑔 ≈ 𝑠 ) |
| 122 |
|
enfii |
⊢ ( ( 𝑠 ∈ Fin ∧ 𝑔 ≈ 𝑠 ) → 𝑔 ∈ Fin ) |
| 123 |
121 122
|
sylan2 |
⊢ ( ( 𝑠 ∈ Fin ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) → 𝑔 ∈ Fin ) |
| 124 |
|
rnfi |
⊢ ( 𝑔 ∈ Fin → ran 𝑔 ∈ Fin ) |
| 125 |
|
rnfi |
⊢ ( ran 𝑔 ∈ Fin → ran ran 𝑔 ∈ Fin ) |
| 126 |
123 124 125
|
3syl |
⊢ ( ( 𝑠 ∈ Fin ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) → ran ran 𝑔 ∈ Fin ) |
| 127 |
114 126
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) → ran ran 𝑔 ∈ Fin ) |
| 128 |
120
|
adantl |
⊢ ( ( ( 𝜑 ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) → dom 𝑔 = 𝑠 ) |
| 129 |
|
eqtr |
⊢ ( ( 𝑋 = ∪ ( MetOpen ‘ 𝐶 ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) → 𝑋 = ∪ 𝑠 ) |
| 130 |
84 129
|
sylan |
⊢ ( ( 𝜑 ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) → 𝑋 = ∪ 𝑠 ) |
| 131 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) → 𝑋 ≠ ∅ ) |
| 132 |
130 131
|
eqnetrrd |
⊢ ( ( 𝜑 ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) → ∪ 𝑠 ≠ ∅ ) |
| 133 |
|
unieq |
⊢ ( 𝑠 = ∅ → ∪ 𝑠 = ∪ ∅ ) |
| 134 |
|
uni0 |
⊢ ∪ ∅ = ∅ |
| 135 |
133 134
|
eqtrdi |
⊢ ( 𝑠 = ∅ → ∪ 𝑠 = ∅ ) |
| 136 |
135
|
necon3i |
⊢ ( ∪ 𝑠 ≠ ∅ → 𝑠 ≠ ∅ ) |
| 137 |
132 136
|
syl |
⊢ ( ( 𝜑 ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) → 𝑠 ≠ ∅ ) |
| 138 |
137
|
adantr |
⊢ ( ( ( 𝜑 ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) → 𝑠 ≠ ∅ ) |
| 139 |
128 138
|
eqnetrd |
⊢ ( ( ( 𝜑 ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) → dom 𝑔 ≠ ∅ ) |
| 140 |
|
dm0rn0 |
⊢ ( dom 𝑔 = ∅ ↔ ran 𝑔 = ∅ ) |
| 141 |
140
|
necon3bii |
⊢ ( dom 𝑔 ≠ ∅ ↔ ran 𝑔 ≠ ∅ ) |
| 142 |
139 141
|
sylib |
⊢ ( ( ( 𝜑 ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) → ran 𝑔 ≠ ∅ ) |
| 143 |
|
relxp |
⊢ Rel ( 𝑋 × ℝ+ ) |
| 144 |
|
relss |
⊢ ( ran 𝑔 ⊆ ( 𝑋 × ℝ+ ) → ( Rel ( 𝑋 × ℝ+ ) → Rel ran 𝑔 ) ) |
| 145 |
108 143 144
|
mpisyl |
⊢ ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) → Rel ran 𝑔 ) |
| 146 |
|
relrn0 |
⊢ ( Rel ran 𝑔 → ( ran 𝑔 = ∅ ↔ ran ran 𝑔 = ∅ ) ) |
| 147 |
146
|
necon3bid |
⊢ ( Rel ran 𝑔 → ( ran 𝑔 ≠ ∅ ↔ ran ran 𝑔 ≠ ∅ ) ) |
| 148 |
145 147
|
syl |
⊢ ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) → ( ran 𝑔 ≠ ∅ ↔ ran ran 𝑔 ≠ ∅ ) ) |
| 149 |
148
|
adantl |
⊢ ( ( ( 𝜑 ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) → ( ran 𝑔 ≠ ∅ ↔ ran ran 𝑔 ≠ ∅ ) ) |
| 150 |
142 149
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) → ran ran 𝑔 ≠ ∅ ) |
| 151 |
150
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) → ran ran 𝑔 ≠ ∅ ) |
| 152 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
| 153 |
113 152
|
sstrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) → ran ran 𝑔 ⊆ ℝ ) |
| 154 |
|
ltso |
⊢ < Or ℝ |
| 155 |
|
fiinfcl |
⊢ ( ( < Or ℝ ∧ ( ran ran 𝑔 ∈ Fin ∧ ran ran 𝑔 ≠ ∅ ∧ ran ran 𝑔 ⊆ ℝ ) ) → inf ( ran ran 𝑔 , ℝ , < ) ∈ ran ran 𝑔 ) |
| 156 |
154 155
|
mpan |
⊢ ( ( ran ran 𝑔 ∈ Fin ∧ ran ran 𝑔 ≠ ∅ ∧ ran ran 𝑔 ⊆ ℝ ) → inf ( ran ran 𝑔 , ℝ , < ) ∈ ran ran 𝑔 ) |
| 157 |
127 151 153 156
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) → inf ( ran ran 𝑔 , ℝ , < ) ∈ ran ran 𝑔 ) |
| 158 |
113 157
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) → inf ( ran ran 𝑔 , ℝ , < ) ∈ ℝ+ ) |
| 159 |
107 158
|
sylanl1 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) → inf ( ran ran 𝑔 , ℝ , < ) ∈ ℝ+ ) |
| 160 |
159
|
adantr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ∀ 𝑏 ∈ 𝑠 ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) → inf ( ran ran 𝑔 , ℝ , < ) ∈ ℝ+ ) |
| 161 |
84
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑠 ∈ Fin ) → 𝑋 = ∪ ( MetOpen ‘ 𝐶 ) ) |
| 162 |
161
|
anim1i |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) → ( 𝑋 = ∪ ( MetOpen ‘ 𝐶 ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ) |
| 163 |
162
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ∀ 𝑏 ∈ 𝑠 ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) → ( 𝑋 = ∪ ( MetOpen ‘ 𝐶 ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ) |
| 164 |
|
simpl |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) |
| 165 |
129
|
eleq2d |
⊢ ( ( 𝑋 = ∪ ( MetOpen ‘ 𝐶 ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) → ( 𝑥 ∈ 𝑋 ↔ 𝑥 ∈ ∪ 𝑠 ) ) |
| 166 |
|
eluni2 |
⊢ ( 𝑥 ∈ ∪ 𝑠 ↔ ∃ 𝑏 ∈ 𝑠 𝑥 ∈ 𝑏 ) |
| 167 |
165 166
|
bitrdi |
⊢ ( ( 𝑋 = ∪ ( MetOpen ‘ 𝐶 ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) → ( 𝑥 ∈ 𝑋 ↔ ∃ 𝑏 ∈ 𝑠 𝑥 ∈ 𝑏 ) ) |
| 168 |
167
|
biimpa |
⊢ ( ( ( 𝑋 = ∪ ( MetOpen ‘ 𝐶 ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑥 ∈ 𝑋 ) → ∃ 𝑏 ∈ 𝑠 𝑥 ∈ 𝑏 ) |
| 169 |
163 164 168
|
syl2an |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ∀ 𝑏 ∈ 𝑠 ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ∃ 𝑏 ∈ 𝑠 𝑥 ∈ 𝑏 ) |
| 170 |
|
nfv |
⊢ Ⅎ 𝑏 ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) |
| 171 |
|
nfra1 |
⊢ Ⅎ 𝑏 ∀ 𝑏 ∈ 𝑠 ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) |
| 172 |
170 171
|
nfan |
⊢ Ⅎ 𝑏 ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ∀ 𝑏 ∈ 𝑠 ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) |
| 173 |
|
nfv |
⊢ Ⅎ 𝑏 ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) |
| 174 |
172 173
|
nfan |
⊢ Ⅎ 𝑏 ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ∀ 𝑏 ∈ 𝑠 ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) |
| 175 |
|
nfv |
⊢ Ⅎ 𝑏 ( ( 𝑥 𝐶 𝑤 ) < inf ( ran ran 𝑔 , ℝ , < ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) |
| 176 |
|
rspa |
⊢ ( ( ∀ 𝑏 ∈ 𝑠 ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ∧ 𝑏 ∈ 𝑠 ) → ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) |
| 177 |
|
oveq2 |
⊢ ( 𝑐 = 𝑥 → ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) ) |
| 178 |
177
|
breq1d |
⊢ ( 𝑐 = 𝑥 → ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ↔ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ) |
| 179 |
|
fveq2 |
⊢ ( 𝑐 = 𝑥 → ( 𝑓 ‘ 𝑐 ) = ( 𝑓 ‘ 𝑥 ) ) |
| 180 |
179
|
oveq2d |
⊢ ( 𝑐 = 𝑥 → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) = ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ) |
| 181 |
180
|
breq1d |
⊢ ( 𝑐 = 𝑥 → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ↔ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ) ) |
| 182 |
178 181
|
imbi12d |
⊢ ( 𝑐 = 𝑥 → ( ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ↔ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ) ) ) |
| 183 |
182
|
rspcva |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) → ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ) ) |
| 184 |
|
oveq2 |
⊢ ( 𝑐 = 𝑤 → ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑤 ) ) |
| 185 |
184
|
breq1d |
⊢ ( 𝑐 = 𝑤 → ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ↔ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑤 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ) |
| 186 |
47
|
oveq2d |
⊢ ( 𝑐 = 𝑤 → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) = ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) |
| 187 |
186
|
breq1d |
⊢ ( 𝑐 = 𝑤 → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ↔ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) |
| 188 |
185 187
|
imbi12d |
⊢ ( 𝑐 = 𝑤 → ( ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ↔ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑤 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) ) |
| 189 |
188
|
rspcva |
⊢ ( ( 𝑤 ∈ 𝑋 ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) → ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑤 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) |
| 190 |
183 189
|
anim12i |
⊢ ( ( ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ∧ ( 𝑤 ∈ 𝑋 ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) → ( ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑤 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) ) |
| 191 |
190
|
anandirs |
⊢ ( ( ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) → ( ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑤 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) ) |
| 192 |
|
anim12 |
⊢ ( ( ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑤 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → ( ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑤 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) ) |
| 193 |
191 192
|
syl |
⊢ ( ( ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) → ( ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑤 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) ) |
| 194 |
193
|
adantrl |
⊢ ( ( ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ∧ ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) → ( ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑤 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) ) |
| 195 |
194
|
ad4ant23 |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑤 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) ) |
| 196 |
|
simpll |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) → ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ) |
| 197 |
196
|
anim1i |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) → ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ) |
| 198 |
197
|
anim1i |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ) |
| 199 |
112 152
|
sstrdi |
⊢ ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) → ran ran 𝑔 ⊆ ℝ ) |
| 200 |
199
|
adantr |
⊢ ( ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ∧ 𝑏 ∈ 𝑠 ) → ran ran 𝑔 ⊆ ℝ ) |
| 201 |
|
0re |
⊢ 0 ∈ ℝ |
| 202 |
|
rpge0 |
⊢ ( 𝑦 ∈ ℝ+ → 0 ≤ 𝑦 ) |
| 203 |
202
|
rgen |
⊢ ∀ 𝑦 ∈ ℝ+ 0 ≤ 𝑦 |
| 204 |
|
ssralv |
⊢ ( ran ran 𝑔 ⊆ ℝ+ → ( ∀ 𝑦 ∈ ℝ+ 0 ≤ 𝑦 → ∀ 𝑦 ∈ ran ran 𝑔 0 ≤ 𝑦 ) ) |
| 205 |
112 203 204
|
mpisyl |
⊢ ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) → ∀ 𝑦 ∈ ran ran 𝑔 0 ≤ 𝑦 ) |
| 206 |
|
breq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 ≤ 𝑦 ↔ 0 ≤ 𝑦 ) ) |
| 207 |
206
|
ralbidv |
⊢ ( 𝑥 = 0 → ( ∀ 𝑦 ∈ ran ran 𝑔 𝑥 ≤ 𝑦 ↔ ∀ 𝑦 ∈ ran ran 𝑔 0 ≤ 𝑦 ) ) |
| 208 |
207
|
rspcev |
⊢ ( ( 0 ∈ ℝ ∧ ∀ 𝑦 ∈ ran ran 𝑔 0 ≤ 𝑦 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran ran 𝑔 𝑥 ≤ 𝑦 ) |
| 209 |
201 205 208
|
sylancr |
⊢ ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran ran 𝑔 𝑥 ≤ 𝑦 ) |
| 210 |
209
|
adantr |
⊢ ( ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ∧ 𝑏 ∈ 𝑠 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran ran 𝑔 𝑥 ≤ 𝑦 ) |
| 211 |
145
|
adantr |
⊢ ( ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ∧ 𝑏 ∈ 𝑠 ) → Rel ran 𝑔 ) |
| 212 |
|
ffn |
⊢ ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) → 𝑔 Fn 𝑠 ) |
| 213 |
|
fnfvelrn |
⊢ ( ( 𝑔 Fn 𝑠 ∧ 𝑏 ∈ 𝑠 ) → ( 𝑔 ‘ 𝑏 ) ∈ ran 𝑔 ) |
| 214 |
212 213
|
sylan |
⊢ ( ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ∧ 𝑏 ∈ 𝑠 ) → ( 𝑔 ‘ 𝑏 ) ∈ ran 𝑔 ) |
| 215 |
|
2ndrn |
⊢ ( ( Rel ran 𝑔 ∧ ( 𝑔 ‘ 𝑏 ) ∈ ran 𝑔 ) → ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ ran ran 𝑔 ) |
| 216 |
211 214 215
|
syl2anc |
⊢ ( ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ∧ 𝑏 ∈ 𝑠 ) → ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ ran ran 𝑔 ) |
| 217 |
|
infrelb |
⊢ ( ( ran ran 𝑔 ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran ran 𝑔 𝑥 ≤ 𝑦 ∧ ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ ran ran 𝑔 ) → inf ( ran ran 𝑔 , ℝ , < ) ≤ ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) |
| 218 |
200 210 216 217
|
syl3anc |
⊢ ( ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ∧ 𝑏 ∈ 𝑠 ) → inf ( ran ran 𝑔 , ℝ , < ) ≤ ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) |
| 219 |
218
|
adantll |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ 𝑏 ∈ 𝑠 ) → inf ( ran ran 𝑔 , ℝ , < ) ≤ ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) |
| 220 |
219
|
ad2ant2r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → inf ( ran ran 𝑔 , ℝ , < ) ≤ ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) |
| 221 |
1
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) → 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 222 |
|
xmetcl |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) → ( 𝑥 𝐶 𝑤 ) ∈ ℝ* ) |
| 223 |
222
|
3expb |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝑥 𝐶 𝑤 ) ∈ ℝ* ) |
| 224 |
221 223
|
sylan |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝑥 𝐶 𝑤 ) ∈ ℝ* ) |
| 225 |
224
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( 𝑥 𝐶 𝑤 ) ∈ ℝ* ) |
| 226 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) |
| 227 |
|
simpl |
⊢ ( ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) → 𝑏 ∈ 𝑠 ) |
| 228 |
216
|
ne0d |
⊢ ( ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ∧ 𝑏 ∈ 𝑠 ) → ran ran 𝑔 ≠ ∅ ) |
| 229 |
|
infrecl |
⊢ ( ( ran ran 𝑔 ⊆ ℝ ∧ ran ran 𝑔 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran ran 𝑔 𝑥 ≤ 𝑦 ) → inf ( ran ran 𝑔 , ℝ , < ) ∈ ℝ ) |
| 230 |
200 228 210 229
|
syl3anc |
⊢ ( ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ∧ 𝑏 ∈ 𝑠 ) → inf ( ran ran 𝑔 , ℝ , < ) ∈ ℝ ) |
| 231 |
230
|
rexrd |
⊢ ( ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ∧ 𝑏 ∈ 𝑠 ) → inf ( ran ran 𝑔 , ℝ , < ) ∈ ℝ* ) |
| 232 |
226 227 231
|
syl2an |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → inf ( ran ran 𝑔 , ℝ , < ) ∈ ℝ* ) |
| 233 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) → 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) |
| 234 |
233
|
ffvelcdmda |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ 𝑏 ∈ 𝑠 ) → ( 𝑔 ‘ 𝑏 ) ∈ ( 𝑋 × ℝ+ ) ) |
| 235 |
|
xp2nd |
⊢ ( ( 𝑔 ‘ 𝑏 ) ∈ ( 𝑋 × ℝ+ ) → ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ ℝ+ ) |
| 236 |
234 235
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ 𝑏 ∈ 𝑠 ) → ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ ℝ+ ) |
| 237 |
236
|
rpxrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ 𝑏 ∈ 𝑠 ) → ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ ℝ* ) |
| 238 |
237
|
ad2ant2r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ ℝ* ) |
| 239 |
|
xrltletr |
⊢ ( ( ( 𝑥 𝐶 𝑤 ) ∈ ℝ* ∧ inf ( ran ran 𝑔 , ℝ , < ) ∈ ℝ* ∧ ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ ℝ* ) → ( ( ( 𝑥 𝐶 𝑤 ) < inf ( ran ran 𝑔 , ℝ , < ) ∧ inf ( ran ran 𝑔 , ℝ , < ) ≤ ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( 𝑥 𝐶 𝑤 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) |
| 240 |
225 232 238 239
|
syl3anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( ( 𝑥 𝐶 𝑤 ) < inf ( ran ran 𝑔 , ℝ , < ) ∧ inf ( ran ran 𝑔 , ℝ , < ) ≤ ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( 𝑥 𝐶 𝑤 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) |
| 241 |
220 240
|
mpan2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( 𝑥 𝐶 𝑤 ) < inf ( ran ran 𝑔 , ℝ , < ) → ( 𝑥 𝐶 𝑤 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) |
| 242 |
241
|
adantlr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( 𝑥 𝐶 𝑤 ) < inf ( ran ran 𝑔 , ℝ , < ) → ( 𝑥 𝐶 𝑤 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) |
| 243 |
1
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 244 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) → 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) |
| 245 |
|
ffvelcdm |
⊢ ( ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ∧ 𝑏 ∈ 𝑠 ) → ( 𝑔 ‘ 𝑏 ) ∈ ( 𝑋 × ℝ+ ) ) |
| 246 |
|
xp1st |
⊢ ( ( 𝑔 ‘ 𝑏 ) ∈ ( 𝑋 × ℝ+ ) → ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ 𝑋 ) |
| 247 |
245 246
|
syl |
⊢ ( ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ∧ 𝑏 ∈ 𝑠 ) → ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ 𝑋 ) |
| 248 |
244 227 247
|
syl2an |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ 𝑋 ) |
| 249 |
|
simpr |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) → 𝑤 ∈ 𝑋 ) |
| 250 |
249
|
ad3antlr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → 𝑤 ∈ 𝑋 ) |
| 251 |
|
xmetcl |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) → ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑤 ) ∈ ℝ* ) |
| 252 |
243 248 250 251
|
syl3anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑤 ) ∈ ℝ* ) |
| 253 |
252
|
adantr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( 𝑥 𝐶 𝑤 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑤 ) ∈ ℝ* ) |
| 254 |
245 235
|
syl |
⊢ ( ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ∧ 𝑏 ∈ 𝑠 ) → ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ ℝ+ ) |
| 255 |
226 254
|
sylan |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ ℝ+ ) |
| 256 |
255
|
ad2ant2r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ ℝ+ ) |
| 257 |
256
|
rpred |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ ℝ ) |
| 258 |
164
|
ad3antlr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → 𝑥 ∈ 𝑋 ) |
| 259 |
|
xmetcl |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) ∈ ℝ* ) |
| 260 |
243 248 258 259
|
syl3anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) ∈ ℝ* ) |
| 261 |
254
|
rpxrd |
⊢ ( ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ∧ 𝑏 ∈ 𝑠 ) → ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ ℝ* ) |
| 262 |
244 227 261
|
syl2an |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ ℝ* ) |
| 263 |
|
eleq2 |
⊢ ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( 𝑥 ∈ 𝑏 ↔ 𝑥 ∈ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ) |
| 264 |
1
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 265 |
226 247
|
sylan |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ 𝑋 ) |
| 266 |
255
|
rpxrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ ℝ* ) |
| 267 |
|
elbl |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ 𝑋 ∧ ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ ℝ* ) → ( 𝑥 ∈ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ↔ ( 𝑥 ∈ 𝑋 ∧ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ) |
| 268 |
264 265 266 267
|
syl3anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → ( 𝑥 ∈ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ↔ ( 𝑥 ∈ 𝑋 ∧ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ) |
| 269 |
263 268
|
sylan9bbr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) → ( 𝑥 ∈ 𝑏 ↔ ( 𝑥 ∈ 𝑋 ∧ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ) |
| 270 |
269
|
biimpd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) → ( 𝑥 ∈ 𝑏 → ( 𝑥 ∈ 𝑋 ∧ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ) |
| 271 |
270
|
an32s |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ 𝑏 ∈ 𝑠 ) → ( 𝑥 ∈ 𝑏 → ( 𝑥 ∈ 𝑋 ∧ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ) |
| 272 |
271
|
impr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( 𝑥 ∈ 𝑋 ∧ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) |
| 273 |
272
|
simprd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) |
| 274 |
260 262 273
|
xrltled |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) ≤ ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) |
| 275 |
226
|
ffvelcdmda |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → ( 𝑔 ‘ 𝑏 ) ∈ ( 𝑋 × ℝ+ ) ) |
| 276 |
275 246
|
syl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ 𝑋 ) |
| 277 |
|
simplrl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → 𝑥 ∈ 𝑋 ) |
| 278 |
264 276 277 259
|
syl3anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) ∈ ℝ* ) |
| 279 |
|
xmetge0 |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → 0 ≤ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) ) |
| 280 |
264 276 277 279
|
syl3anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → 0 ≤ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) ) |
| 281 |
|
xrrege0 |
⊢ ( ( ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) ∈ ℝ* ∧ ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ ℝ ) ∧ ( 0 ≤ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) ∧ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) ≤ ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) → ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) ∈ ℝ ) |
| 282 |
281
|
an4s |
⊢ ( ( ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) ∈ ℝ* ∧ 0 ≤ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) ) ∧ ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ ℝ ∧ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) ≤ ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) → ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) ∈ ℝ ) |
| 283 |
282
|
ex |
⊢ ( ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) ∈ ℝ* ∧ 0 ≤ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) ) → ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ ℝ ∧ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) ≤ ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) ∈ ℝ ) ) |
| 284 |
278 280 283
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ ℝ ∧ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) ≤ ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) ∈ ℝ ) ) |
| 285 |
284
|
ad2ant2r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ ℝ ∧ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) ≤ ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) ∈ ℝ ) ) |
| 286 |
257 274 285
|
mp2and |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) ∈ ℝ ) |
| 287 |
286
|
adantr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( 𝑥 𝐶 𝑤 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) ∈ ℝ ) |
| 288 |
|
xrltle |
⊢ ( ( ( 𝑥 𝐶 𝑤 ) ∈ ℝ* ∧ ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ ℝ* ) → ( ( 𝑥 𝐶 𝑤 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) → ( 𝑥 𝐶 𝑤 ) ≤ ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) |
| 289 |
225 238 288
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( 𝑥 𝐶 𝑤 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) → ( 𝑥 𝐶 𝑤 ) ≤ ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) |
| 290 |
|
xmetge0 |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) → 0 ≤ ( 𝑥 𝐶 𝑤 ) ) |
| 291 |
290
|
3expb |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → 0 ≤ ( 𝑥 𝐶 𝑤 ) ) |
| 292 |
221 291
|
sylan |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → 0 ≤ ( 𝑥 𝐶 𝑤 ) ) |
| 293 |
292
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → 0 ≤ ( 𝑥 𝐶 𝑤 ) ) |
| 294 |
236
|
rpred |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ 𝑏 ∈ 𝑠 ) → ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ ℝ ) |
| 295 |
294
|
ad2ant2r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ ℝ ) |
| 296 |
|
xrrege0 |
⊢ ( ( ( ( 𝑥 𝐶 𝑤 ) ∈ ℝ* ∧ ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ ℝ ) ∧ ( 0 ≤ ( 𝑥 𝐶 𝑤 ) ∧ ( 𝑥 𝐶 𝑤 ) ≤ ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) → ( 𝑥 𝐶 𝑤 ) ∈ ℝ ) |
| 297 |
296
|
ex |
⊢ ( ( ( 𝑥 𝐶 𝑤 ) ∈ ℝ* ∧ ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ ℝ ) → ( ( 0 ≤ ( 𝑥 𝐶 𝑤 ) ∧ ( 𝑥 𝐶 𝑤 ) ≤ ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( 𝑥 𝐶 𝑤 ) ∈ ℝ ) ) |
| 298 |
225 295 297
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( 0 ≤ ( 𝑥 𝐶 𝑤 ) ∧ ( 𝑥 𝐶 𝑤 ) ≤ ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( 𝑥 𝐶 𝑤 ) ∈ ℝ ) ) |
| 299 |
293 298
|
mpand |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( 𝑥 𝐶 𝑤 ) ≤ ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) → ( 𝑥 𝐶 𝑤 ) ∈ ℝ ) ) |
| 300 |
289 299
|
syld |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( 𝑥 𝐶 𝑤 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) → ( 𝑥 𝐶 𝑤 ) ∈ ℝ ) ) |
| 301 |
300
|
adantlr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( 𝑥 𝐶 𝑤 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) → ( 𝑥 𝐶 𝑤 ) ∈ ℝ ) ) |
| 302 |
301
|
imp |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( 𝑥 𝐶 𝑤 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( 𝑥 𝐶 𝑤 ) ∈ ℝ ) |
| 303 |
287 302
|
readdcld |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( 𝑥 𝐶 𝑤 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) + ( 𝑥 𝐶 𝑤 ) ) ∈ ℝ ) |
| 304 |
303
|
rexrd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( 𝑥 𝐶 𝑤 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) + ( 𝑥 𝐶 𝑤 ) ) ∈ ℝ* ) |
| 305 |
256 256
|
rpaddcld |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∈ ℝ+ ) |
| 306 |
305
|
rpxrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∈ ℝ* ) |
| 307 |
306
|
adantr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( 𝑥 𝐶 𝑤 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∈ ℝ* ) |
| 308 |
|
xmettri |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑤 ) ≤ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) +𝑒 ( 𝑥 𝐶 𝑤 ) ) ) |
| 309 |
243 248 250 258 308
|
syl13anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑤 ) ≤ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) +𝑒 ( 𝑥 𝐶 𝑤 ) ) ) |
| 310 |
309
|
adantr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( 𝑥 𝐶 𝑤 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑤 ) ≤ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) +𝑒 ( 𝑥 𝐶 𝑤 ) ) ) |
| 311 |
|
rexadd |
⊢ ( ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) ∈ ℝ ∧ ( 𝑥 𝐶 𝑤 ) ∈ ℝ ) → ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) +𝑒 ( 𝑥 𝐶 𝑤 ) ) = ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) + ( 𝑥 𝐶 𝑤 ) ) ) |
| 312 |
287 302 311
|
syl2anc |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( 𝑥 𝐶 𝑤 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) +𝑒 ( 𝑥 𝐶 𝑤 ) ) = ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) + ( 𝑥 𝐶 𝑤 ) ) ) |
| 313 |
310 312
|
breqtrd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( 𝑥 𝐶 𝑤 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑤 ) ≤ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) + ( 𝑥 𝐶 𝑤 ) ) ) |
| 314 |
257
|
adantr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( 𝑥 𝐶 𝑤 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ ℝ ) |
| 315 |
273
|
adantr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( 𝑥 𝐶 𝑤 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) |
| 316 |
|
simpr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( 𝑥 𝐶 𝑤 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( 𝑥 𝐶 𝑤 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) |
| 317 |
287 302 314 314 315 316
|
lt2addd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( 𝑥 𝐶 𝑤 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) + ( 𝑥 𝐶 𝑤 ) ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) |
| 318 |
253 304 307 313 317
|
xrlelttrd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( 𝑥 𝐶 𝑤 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑤 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) |
| 319 |
318
|
ex |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( 𝑥 𝐶 𝑤 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) → ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑤 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ) |
| 320 |
254
|
rpred |
⊢ ( ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ∧ 𝑏 ∈ 𝑠 ) → ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ ℝ ) |
| 321 |
320 254
|
ltaddrpd |
⊢ ( ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ∧ 𝑏 ∈ 𝑠 ) → ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) |
| 322 |
244 227 321
|
syl2an |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) |
| 323 |
260 262 306 273 322
|
xrlttrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) |
| 324 |
319 323
|
jctild |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( 𝑥 𝐶 𝑤 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) → ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑤 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ) ) |
| 325 |
242 324
|
syld |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( 𝑥 𝐶 𝑤 ) < inf ( ran ran 𝑔 , ℝ , < ) → ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑤 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ) ) |
| 326 |
|
simpll |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) → ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ) |
| 327 |
|
ffvelcdm |
⊢ ( ( 𝑓 : 𝑋 ⟶ 𝑌 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑥 ) ∈ 𝑌 ) |
| 328 |
|
ffvelcdm |
⊢ ( ( 𝑓 : 𝑋 ⟶ 𝑌 ∧ 𝑤 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑤 ) ∈ 𝑌 ) |
| 329 |
327 328
|
anim12dan |
⊢ ( ( 𝑓 : 𝑋 ⟶ 𝑌 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑌 ∧ ( 𝑓 ‘ 𝑤 ) ∈ 𝑌 ) ) |
| 330 |
|
xmetcl |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ ( 𝑓 ‘ 𝑥 ) ∈ 𝑌 ∧ ( 𝑓 ‘ 𝑤 ) ∈ 𝑌 ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ∈ ℝ* ) |
| 331 |
330
|
3expb |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑌 ∧ ( 𝑓 ‘ 𝑤 ) ∈ 𝑌 ) ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ∈ ℝ* ) |
| 332 |
2 329 331
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑋 ⟶ 𝑌 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ∈ ℝ* ) |
| 333 |
332
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ∈ ℝ* ) |
| 334 |
326 333
|
sylan |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ∈ ℝ* ) |
| 335 |
334
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ∈ ℝ* ) |
| 336 |
2
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) |
| 337 |
|
simp-5r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → 𝑓 : 𝑋 ⟶ 𝑌 ) |
| 338 |
337 276
|
ffvelcdmd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∈ 𝑌 ) |
| 339 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) → 𝑓 : 𝑋 ⟶ 𝑌 ) |
| 340 |
339
|
ffvelcdmda |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑥 ) ∈ 𝑌 ) |
| 341 |
340
|
adantrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝑓 ‘ 𝑥 ) ∈ 𝑌 ) |
| 342 |
341
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → ( 𝑓 ‘ 𝑥 ) ∈ 𝑌 ) |
| 343 |
|
xmetcl |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∈ 𝑌 ∧ ( 𝑓 ‘ 𝑥 ) ∈ 𝑌 ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ∈ ℝ* ) |
| 344 |
336 338 342 343
|
syl3anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ∈ ℝ* ) |
| 345 |
14
|
rpxrd |
⊢ ( 𝑑 ∈ ℝ+ → ( 𝑑 / 2 ) ∈ ℝ* ) |
| 346 |
345
|
ad4antlr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → ( 𝑑 / 2 ) ∈ ℝ* ) |
| 347 |
|
xrltle |
⊢ ( ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ∈ ℝ* ∧ ( 𝑑 / 2 ) ∈ ℝ* ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑑 / 2 ) ) ) |
| 348 |
344 346 347
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑑 / 2 ) ) ) |
| 349 |
|
xmetge0 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∈ 𝑌 ∧ ( 𝑓 ‘ 𝑥 ) ∈ 𝑌 ) → 0 ≤ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ) |
| 350 |
336 338 342 349
|
syl3anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → 0 ≤ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ) |
| 351 |
14
|
rpred |
⊢ ( 𝑑 ∈ ℝ+ → ( 𝑑 / 2 ) ∈ ℝ ) |
| 352 |
351
|
ad4antlr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → ( 𝑑 / 2 ) ∈ ℝ ) |
| 353 |
|
xrrege0 |
⊢ ( ( ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ∈ ℝ* ∧ ( 𝑑 / 2 ) ∈ ℝ ) ∧ ( 0 ≤ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑑 / 2 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ∈ ℝ ) |
| 354 |
353
|
ex |
⊢ ( ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ∈ ℝ* ∧ ( 𝑑 / 2 ) ∈ ℝ ) → ( ( 0 ≤ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑑 / 2 ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ∈ ℝ ) ) |
| 355 |
344 352 354
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → ( ( 0 ≤ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑑 / 2 ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ∈ ℝ ) ) |
| 356 |
350 355
|
mpand |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑑 / 2 ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ∈ ℝ ) ) |
| 357 |
348 356
|
syld |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ∈ ℝ ) ) |
| 358 |
357
|
ad2ant2r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ∈ ℝ ) ) |
| 359 |
358
|
imp |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ∈ ℝ ) |
| 360 |
339
|
ffvelcdmda |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ 𝑤 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑤 ) ∈ 𝑌 ) |
| 361 |
360
|
adantrl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝑓 ‘ 𝑤 ) ∈ 𝑌 ) |
| 362 |
361
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → ( 𝑓 ‘ 𝑤 ) ∈ 𝑌 ) |
| 363 |
|
xmetcl |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∈ 𝑌 ∧ ( 𝑓 ‘ 𝑤 ) ∈ 𝑌 ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ∈ ℝ* ) |
| 364 |
336 338 362 363
|
syl3anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ∈ ℝ* ) |
| 365 |
|
xrltle |
⊢ ( ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ∈ ℝ* ∧ ( 𝑑 / 2 ) ∈ ℝ* ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ≤ ( 𝑑 / 2 ) ) ) |
| 366 |
364 346 365
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ≤ ( 𝑑 / 2 ) ) ) |
| 367 |
|
xmetge0 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∈ 𝑌 ∧ ( 𝑓 ‘ 𝑤 ) ∈ 𝑌 ) → 0 ≤ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) |
| 368 |
336 338 362 367
|
syl3anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → 0 ≤ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) |
| 369 |
|
xrrege0 |
⊢ ( ( ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ∈ ℝ* ∧ ( 𝑑 / 2 ) ∈ ℝ ) ∧ ( 0 ≤ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ≤ ( 𝑑 / 2 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ∈ ℝ ) |
| 370 |
369
|
ex |
⊢ ( ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ∈ ℝ* ∧ ( 𝑑 / 2 ) ∈ ℝ ) → ( ( 0 ≤ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ≤ ( 𝑑 / 2 ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ∈ ℝ ) ) |
| 371 |
364 352 370
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → ( ( 0 ≤ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ≤ ( 𝑑 / 2 ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ∈ ℝ ) ) |
| 372 |
368 371
|
mpand |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ≤ ( 𝑑 / 2 ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ∈ ℝ ) ) |
| 373 |
366 372
|
syld |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ∈ ℝ ) ) |
| 374 |
373
|
ad2ant2r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ∈ ℝ ) ) |
| 375 |
374
|
imp |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ∈ ℝ ) |
| 376 |
|
readdcl |
⊢ ( ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ∈ ℝ ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ∈ ℝ ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) + ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) ∈ ℝ ) |
| 377 |
359 375 376
|
syl2an |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ) ∧ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) + ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) ∈ ℝ ) |
| 378 |
377
|
anandis |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) + ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) ∈ ℝ ) |
| 379 |
378
|
rexrd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) + ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) ∈ ℝ* ) |
| 380 |
|
rpxr |
⊢ ( 𝑑 ∈ ℝ+ → 𝑑 ∈ ℝ* ) |
| 381 |
380
|
ad6antlr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → 𝑑 ∈ ℝ* ) |
| 382 |
|
xmettri |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑌 ∧ ( 𝑓 ‘ 𝑤 ) ∈ 𝑌 ∧ ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∈ 𝑌 ) ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ≤ ( ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) +𝑒 ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) ) |
| 383 |
336 342 362 338 382
|
syl13anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ≤ ( ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) +𝑒 ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) ) |
| 384 |
383
|
ad2ant2r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ≤ ( ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) +𝑒 ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) ) |
| 385 |
384
|
adantr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ≤ ( ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) +𝑒 ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) ) |
| 386 |
|
xmetsym |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ ( 𝑓 ‘ 𝑥 ) ∈ 𝑌 ∧ ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∈ 𝑌 ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) = ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ) |
| 387 |
336 342 338 386
|
syl3anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) = ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ) |
| 388 |
387
|
ad2ant2r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) = ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ) |
| 389 |
388
|
adantr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) = ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ) |
| 390 |
389
|
oveq1d |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → ( ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) +𝑒 ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) = ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) +𝑒 ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) ) |
| 391 |
|
rexadd |
⊢ ( ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ∈ ℝ ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ∈ ℝ ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) +𝑒 ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) = ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) + ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) ) |
| 392 |
359 375 391
|
syl2an |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ) ∧ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) +𝑒 ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) = ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) + ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) ) |
| 393 |
392
|
anandis |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) +𝑒 ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) = ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) + ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) ) |
| 394 |
390 393
|
eqtrd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → ( ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) +𝑒 ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) = ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) + ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) ) |
| 395 |
385 394
|
breqtrd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ≤ ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) + ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) ) |
| 396 |
|
lt2add |
⊢ ( ( ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ∈ ℝ ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ∈ ℝ ) ∧ ( ( 𝑑 / 2 ) ∈ ℝ ∧ ( 𝑑 / 2 ) ∈ ℝ ) ) → ( ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) + ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) < ( ( 𝑑 / 2 ) + ( 𝑑 / 2 ) ) ) ) |
| 397 |
396
|
expcom |
⊢ ( ( ( 𝑑 / 2 ) ∈ ℝ ∧ ( 𝑑 / 2 ) ∈ ℝ ) → ( ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ∈ ℝ ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ∈ ℝ ) → ( ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) + ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) < ( ( 𝑑 / 2 ) + ( 𝑑 / 2 ) ) ) ) ) |
| 398 |
352 352 397
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → ( ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ∈ ℝ ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ∈ ℝ ) → ( ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) + ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) < ( ( 𝑑 / 2 ) + ( 𝑑 / 2 ) ) ) ) ) |
| 399 |
357 373 398
|
syl2and |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → ( ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) → ( ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) + ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) < ( ( 𝑑 / 2 ) + ( 𝑑 / 2 ) ) ) ) ) |
| 400 |
399
|
pm2.43d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → ( ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) + ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) < ( ( 𝑑 / 2 ) + ( 𝑑 / 2 ) ) ) ) |
| 401 |
400
|
ad2ant2r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) + ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) < ( ( 𝑑 / 2 ) + ( 𝑑 / 2 ) ) ) ) |
| 402 |
401
|
imp |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) + ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) < ( ( 𝑑 / 2 ) + ( 𝑑 / 2 ) ) ) |
| 403 |
|
rpcn |
⊢ ( 𝑑 ∈ ℝ+ → 𝑑 ∈ ℂ ) |
| 404 |
403
|
2halvesd |
⊢ ( 𝑑 ∈ ℝ+ → ( ( 𝑑 / 2 ) + ( 𝑑 / 2 ) ) = 𝑑 ) |
| 405 |
404
|
ad6antlr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → ( ( 𝑑 / 2 ) + ( 𝑑 / 2 ) ) = 𝑑 ) |
| 406 |
402 405
|
breqtrd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) + ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) < 𝑑 ) |
| 407 |
335 379 381 395 406
|
xrlelttrd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) |
| 408 |
407
|
ex |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) |
| 409 |
325 408
|
imim12d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑤 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → ( ( 𝑥 𝐶 𝑤 ) < inf ( ran ran 𝑔 , ℝ , < ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) ) |
| 410 |
198 409
|
sylanl1 |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑤 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → ( ( 𝑥 𝐶 𝑤 ) < inf ( ran ran 𝑔 , ℝ , < ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) ) |
| 411 |
410
|
adantlrr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑤 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → ( ( 𝑥 𝐶 𝑤 ) < inf ( ran ran 𝑔 , ℝ , < ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) ) |
| 412 |
195 411
|
mpd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( 𝑥 𝐶 𝑤 ) < inf ( ran ran 𝑔 , ℝ , < ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) |
| 413 |
412
|
exp32 |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) → ( 𝑏 ∈ 𝑠 → ( 𝑥 ∈ 𝑏 → ( ( 𝑥 𝐶 𝑤 ) < inf ( ran ran 𝑔 , ℝ , < ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) ) ) |
| 414 |
176 413
|
sylan2 |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( ∀ 𝑏 ∈ 𝑠 ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ∧ 𝑏 ∈ 𝑠 ) ) → ( 𝑏 ∈ 𝑠 → ( 𝑥 ∈ 𝑏 → ( ( 𝑥 𝐶 𝑤 ) < inf ( ran ran 𝑔 , ℝ , < ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) ) ) |
| 415 |
414
|
expr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ∀ 𝑏 ∈ 𝑠 ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) → ( 𝑏 ∈ 𝑠 → ( 𝑏 ∈ 𝑠 → ( 𝑥 ∈ 𝑏 → ( ( 𝑥 𝐶 𝑤 ) < inf ( ran ran 𝑔 , ℝ , < ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) ) ) ) |
| 416 |
415
|
pm2.43d |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ∀ 𝑏 ∈ 𝑠 ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) → ( 𝑏 ∈ 𝑠 → ( 𝑥 ∈ 𝑏 → ( ( 𝑥 𝐶 𝑤 ) < inf ( ran ran 𝑔 , ℝ , < ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) ) ) |
| 417 |
416
|
an32s |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ∀ 𝑏 ∈ 𝑠 ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝑏 ∈ 𝑠 → ( 𝑥 ∈ 𝑏 → ( ( 𝑥 𝐶 𝑤 ) < inf ( ran ran 𝑔 , ℝ , < ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) ) ) |
| 418 |
174 175 417
|
rexlimd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ∀ 𝑏 ∈ 𝑠 ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ∃ 𝑏 ∈ 𝑠 𝑥 ∈ 𝑏 → ( ( 𝑥 𝐶 𝑤 ) < inf ( ran ran 𝑔 , ℝ , < ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) ) |
| 419 |
169 418
|
mpd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ∀ 𝑏 ∈ 𝑠 ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ( 𝑥 𝐶 𝑤 ) < inf ( ran ran 𝑔 , ℝ , < ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) |
| 420 |
419
|
ralrimivva |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ∀ 𝑏 ∈ 𝑠 ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < inf ( ran ran 𝑔 , ℝ , < ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) |
| 421 |
|
breq2 |
⊢ ( 𝑧 = inf ( ran ran 𝑔 , ℝ , < ) → ( ( 𝑥 𝐶 𝑤 ) < 𝑧 ↔ ( 𝑥 𝐶 𝑤 ) < inf ( ran ran 𝑔 , ℝ , < ) ) ) |
| 422 |
421
|
imbi1d |
⊢ ( 𝑧 = inf ( ran ran 𝑔 , ℝ , < ) → ( ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ↔ ( ( 𝑥 𝐶 𝑤 ) < inf ( ran ran 𝑔 , ℝ , < ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) ) |
| 423 |
422
|
2ralbidv |
⊢ ( 𝑧 = inf ( ran ran 𝑔 , ℝ , < ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < inf ( ran ran 𝑔 , ℝ , < ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) ) |
| 424 |
423
|
rspcev |
⊢ ( ( inf ( ran ran 𝑔 , ℝ , < ) ∈ ℝ+ ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < inf ( ran ran 𝑔 , ℝ , < ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) |
| 425 |
160 420 424
|
syl2anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ∀ 𝑏 ∈ 𝑠 ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) |
| 426 |
425
|
expl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) → ( ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ∧ ∀ 𝑏 ∈ 𝑠 ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) ) |
| 427 |
426
|
exlimdv |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) → ( ∃ 𝑔 ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ∧ ∀ 𝑏 ∈ 𝑠 ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) ) |
| 428 |
427
|
expimpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑠 ∈ Fin ) → ( ( ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ∧ ∃ 𝑔 ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ∧ ∀ 𝑏 ∈ 𝑠 ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) ) |
| 429 |
105 428
|
sylan2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑠 ∈ ( 𝒫 ( MetOpen ‘ 𝐶 ) ∩ Fin ) ) → ( ( ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ∧ ∃ 𝑔 ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ∧ ∀ 𝑏 ∈ 𝑠 ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) ) |
| 430 |
429
|
rexlimdva |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) → ( ∃ 𝑠 ∈ ( 𝒫 ( MetOpen ‘ 𝐶 ) ∩ Fin ) ( ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ∧ ∃ 𝑔 ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ∧ ∀ 𝑏 ∈ 𝑠 ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) ) |
| 431 |
104 430
|
syld |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) → ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) ) |
| 432 |
20 431
|
syl5 |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) → ( ( ( 𝑑 / 2 ) ∈ ℝ+ ∧ ∀ 𝑦 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) ) |
| 433 |
432
|
exp4b |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) → ( 𝑑 ∈ ℝ+ → ( ( 𝑑 / 2 ) ∈ ℝ+ → ( ∀ 𝑦 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) ) ) ) |
| 434 |
14 433
|
mpdi |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) → ( 𝑑 ∈ ℝ+ → ( ∀ 𝑦 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) ) ) |
| 435 |
434
|
ralrimiv |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) → ∀ 𝑑 ∈ ℝ+ ( ∀ 𝑦 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) ) |
| 436 |
|
r19.21v |
⊢ ( ∀ 𝑑 ∈ ℝ+ ( ∀ 𝑦 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) ↔ ( ∀ 𝑦 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) → ∀ 𝑑 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) ) |
| 437 |
435 436
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) → ( ∀ 𝑦 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) → ∀ 𝑑 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) ) |
| 438 |
13 437
|
impbid2 |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) → ( ∀ 𝑑 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ↔ ∀ 𝑦 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) ) ) |
| 439 |
|
ralcom |
⊢ ( ∀ 𝑦 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) ) |
| 440 |
438 439
|
bitrdi |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) → ( ∀ 𝑑 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) ) ) |
| 441 |
440
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝑓 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑑 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) ↔ ( 𝑓 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) ) ) ) |
| 442 |
|
eqid |
⊢ ( metUnif ‘ 𝐶 ) = ( metUnif ‘ 𝐶 ) |
| 443 |
|
eqid |
⊢ ( metUnif ‘ 𝐷 ) = ( metUnif ‘ 𝐷 ) |
| 444 |
|
xmetpsmet |
⊢ ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) → 𝐶 ∈ ( PsMet ‘ 𝑋 ) ) |
| 445 |
1 444
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ ( PsMet ‘ 𝑋 ) ) |
| 446 |
|
xmetpsmet |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑌 ) → 𝐷 ∈ ( PsMet ‘ 𝑌 ) ) |
| 447 |
2 446
|
syl |
⊢ ( 𝜑 → 𝐷 ∈ ( PsMet ‘ 𝑌 ) ) |
| 448 |
442 443 4 5 445 447
|
metucn |
⊢ ( 𝜑 → ( 𝑓 ∈ ( ( metUnif ‘ 𝐶 ) Cnu ( metUnif ‘ 𝐷 ) ) ↔ ( 𝑓 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑑 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) ) ) |
| 449 |
|
eqid |
⊢ ( MetOpen ‘ 𝐷 ) = ( MetOpen ‘ 𝐷 ) |
| 450 |
26 449
|
metcn |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) → ( 𝑓 ∈ ( ( MetOpen ‘ 𝐶 ) Cn ( MetOpen ‘ 𝐷 ) ) ↔ ( 𝑓 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) ) ) ) |
| 451 |
1 2 450
|
syl2anc |
⊢ ( 𝜑 → ( 𝑓 ∈ ( ( MetOpen ‘ 𝐶 ) Cn ( MetOpen ‘ 𝐷 ) ) ↔ ( 𝑓 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) ) ) ) |
| 452 |
441 448 451
|
3bitr4d |
⊢ ( 𝜑 → ( 𝑓 ∈ ( ( metUnif ‘ 𝐶 ) Cnu ( metUnif ‘ 𝐷 ) ) ↔ 𝑓 ∈ ( ( MetOpen ‘ 𝐶 ) Cn ( MetOpen ‘ 𝐷 ) ) ) ) |
| 453 |
452
|
eqrdv |
⊢ ( 𝜑 → ( ( metUnif ‘ 𝐶 ) Cnu ( metUnif ‘ 𝐷 ) ) = ( ( MetOpen ‘ 𝐶 ) Cn ( MetOpen ‘ 𝐷 ) ) ) |