Step |
Hyp |
Ref |
Expression |
1 |
|
heicant.c |
⊢ ( 𝜑 → 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ) |
2 |
|
heicant.d |
⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) |
3 |
|
heicant.j |
⊢ ( 𝜑 → ( MetOpen ‘ 𝐶 ) ∈ Comp ) |
4 |
|
heicant.x |
⊢ ( 𝜑 → 𝑋 ≠ ∅ ) |
5 |
|
heicant.y |
⊢ ( 𝜑 → 𝑌 ≠ ∅ ) |
6 |
|
breq2 |
⊢ ( 𝑑 = 𝑦 → ( ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) ) |
7 |
6
|
imbi2d |
⊢ ( 𝑑 = 𝑦 → ( ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ↔ ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) ) ) |
8 |
7
|
2ralbidv |
⊢ ( 𝑑 = 𝑦 → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) ) ) |
9 |
8
|
rexbidv |
⊢ ( 𝑑 = 𝑦 → ( ∃ 𝑧 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ↔ ∃ 𝑧 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) ) ) |
10 |
9
|
cbvralvw |
⊢ ( ∀ 𝑑 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ↔ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) ) |
11 |
|
r19.12 |
⊢ ( ∃ 𝑧 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) → ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) ) |
12 |
11
|
ralimi |
⊢ ( ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) → ∀ 𝑦 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) ) |
13 |
10 12
|
sylbi |
⊢ ( ∀ 𝑑 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) → ∀ 𝑦 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) ) |
14 |
|
rphalfcl |
⊢ ( 𝑑 ∈ ℝ+ → ( 𝑑 / 2 ) ∈ ℝ+ ) |
15 |
|
breq2 |
⊢ ( 𝑦 = ( 𝑑 / 2 ) → ( ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) |
16 |
15
|
imbi2d |
⊢ ( 𝑦 = ( 𝑑 / 2 ) → ( ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) ↔ ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) ) |
17 |
16
|
ralbidv |
⊢ ( 𝑦 = ( 𝑑 / 2 ) → ( ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) ↔ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) ) |
18 |
17
|
rexbidv |
⊢ ( 𝑦 = ( 𝑑 / 2 ) → ( ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) ↔ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) ) |
19 |
18
|
ralbidv |
⊢ ( 𝑦 = ( 𝑑 / 2 ) → ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) ↔ ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) ) |
20 |
19
|
rspcva |
⊢ ( ( ( 𝑑 / 2 ) ∈ ℝ+ ∧ ∀ 𝑦 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) ) → ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) |
21 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → ( MetOpen ‘ 𝐶 ) ∈ Comp ) |
22 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) → 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ) |
23 |
22
|
anim1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ) |
24 |
|
rphalfcl |
⊢ ( 𝑧 ∈ ℝ+ → ( 𝑧 / 2 ) ∈ ℝ+ ) |
25 |
24
|
rpxrd |
⊢ ( 𝑧 ∈ ℝ+ → ( 𝑧 / 2 ) ∈ ℝ* ) |
26 |
|
eqid |
⊢ ( MetOpen ‘ 𝐶 ) = ( MetOpen ‘ 𝐶 ) |
27 |
26
|
blopn |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ ( 𝑧 / 2 ) ∈ ℝ* ) → ( 𝑥 ( ball ‘ 𝐶 ) ( 𝑧 / 2 ) ) ∈ ( MetOpen ‘ 𝐶 ) ) |
28 |
27
|
3expa |
⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑧 / 2 ) ∈ ℝ* ) → ( 𝑥 ( ball ‘ 𝐶 ) ( 𝑧 / 2 ) ) ∈ ( MetOpen ‘ 𝐶 ) ) |
29 |
23 25 28
|
syl2an |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑧 ∈ ℝ+ ) → ( 𝑥 ( ball ‘ 𝐶 ) ( 𝑧 / 2 ) ) ∈ ( MetOpen ‘ 𝐶 ) ) |
30 |
29
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → ( 𝑥 ( ball ‘ 𝐶 ) ( 𝑧 / 2 ) ) ∈ ( MetOpen ‘ 𝐶 ) ) |
31 |
24
|
rpgt0d |
⊢ ( 𝑧 ∈ ℝ+ → 0 < ( 𝑧 / 2 ) ) |
32 |
25 31
|
jca |
⊢ ( 𝑧 ∈ ℝ+ → ( ( 𝑧 / 2 ) ∈ ℝ* ∧ 0 < ( 𝑧 / 2 ) ) ) |
33 |
|
xblcntr |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ ( ( 𝑧 / 2 ) ∈ ℝ* ∧ 0 < ( 𝑧 / 2 ) ) ) → 𝑥 ∈ ( 𝑥 ( ball ‘ 𝐶 ) ( 𝑧 / 2 ) ) ) |
34 |
33
|
3expa |
⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 𝑧 / 2 ) ∈ ℝ* ∧ 0 < ( 𝑧 / 2 ) ) ) → 𝑥 ∈ ( 𝑥 ( ball ‘ 𝐶 ) ( 𝑧 / 2 ) ) ) |
35 |
23 32 34
|
syl2an |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑧 ∈ ℝ+ ) → 𝑥 ∈ ( 𝑥 ( ball ‘ 𝐶 ) ( 𝑧 / 2 ) ) ) |
36 |
35
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → 𝑥 ∈ ( 𝑥 ( ball ‘ 𝐶 ) ( 𝑧 / 2 ) ) ) |
37 |
|
opelxpi |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑧 / 2 ) ∈ ℝ+ ) → 〈 𝑥 , ( 𝑧 / 2 ) 〉 ∈ ( 𝑋 × ℝ+ ) ) |
38 |
24 37
|
sylan2 |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ ℝ+ ) → 〈 𝑥 , ( 𝑧 / 2 ) 〉 ∈ ( 𝑋 × ℝ+ ) ) |
39 |
38
|
ad4ant23 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → 〈 𝑥 , ( 𝑧 / 2 ) 〉 ∈ ( 𝑋 × ℝ+ ) ) |
40 |
|
rpcn |
⊢ ( 𝑧 ∈ ℝ+ → 𝑧 ∈ ℂ ) |
41 |
40
|
2halvesd |
⊢ ( 𝑧 ∈ ℝ+ → ( ( 𝑧 / 2 ) + ( 𝑧 / 2 ) ) = 𝑧 ) |
42 |
41
|
breq2d |
⊢ ( 𝑧 ∈ ℝ+ → ( ( 𝑥 𝐶 𝑐 ) < ( ( 𝑧 / 2 ) + ( 𝑧 / 2 ) ) ↔ ( 𝑥 𝐶 𝑐 ) < 𝑧 ) ) |
43 |
42
|
imbi1d |
⊢ ( 𝑧 ∈ ℝ+ → ( ( ( 𝑥 𝐶 𝑐 ) < ( ( 𝑧 / 2 ) + ( 𝑧 / 2 ) ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ↔ ( ( 𝑥 𝐶 𝑐 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) |
44 |
43
|
ralbidv |
⊢ ( 𝑧 ∈ ℝ+ → ( ∀ 𝑐 ∈ 𝑋 ( ( 𝑥 𝐶 𝑐 ) < ( ( 𝑧 / 2 ) + ( 𝑧 / 2 ) ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ↔ ∀ 𝑐 ∈ 𝑋 ( ( 𝑥 𝐶 𝑐 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) |
45 |
|
oveq2 |
⊢ ( 𝑐 = 𝑤 → ( 𝑥 𝐶 𝑐 ) = ( 𝑥 𝐶 𝑤 ) ) |
46 |
45
|
breq1d |
⊢ ( 𝑐 = 𝑤 → ( ( 𝑥 𝐶 𝑐 ) < 𝑧 ↔ ( 𝑥 𝐶 𝑤 ) < 𝑧 ) ) |
47 |
|
fveq2 |
⊢ ( 𝑐 = 𝑤 → ( 𝑓 ‘ 𝑐 ) = ( 𝑓 ‘ 𝑤 ) ) |
48 |
47
|
oveq2d |
⊢ ( 𝑐 = 𝑤 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) = ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) |
49 |
48
|
breq1d |
⊢ ( 𝑐 = 𝑤 → ( ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) |
50 |
46 49
|
imbi12d |
⊢ ( 𝑐 = 𝑤 → ( ( ( 𝑥 𝐶 𝑐 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ↔ ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) ) |
51 |
50
|
cbvralvw |
⊢ ( ∀ 𝑐 ∈ 𝑋 ( ( 𝑥 𝐶 𝑐 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ↔ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) |
52 |
44 51
|
bitrdi |
⊢ ( 𝑧 ∈ ℝ+ → ( ∀ 𝑐 ∈ 𝑋 ( ( 𝑥 𝐶 𝑐 ) < ( ( 𝑧 / 2 ) + ( 𝑧 / 2 ) ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ↔ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) ) |
53 |
52
|
biimpar |
⊢ ( ( 𝑧 ∈ ℝ+ ∧ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → ∀ 𝑐 ∈ 𝑋 ( ( 𝑥 𝐶 𝑐 ) < ( ( 𝑧 / 2 ) + ( 𝑧 / 2 ) ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) |
54 |
53
|
adantll |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → ∀ 𝑐 ∈ 𝑋 ( ( 𝑥 𝐶 𝑐 ) < ( ( 𝑧 / 2 ) + ( 𝑧 / 2 ) ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) |
55 |
|
vex |
⊢ 𝑥 ∈ V |
56 |
|
ovex |
⊢ ( 𝑧 / 2 ) ∈ V |
57 |
55 56
|
op1std |
⊢ ( 𝑝 = 〈 𝑥 , ( 𝑧 / 2 ) 〉 → ( 1st ‘ 𝑝 ) = 𝑥 ) |
58 |
55 56
|
op2ndd |
⊢ ( 𝑝 = 〈 𝑥 , ( 𝑧 / 2 ) 〉 → ( 2nd ‘ 𝑝 ) = ( 𝑧 / 2 ) ) |
59 |
57 58
|
oveq12d |
⊢ ( 𝑝 = 〈 𝑥 , ( 𝑧 / 2 ) 〉 → ( ( 1st ‘ 𝑝 ) ( ball ‘ 𝐶 ) ( 2nd ‘ 𝑝 ) ) = ( 𝑥 ( ball ‘ 𝐶 ) ( 𝑧 / 2 ) ) ) |
60 |
59
|
eqcomd |
⊢ ( 𝑝 = 〈 𝑥 , ( 𝑧 / 2 ) 〉 → ( 𝑥 ( ball ‘ 𝐶 ) ( 𝑧 / 2 ) ) = ( ( 1st ‘ 𝑝 ) ( ball ‘ 𝐶 ) ( 2nd ‘ 𝑝 ) ) ) |
61 |
60
|
biantrurd |
⊢ ( 𝑝 = 〈 𝑥 , ( 𝑧 / 2 ) 〉 → ( ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) < ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ↔ ( ( 𝑥 ( ball ‘ 𝐶 ) ( 𝑧 / 2 ) ) = ( ( 1st ‘ 𝑝 ) ( ball ‘ 𝐶 ) ( 2nd ‘ 𝑝 ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) < ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ) |
62 |
57
|
oveq1d |
⊢ ( 𝑝 = 〈 𝑥 , ( 𝑧 / 2 ) 〉 → ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) = ( 𝑥 𝐶 𝑐 ) ) |
63 |
58 58
|
oveq12d |
⊢ ( 𝑝 = 〈 𝑥 , ( 𝑧 / 2 ) 〉 → ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) = ( ( 𝑧 / 2 ) + ( 𝑧 / 2 ) ) ) |
64 |
62 63
|
breq12d |
⊢ ( 𝑝 = 〈 𝑥 , ( 𝑧 / 2 ) 〉 → ( ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) < ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) ↔ ( 𝑥 𝐶 𝑐 ) < ( ( 𝑧 / 2 ) + ( 𝑧 / 2 ) ) ) ) |
65 |
57
|
fveq2d |
⊢ ( 𝑝 = 〈 𝑥 , ( 𝑧 / 2 ) 〉 → ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) = ( 𝑓 ‘ 𝑥 ) ) |
66 |
65
|
oveq1d |
⊢ ( 𝑝 = 〈 𝑥 , ( 𝑧 / 2 ) 〉 → ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) = ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) ) |
67 |
66
|
breq1d |
⊢ ( 𝑝 = 〈 𝑥 , ( 𝑧 / 2 ) 〉 → ( ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) |
68 |
64 67
|
imbi12d |
⊢ ( 𝑝 = 〈 𝑥 , ( 𝑧 / 2 ) 〉 → ( ( ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) < ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ↔ ( ( 𝑥 𝐶 𝑐 ) < ( ( 𝑧 / 2 ) + ( 𝑧 / 2 ) ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) |
69 |
68
|
ralbidv |
⊢ ( 𝑝 = 〈 𝑥 , ( 𝑧 / 2 ) 〉 → ( ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) < ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ↔ ∀ 𝑐 ∈ 𝑋 ( ( 𝑥 𝐶 𝑐 ) < ( ( 𝑧 / 2 ) + ( 𝑧 / 2 ) ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) |
70 |
61 69
|
bitr3d |
⊢ ( 𝑝 = 〈 𝑥 , ( 𝑧 / 2 ) 〉 → ( ( ( 𝑥 ( ball ‘ 𝐶 ) ( 𝑧 / 2 ) ) = ( ( 1st ‘ 𝑝 ) ( ball ‘ 𝐶 ) ( 2nd ‘ 𝑝 ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) < ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ↔ ∀ 𝑐 ∈ 𝑋 ( ( 𝑥 𝐶 𝑐 ) < ( ( 𝑧 / 2 ) + ( 𝑧 / 2 ) ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) |
71 |
70
|
rspcev |
⊢ ( ( 〈 𝑥 , ( 𝑧 / 2 ) 〉 ∈ ( 𝑋 × ℝ+ ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( 𝑥 𝐶 𝑐 ) < ( ( 𝑧 / 2 ) + ( 𝑧 / 2 ) ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) → ∃ 𝑝 ∈ ( 𝑋 × ℝ+ ) ( ( 𝑥 ( ball ‘ 𝐶 ) ( 𝑧 / 2 ) ) = ( ( 1st ‘ 𝑝 ) ( ball ‘ 𝐶 ) ( 2nd ‘ 𝑝 ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) < ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) |
72 |
39 54 71
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → ∃ 𝑝 ∈ ( 𝑋 × ℝ+ ) ( ( 𝑥 ( ball ‘ 𝐶 ) ( 𝑧 / 2 ) ) = ( ( 1st ‘ 𝑝 ) ( ball ‘ 𝐶 ) ( 2nd ‘ 𝑝 ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) < ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) |
73 |
|
eleq2 |
⊢ ( 𝑏 = ( 𝑥 ( ball ‘ 𝐶 ) ( 𝑧 / 2 ) ) → ( 𝑥 ∈ 𝑏 ↔ 𝑥 ∈ ( 𝑥 ( ball ‘ 𝐶 ) ( 𝑧 / 2 ) ) ) ) |
74 |
|
eqeq1 |
⊢ ( 𝑏 = ( 𝑥 ( ball ‘ 𝐶 ) ( 𝑧 / 2 ) ) → ( 𝑏 = ( ( 1st ‘ 𝑝 ) ( ball ‘ 𝐶 ) ( 2nd ‘ 𝑝 ) ) ↔ ( 𝑥 ( ball ‘ 𝐶 ) ( 𝑧 / 2 ) ) = ( ( 1st ‘ 𝑝 ) ( ball ‘ 𝐶 ) ( 2nd ‘ 𝑝 ) ) ) ) |
75 |
74
|
anbi1d |
⊢ ( 𝑏 = ( 𝑥 ( ball ‘ 𝐶 ) ( 𝑧 / 2 ) ) → ( ( 𝑏 = ( ( 1st ‘ 𝑝 ) ( ball ‘ 𝐶 ) ( 2nd ‘ 𝑝 ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) < ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ↔ ( ( 𝑥 ( ball ‘ 𝐶 ) ( 𝑧 / 2 ) ) = ( ( 1st ‘ 𝑝 ) ( ball ‘ 𝐶 ) ( 2nd ‘ 𝑝 ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) < ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ) |
76 |
75
|
rexbidv |
⊢ ( 𝑏 = ( 𝑥 ( ball ‘ 𝐶 ) ( 𝑧 / 2 ) ) → ( ∃ 𝑝 ∈ ( 𝑋 × ℝ+ ) ( 𝑏 = ( ( 1st ‘ 𝑝 ) ( ball ‘ 𝐶 ) ( 2nd ‘ 𝑝 ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) < ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ↔ ∃ 𝑝 ∈ ( 𝑋 × ℝ+ ) ( ( 𝑥 ( ball ‘ 𝐶 ) ( 𝑧 / 2 ) ) = ( ( 1st ‘ 𝑝 ) ( ball ‘ 𝐶 ) ( 2nd ‘ 𝑝 ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) < ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ) |
77 |
73 76
|
anbi12d |
⊢ ( 𝑏 = ( 𝑥 ( ball ‘ 𝐶 ) ( 𝑧 / 2 ) ) → ( ( 𝑥 ∈ 𝑏 ∧ ∃ 𝑝 ∈ ( 𝑋 × ℝ+ ) ( 𝑏 = ( ( 1st ‘ 𝑝 ) ( ball ‘ 𝐶 ) ( 2nd ‘ 𝑝 ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) < ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ↔ ( 𝑥 ∈ ( 𝑥 ( ball ‘ 𝐶 ) ( 𝑧 / 2 ) ) ∧ ∃ 𝑝 ∈ ( 𝑋 × ℝ+ ) ( ( 𝑥 ( ball ‘ 𝐶 ) ( 𝑧 / 2 ) ) = ( ( 1st ‘ 𝑝 ) ( ball ‘ 𝐶 ) ( 2nd ‘ 𝑝 ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) < ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ) ) |
78 |
77
|
rspcev |
⊢ ( ( ( 𝑥 ( ball ‘ 𝐶 ) ( 𝑧 / 2 ) ) ∈ ( MetOpen ‘ 𝐶 ) ∧ ( 𝑥 ∈ ( 𝑥 ( ball ‘ 𝐶 ) ( 𝑧 / 2 ) ) ∧ ∃ 𝑝 ∈ ( 𝑋 × ℝ+ ) ( ( 𝑥 ( ball ‘ 𝐶 ) ( 𝑧 / 2 ) ) = ( ( 1st ‘ 𝑝 ) ( ball ‘ 𝐶 ) ( 2nd ‘ 𝑝 ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) < ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ) → ∃ 𝑏 ∈ ( MetOpen ‘ 𝐶 ) ( 𝑥 ∈ 𝑏 ∧ ∃ 𝑝 ∈ ( 𝑋 × ℝ+ ) ( 𝑏 = ( ( 1st ‘ 𝑝 ) ( ball ‘ 𝐶 ) ( 2nd ‘ 𝑝 ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) < ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ) |
79 |
30 36 72 78
|
syl12anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → ∃ 𝑏 ∈ ( MetOpen ‘ 𝐶 ) ( 𝑥 ∈ 𝑏 ∧ ∃ 𝑝 ∈ ( 𝑋 × ℝ+ ) ( 𝑏 = ( ( 1st ‘ 𝑝 ) ( ball ‘ 𝐶 ) ( 2nd ‘ 𝑝 ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) < ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ) |
80 |
79
|
rexlimdva2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) → ( ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) → ∃ 𝑏 ∈ ( MetOpen ‘ 𝐶 ) ( 𝑥 ∈ 𝑏 ∧ ∃ 𝑝 ∈ ( 𝑋 × ℝ+ ) ( 𝑏 = ( ( 1st ‘ 𝑝 ) ( ball ‘ 𝐶 ) ( 2nd ‘ 𝑝 ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) < ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ) ) |
81 |
80
|
ralimdva |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) → ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) → ∀ 𝑥 ∈ 𝑋 ∃ 𝑏 ∈ ( MetOpen ‘ 𝐶 ) ( 𝑥 ∈ 𝑏 ∧ ∃ 𝑝 ∈ ( 𝑋 × ℝ+ ) ( 𝑏 = ( ( 1st ‘ 𝑝 ) ( ball ‘ 𝐶 ) ( 2nd ‘ 𝑝 ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) < ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ) ) |
82 |
81
|
imp |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → ∀ 𝑥 ∈ 𝑋 ∃ 𝑏 ∈ ( MetOpen ‘ 𝐶 ) ( 𝑥 ∈ 𝑏 ∧ ∃ 𝑝 ∈ ( 𝑋 × ℝ+ ) ( 𝑏 = ( ( 1st ‘ 𝑝 ) ( ball ‘ 𝐶 ) ( 2nd ‘ 𝑝 ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) < ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ) |
83 |
26
|
mopnuni |
⊢ ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = ∪ ( MetOpen ‘ 𝐶 ) ) |
84 |
1 83
|
syl |
⊢ ( 𝜑 → 𝑋 = ∪ ( MetOpen ‘ 𝐶 ) ) |
85 |
84
|
raleqdv |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑏 ∈ ( MetOpen ‘ 𝐶 ) ( 𝑥 ∈ 𝑏 ∧ ∃ 𝑝 ∈ ( 𝑋 × ℝ+ ) ( 𝑏 = ( ( 1st ‘ 𝑝 ) ( ball ‘ 𝐶 ) ( 2nd ‘ 𝑝 ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) < ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ↔ ∀ 𝑥 ∈ ∪ ( MetOpen ‘ 𝐶 ) ∃ 𝑏 ∈ ( MetOpen ‘ 𝐶 ) ( 𝑥 ∈ 𝑏 ∧ ∃ 𝑝 ∈ ( 𝑋 × ℝ+ ) ( 𝑏 = ( ( 1st ‘ 𝑝 ) ( ball ‘ 𝐶 ) ( 2nd ‘ 𝑝 ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) < ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ) ) |
86 |
85
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑏 ∈ ( MetOpen ‘ 𝐶 ) ( 𝑥 ∈ 𝑏 ∧ ∃ 𝑝 ∈ ( 𝑋 × ℝ+ ) ( 𝑏 = ( ( 1st ‘ 𝑝 ) ( ball ‘ 𝐶 ) ( 2nd ‘ 𝑝 ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) < ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ↔ ∀ 𝑥 ∈ ∪ ( MetOpen ‘ 𝐶 ) ∃ 𝑏 ∈ ( MetOpen ‘ 𝐶 ) ( 𝑥 ∈ 𝑏 ∧ ∃ 𝑝 ∈ ( 𝑋 × ℝ+ ) ( 𝑏 = ( ( 1st ‘ 𝑝 ) ( ball ‘ 𝐶 ) ( 2nd ‘ 𝑝 ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) < ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ) ) |
87 |
82 86
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → ∀ 𝑥 ∈ ∪ ( MetOpen ‘ 𝐶 ) ∃ 𝑏 ∈ ( MetOpen ‘ 𝐶 ) ( 𝑥 ∈ 𝑏 ∧ ∃ 𝑝 ∈ ( 𝑋 × ℝ+ ) ( 𝑏 = ( ( 1st ‘ 𝑝 ) ( ball ‘ 𝐶 ) ( 2nd ‘ 𝑝 ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) < ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ) |
88 |
|
eqid |
⊢ ∪ ( MetOpen ‘ 𝐶 ) = ∪ ( MetOpen ‘ 𝐶 ) |
89 |
|
fveq2 |
⊢ ( 𝑝 = ( 𝑔 ‘ 𝑏 ) → ( 1st ‘ 𝑝 ) = ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) |
90 |
|
fveq2 |
⊢ ( 𝑝 = ( 𝑔 ‘ 𝑏 ) → ( 2nd ‘ 𝑝 ) = ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) |
91 |
89 90
|
oveq12d |
⊢ ( 𝑝 = ( 𝑔 ‘ 𝑏 ) → ( ( 1st ‘ 𝑝 ) ( ball ‘ 𝐶 ) ( 2nd ‘ 𝑝 ) ) = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) |
92 |
91
|
eqeq2d |
⊢ ( 𝑝 = ( 𝑔 ‘ 𝑏 ) → ( 𝑏 = ( ( 1st ‘ 𝑝 ) ( ball ‘ 𝐶 ) ( 2nd ‘ 𝑝 ) ) ↔ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ) |
93 |
89
|
oveq1d |
⊢ ( 𝑝 = ( 𝑔 ‘ 𝑏 ) → ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) ) |
94 |
90 90
|
oveq12d |
⊢ ( 𝑝 = ( 𝑔 ‘ 𝑏 ) → ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) = ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) |
95 |
93 94
|
breq12d |
⊢ ( 𝑝 = ( 𝑔 ‘ 𝑏 ) → ( ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) < ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) ↔ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ) |
96 |
89
|
fveq2d |
⊢ ( 𝑝 = ( 𝑔 ‘ 𝑏 ) → ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) = ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) |
97 |
96
|
oveq1d |
⊢ ( 𝑝 = ( 𝑔 ‘ 𝑏 ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) = ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) ) |
98 |
97
|
breq1d |
⊢ ( 𝑝 = ( 𝑔 ‘ 𝑏 ) → ( ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ↔ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) |
99 |
95 98
|
imbi12d |
⊢ ( 𝑝 = ( 𝑔 ‘ 𝑏 ) → ( ( ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) < ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ↔ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) |
100 |
99
|
ralbidv |
⊢ ( 𝑝 = ( 𝑔 ‘ 𝑏 ) → ( ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) < ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ↔ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) |
101 |
92 100
|
anbi12d |
⊢ ( 𝑝 = ( 𝑔 ‘ 𝑏 ) → ( ( 𝑏 = ( ( 1st ‘ 𝑝 ) ( ball ‘ 𝐶 ) ( 2nd ‘ 𝑝 ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) < ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ↔ ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ) |
102 |
88 101
|
cmpcovf |
⊢ ( ( ( MetOpen ‘ 𝐶 ) ∈ Comp ∧ ∀ 𝑥 ∈ ∪ ( MetOpen ‘ 𝐶 ) ∃ 𝑏 ∈ ( MetOpen ‘ 𝐶 ) ( 𝑥 ∈ 𝑏 ∧ ∃ 𝑝 ∈ ( 𝑋 × ℝ+ ) ( 𝑏 = ( ( 1st ‘ 𝑝 ) ( ball ‘ 𝐶 ) ( 2nd ‘ 𝑝 ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ 𝑝 ) 𝐶 𝑐 ) < ( ( 2nd ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑝 ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ) → ∃ 𝑠 ∈ ( 𝒫 ( MetOpen ‘ 𝐶 ) ∩ Fin ) ( ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ∧ ∃ 𝑔 ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ∧ ∀ 𝑏 ∈ 𝑠 ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ) ) |
103 |
21 87 102
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → ∃ 𝑠 ∈ ( 𝒫 ( MetOpen ‘ 𝐶 ) ∩ Fin ) ( ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ∧ ∃ 𝑔 ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ∧ ∀ 𝑏 ∈ 𝑠 ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ) ) |
104 |
103
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) → ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) → ∃ 𝑠 ∈ ( 𝒫 ( MetOpen ‘ 𝐶 ) ∩ Fin ) ( ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ∧ ∃ 𝑔 ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ∧ ∀ 𝑏 ∈ 𝑠 ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ) ) ) |
105 |
|
elinel2 |
⊢ ( 𝑠 ∈ ( 𝒫 ( MetOpen ‘ 𝐶 ) ∩ Fin ) → 𝑠 ∈ Fin ) |
106 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) → 𝜑 ) |
107 |
106
|
anim1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑠 ∈ Fin ) → ( 𝜑 ∧ 𝑠 ∈ Fin ) ) |
108 |
|
frn |
⊢ ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) → ran 𝑔 ⊆ ( 𝑋 × ℝ+ ) ) |
109 |
|
rnss |
⊢ ( ran 𝑔 ⊆ ( 𝑋 × ℝ+ ) → ran ran 𝑔 ⊆ ran ( 𝑋 × ℝ+ ) ) |
110 |
108 109
|
syl |
⊢ ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) → ran ran 𝑔 ⊆ ran ( 𝑋 × ℝ+ ) ) |
111 |
|
rnxpss |
⊢ ran ( 𝑋 × ℝ+ ) ⊆ ℝ+ |
112 |
110 111
|
sstrdi |
⊢ ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) → ran ran 𝑔 ⊆ ℝ+ ) |
113 |
112
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) → ran ran 𝑔 ⊆ ℝ+ ) |
114 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) → 𝑠 ∈ Fin ) |
115 |
|
ffun |
⊢ ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) → Fun 𝑔 ) |
116 |
|
vex |
⊢ 𝑔 ∈ V |
117 |
116
|
fundmen |
⊢ ( Fun 𝑔 → dom 𝑔 ≈ 𝑔 ) |
118 |
117
|
ensymd |
⊢ ( Fun 𝑔 → 𝑔 ≈ dom 𝑔 ) |
119 |
115 118
|
syl |
⊢ ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) → 𝑔 ≈ dom 𝑔 ) |
120 |
|
fdm |
⊢ ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) → dom 𝑔 = 𝑠 ) |
121 |
119 120
|
breqtrd |
⊢ ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) → 𝑔 ≈ 𝑠 ) |
122 |
|
enfii |
⊢ ( ( 𝑠 ∈ Fin ∧ 𝑔 ≈ 𝑠 ) → 𝑔 ∈ Fin ) |
123 |
121 122
|
sylan2 |
⊢ ( ( 𝑠 ∈ Fin ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) → 𝑔 ∈ Fin ) |
124 |
|
rnfi |
⊢ ( 𝑔 ∈ Fin → ran 𝑔 ∈ Fin ) |
125 |
|
rnfi |
⊢ ( ran 𝑔 ∈ Fin → ran ran 𝑔 ∈ Fin ) |
126 |
123 124 125
|
3syl |
⊢ ( ( 𝑠 ∈ Fin ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) → ran ran 𝑔 ∈ Fin ) |
127 |
114 126
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) → ran ran 𝑔 ∈ Fin ) |
128 |
120
|
adantl |
⊢ ( ( ( 𝜑 ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) → dom 𝑔 = 𝑠 ) |
129 |
|
eqtr |
⊢ ( ( 𝑋 = ∪ ( MetOpen ‘ 𝐶 ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) → 𝑋 = ∪ 𝑠 ) |
130 |
84 129
|
sylan |
⊢ ( ( 𝜑 ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) → 𝑋 = ∪ 𝑠 ) |
131 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) → 𝑋 ≠ ∅ ) |
132 |
130 131
|
eqnetrrd |
⊢ ( ( 𝜑 ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) → ∪ 𝑠 ≠ ∅ ) |
133 |
|
unieq |
⊢ ( 𝑠 = ∅ → ∪ 𝑠 = ∪ ∅ ) |
134 |
|
uni0 |
⊢ ∪ ∅ = ∅ |
135 |
133 134
|
eqtrdi |
⊢ ( 𝑠 = ∅ → ∪ 𝑠 = ∅ ) |
136 |
135
|
necon3i |
⊢ ( ∪ 𝑠 ≠ ∅ → 𝑠 ≠ ∅ ) |
137 |
132 136
|
syl |
⊢ ( ( 𝜑 ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) → 𝑠 ≠ ∅ ) |
138 |
137
|
adantr |
⊢ ( ( ( 𝜑 ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) → 𝑠 ≠ ∅ ) |
139 |
128 138
|
eqnetrd |
⊢ ( ( ( 𝜑 ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) → dom 𝑔 ≠ ∅ ) |
140 |
|
dm0rn0 |
⊢ ( dom 𝑔 = ∅ ↔ ran 𝑔 = ∅ ) |
141 |
140
|
necon3bii |
⊢ ( dom 𝑔 ≠ ∅ ↔ ran 𝑔 ≠ ∅ ) |
142 |
139 141
|
sylib |
⊢ ( ( ( 𝜑 ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) → ran 𝑔 ≠ ∅ ) |
143 |
|
relxp |
⊢ Rel ( 𝑋 × ℝ+ ) |
144 |
|
relss |
⊢ ( ran 𝑔 ⊆ ( 𝑋 × ℝ+ ) → ( Rel ( 𝑋 × ℝ+ ) → Rel ran 𝑔 ) ) |
145 |
108 143 144
|
mpisyl |
⊢ ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) → Rel ran 𝑔 ) |
146 |
|
relrn0 |
⊢ ( Rel ran 𝑔 → ( ran 𝑔 = ∅ ↔ ran ran 𝑔 = ∅ ) ) |
147 |
146
|
necon3bid |
⊢ ( Rel ran 𝑔 → ( ran 𝑔 ≠ ∅ ↔ ran ran 𝑔 ≠ ∅ ) ) |
148 |
145 147
|
syl |
⊢ ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) → ( ran 𝑔 ≠ ∅ ↔ ran ran 𝑔 ≠ ∅ ) ) |
149 |
148
|
adantl |
⊢ ( ( ( 𝜑 ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) → ( ran 𝑔 ≠ ∅ ↔ ran ran 𝑔 ≠ ∅ ) ) |
150 |
142 149
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) → ran ran 𝑔 ≠ ∅ ) |
151 |
150
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) → ran ran 𝑔 ≠ ∅ ) |
152 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
153 |
113 152
|
sstrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) → ran ran 𝑔 ⊆ ℝ ) |
154 |
|
ltso |
⊢ < Or ℝ |
155 |
|
fiinfcl |
⊢ ( ( < Or ℝ ∧ ( ran ran 𝑔 ∈ Fin ∧ ran ran 𝑔 ≠ ∅ ∧ ran ran 𝑔 ⊆ ℝ ) ) → inf ( ran ran 𝑔 , ℝ , < ) ∈ ran ran 𝑔 ) |
156 |
154 155
|
mpan |
⊢ ( ( ran ran 𝑔 ∈ Fin ∧ ran ran 𝑔 ≠ ∅ ∧ ran ran 𝑔 ⊆ ℝ ) → inf ( ran ran 𝑔 , ℝ , < ) ∈ ran ran 𝑔 ) |
157 |
127 151 153 156
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) → inf ( ran ran 𝑔 , ℝ , < ) ∈ ran ran 𝑔 ) |
158 |
113 157
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) → inf ( ran ran 𝑔 , ℝ , < ) ∈ ℝ+ ) |
159 |
107 158
|
sylanl1 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) → inf ( ran ran 𝑔 , ℝ , < ) ∈ ℝ+ ) |
160 |
159
|
adantr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ∀ 𝑏 ∈ 𝑠 ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) → inf ( ran ran 𝑔 , ℝ , < ) ∈ ℝ+ ) |
161 |
84
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑠 ∈ Fin ) → 𝑋 = ∪ ( MetOpen ‘ 𝐶 ) ) |
162 |
161
|
anim1i |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) → ( 𝑋 = ∪ ( MetOpen ‘ 𝐶 ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ) |
163 |
162
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ∀ 𝑏 ∈ 𝑠 ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) → ( 𝑋 = ∪ ( MetOpen ‘ 𝐶 ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ) |
164 |
|
simpl |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) |
165 |
129
|
eleq2d |
⊢ ( ( 𝑋 = ∪ ( MetOpen ‘ 𝐶 ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) → ( 𝑥 ∈ 𝑋 ↔ 𝑥 ∈ ∪ 𝑠 ) ) |
166 |
|
eluni2 |
⊢ ( 𝑥 ∈ ∪ 𝑠 ↔ ∃ 𝑏 ∈ 𝑠 𝑥 ∈ 𝑏 ) |
167 |
165 166
|
bitrdi |
⊢ ( ( 𝑋 = ∪ ( MetOpen ‘ 𝐶 ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) → ( 𝑥 ∈ 𝑋 ↔ ∃ 𝑏 ∈ 𝑠 𝑥 ∈ 𝑏 ) ) |
168 |
167
|
biimpa |
⊢ ( ( ( 𝑋 = ∪ ( MetOpen ‘ 𝐶 ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑥 ∈ 𝑋 ) → ∃ 𝑏 ∈ 𝑠 𝑥 ∈ 𝑏 ) |
169 |
163 164 168
|
syl2an |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ∀ 𝑏 ∈ 𝑠 ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ∃ 𝑏 ∈ 𝑠 𝑥 ∈ 𝑏 ) |
170 |
|
nfv |
⊢ Ⅎ 𝑏 ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) |
171 |
|
nfra1 |
⊢ Ⅎ 𝑏 ∀ 𝑏 ∈ 𝑠 ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) |
172 |
170 171
|
nfan |
⊢ Ⅎ 𝑏 ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ∀ 𝑏 ∈ 𝑠 ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) |
173 |
|
nfv |
⊢ Ⅎ 𝑏 ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) |
174 |
172 173
|
nfan |
⊢ Ⅎ 𝑏 ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ∀ 𝑏 ∈ 𝑠 ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) |
175 |
|
nfv |
⊢ Ⅎ 𝑏 ( ( 𝑥 𝐶 𝑤 ) < inf ( ran ran 𝑔 , ℝ , < ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) |
176 |
|
rspa |
⊢ ( ( ∀ 𝑏 ∈ 𝑠 ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ∧ 𝑏 ∈ 𝑠 ) → ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) |
177 |
|
oveq2 |
⊢ ( 𝑐 = 𝑥 → ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) ) |
178 |
177
|
breq1d |
⊢ ( 𝑐 = 𝑥 → ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ↔ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ) |
179 |
|
fveq2 |
⊢ ( 𝑐 = 𝑥 → ( 𝑓 ‘ 𝑐 ) = ( 𝑓 ‘ 𝑥 ) ) |
180 |
179
|
oveq2d |
⊢ ( 𝑐 = 𝑥 → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) = ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ) |
181 |
180
|
breq1d |
⊢ ( 𝑐 = 𝑥 → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ↔ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ) ) |
182 |
178 181
|
imbi12d |
⊢ ( 𝑐 = 𝑥 → ( ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ↔ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ) ) ) |
183 |
182
|
rspcva |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) → ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ) ) |
184 |
|
oveq2 |
⊢ ( 𝑐 = 𝑤 → ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑤 ) ) |
185 |
184
|
breq1d |
⊢ ( 𝑐 = 𝑤 → ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ↔ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑤 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ) |
186 |
47
|
oveq2d |
⊢ ( 𝑐 = 𝑤 → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) = ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) |
187 |
186
|
breq1d |
⊢ ( 𝑐 = 𝑤 → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ↔ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) |
188 |
185 187
|
imbi12d |
⊢ ( 𝑐 = 𝑤 → ( ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ↔ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑤 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) ) |
189 |
188
|
rspcva |
⊢ ( ( 𝑤 ∈ 𝑋 ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) → ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑤 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) |
190 |
183 189
|
anim12i |
⊢ ( ( ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ∧ ( 𝑤 ∈ 𝑋 ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) → ( ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑤 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) ) |
191 |
190
|
anandirs |
⊢ ( ( ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) → ( ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑤 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) ) |
192 |
|
anim12 |
⊢ ( ( ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ) ∧ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑤 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → ( ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑤 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) ) |
193 |
191 192
|
syl |
⊢ ( ( ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) → ( ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑤 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) ) |
194 |
193
|
adantrl |
⊢ ( ( ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ∧ ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) → ( ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑤 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) ) |
195 |
194
|
ad4ant23 |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑤 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) ) |
196 |
|
simpll |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) → ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ) |
197 |
196
|
anim1i |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) → ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ) |
198 |
197
|
anim1i |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ) |
199 |
112 152
|
sstrdi |
⊢ ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) → ran ran 𝑔 ⊆ ℝ ) |
200 |
199
|
adantr |
⊢ ( ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ∧ 𝑏 ∈ 𝑠 ) → ran ran 𝑔 ⊆ ℝ ) |
201 |
|
0re |
⊢ 0 ∈ ℝ |
202 |
|
rpge0 |
⊢ ( 𝑦 ∈ ℝ+ → 0 ≤ 𝑦 ) |
203 |
202
|
rgen |
⊢ ∀ 𝑦 ∈ ℝ+ 0 ≤ 𝑦 |
204 |
|
ssralv |
⊢ ( ran ran 𝑔 ⊆ ℝ+ → ( ∀ 𝑦 ∈ ℝ+ 0 ≤ 𝑦 → ∀ 𝑦 ∈ ran ran 𝑔 0 ≤ 𝑦 ) ) |
205 |
112 203 204
|
mpisyl |
⊢ ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) → ∀ 𝑦 ∈ ran ran 𝑔 0 ≤ 𝑦 ) |
206 |
|
breq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 ≤ 𝑦 ↔ 0 ≤ 𝑦 ) ) |
207 |
206
|
ralbidv |
⊢ ( 𝑥 = 0 → ( ∀ 𝑦 ∈ ran ran 𝑔 𝑥 ≤ 𝑦 ↔ ∀ 𝑦 ∈ ran ran 𝑔 0 ≤ 𝑦 ) ) |
208 |
207
|
rspcev |
⊢ ( ( 0 ∈ ℝ ∧ ∀ 𝑦 ∈ ran ran 𝑔 0 ≤ 𝑦 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran ran 𝑔 𝑥 ≤ 𝑦 ) |
209 |
201 205 208
|
sylancr |
⊢ ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran ran 𝑔 𝑥 ≤ 𝑦 ) |
210 |
209
|
adantr |
⊢ ( ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ∧ 𝑏 ∈ 𝑠 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran ran 𝑔 𝑥 ≤ 𝑦 ) |
211 |
145
|
adantr |
⊢ ( ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ∧ 𝑏 ∈ 𝑠 ) → Rel ran 𝑔 ) |
212 |
|
ffn |
⊢ ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) → 𝑔 Fn 𝑠 ) |
213 |
|
fnfvelrn |
⊢ ( ( 𝑔 Fn 𝑠 ∧ 𝑏 ∈ 𝑠 ) → ( 𝑔 ‘ 𝑏 ) ∈ ran 𝑔 ) |
214 |
212 213
|
sylan |
⊢ ( ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ∧ 𝑏 ∈ 𝑠 ) → ( 𝑔 ‘ 𝑏 ) ∈ ran 𝑔 ) |
215 |
|
2ndrn |
⊢ ( ( Rel ran 𝑔 ∧ ( 𝑔 ‘ 𝑏 ) ∈ ran 𝑔 ) → ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ ran ran 𝑔 ) |
216 |
211 214 215
|
syl2anc |
⊢ ( ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ∧ 𝑏 ∈ 𝑠 ) → ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ ran ran 𝑔 ) |
217 |
|
infrelb |
⊢ ( ( ran ran 𝑔 ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran ran 𝑔 𝑥 ≤ 𝑦 ∧ ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ ran ran 𝑔 ) → inf ( ran ran 𝑔 , ℝ , < ) ≤ ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) |
218 |
200 210 216 217
|
syl3anc |
⊢ ( ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ∧ 𝑏 ∈ 𝑠 ) → inf ( ran ran 𝑔 , ℝ , < ) ≤ ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) |
219 |
218
|
adantll |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ 𝑏 ∈ 𝑠 ) → inf ( ran ran 𝑔 , ℝ , < ) ≤ ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) |
220 |
219
|
ad2ant2r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → inf ( ran ran 𝑔 , ℝ , < ) ≤ ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) |
221 |
1
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) → 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ) |
222 |
|
xmetcl |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) → ( 𝑥 𝐶 𝑤 ) ∈ ℝ* ) |
223 |
222
|
3expb |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝑥 𝐶 𝑤 ) ∈ ℝ* ) |
224 |
221 223
|
sylan |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝑥 𝐶 𝑤 ) ∈ ℝ* ) |
225 |
224
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( 𝑥 𝐶 𝑤 ) ∈ ℝ* ) |
226 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) |
227 |
|
simpl |
⊢ ( ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) → 𝑏 ∈ 𝑠 ) |
228 |
216
|
ne0d |
⊢ ( ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ∧ 𝑏 ∈ 𝑠 ) → ran ran 𝑔 ≠ ∅ ) |
229 |
|
infrecl |
⊢ ( ( ran ran 𝑔 ⊆ ℝ ∧ ran ran 𝑔 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran ran 𝑔 𝑥 ≤ 𝑦 ) → inf ( ran ran 𝑔 , ℝ , < ) ∈ ℝ ) |
230 |
200 228 210 229
|
syl3anc |
⊢ ( ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ∧ 𝑏 ∈ 𝑠 ) → inf ( ran ran 𝑔 , ℝ , < ) ∈ ℝ ) |
231 |
230
|
rexrd |
⊢ ( ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ∧ 𝑏 ∈ 𝑠 ) → inf ( ran ran 𝑔 , ℝ , < ) ∈ ℝ* ) |
232 |
226 227 231
|
syl2an |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → inf ( ran ran 𝑔 , ℝ , < ) ∈ ℝ* ) |
233 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) → 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) |
234 |
233
|
ffvelrnda |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ 𝑏 ∈ 𝑠 ) → ( 𝑔 ‘ 𝑏 ) ∈ ( 𝑋 × ℝ+ ) ) |
235 |
|
xp2nd |
⊢ ( ( 𝑔 ‘ 𝑏 ) ∈ ( 𝑋 × ℝ+ ) → ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ ℝ+ ) |
236 |
234 235
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ 𝑏 ∈ 𝑠 ) → ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ ℝ+ ) |
237 |
236
|
rpxrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ 𝑏 ∈ 𝑠 ) → ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ ℝ* ) |
238 |
237
|
ad2ant2r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ ℝ* ) |
239 |
|
xrltletr |
⊢ ( ( ( 𝑥 𝐶 𝑤 ) ∈ ℝ* ∧ inf ( ran ran 𝑔 , ℝ , < ) ∈ ℝ* ∧ ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ ℝ* ) → ( ( ( 𝑥 𝐶 𝑤 ) < inf ( ran ran 𝑔 , ℝ , < ) ∧ inf ( ran ran 𝑔 , ℝ , < ) ≤ ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( 𝑥 𝐶 𝑤 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) |
240 |
225 232 238 239
|
syl3anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( ( 𝑥 𝐶 𝑤 ) < inf ( ran ran 𝑔 , ℝ , < ) ∧ inf ( ran ran 𝑔 , ℝ , < ) ≤ ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( 𝑥 𝐶 𝑤 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) |
241 |
220 240
|
mpan2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( 𝑥 𝐶 𝑤 ) < inf ( ran ran 𝑔 , ℝ , < ) → ( 𝑥 𝐶 𝑤 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) |
242 |
241
|
adantlr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( 𝑥 𝐶 𝑤 ) < inf ( ran ran 𝑔 , ℝ , < ) → ( 𝑥 𝐶 𝑤 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) |
243 |
1
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ) |
244 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) → 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) |
245 |
|
ffvelrn |
⊢ ( ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ∧ 𝑏 ∈ 𝑠 ) → ( 𝑔 ‘ 𝑏 ) ∈ ( 𝑋 × ℝ+ ) ) |
246 |
|
xp1st |
⊢ ( ( 𝑔 ‘ 𝑏 ) ∈ ( 𝑋 × ℝ+ ) → ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ 𝑋 ) |
247 |
245 246
|
syl |
⊢ ( ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ∧ 𝑏 ∈ 𝑠 ) → ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ 𝑋 ) |
248 |
244 227 247
|
syl2an |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ 𝑋 ) |
249 |
|
simpr |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) → 𝑤 ∈ 𝑋 ) |
250 |
249
|
ad3antlr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → 𝑤 ∈ 𝑋 ) |
251 |
|
xmetcl |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) → ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑤 ) ∈ ℝ* ) |
252 |
243 248 250 251
|
syl3anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑤 ) ∈ ℝ* ) |
253 |
252
|
adantr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( 𝑥 𝐶 𝑤 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑤 ) ∈ ℝ* ) |
254 |
245 235
|
syl |
⊢ ( ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ∧ 𝑏 ∈ 𝑠 ) → ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ ℝ+ ) |
255 |
226 254
|
sylan |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ ℝ+ ) |
256 |
255
|
ad2ant2r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ ℝ+ ) |
257 |
256
|
rpred |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ ℝ ) |
258 |
164
|
ad3antlr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → 𝑥 ∈ 𝑋 ) |
259 |
|
xmetcl |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) ∈ ℝ* ) |
260 |
243 248 258 259
|
syl3anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) ∈ ℝ* ) |
261 |
254
|
rpxrd |
⊢ ( ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ∧ 𝑏 ∈ 𝑠 ) → ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ ℝ* ) |
262 |
244 227 261
|
syl2an |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ ℝ* ) |
263 |
|
eleq2 |
⊢ ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( 𝑥 ∈ 𝑏 ↔ 𝑥 ∈ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ) |
264 |
1
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ) |
265 |
226 247
|
sylan |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ 𝑋 ) |
266 |
255
|
rpxrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ ℝ* ) |
267 |
|
elbl |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ 𝑋 ∧ ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ ℝ* ) → ( 𝑥 ∈ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ↔ ( 𝑥 ∈ 𝑋 ∧ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ) |
268 |
264 265 266 267
|
syl3anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → ( 𝑥 ∈ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ↔ ( 𝑥 ∈ 𝑋 ∧ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ) |
269 |
263 268
|
sylan9bbr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) → ( 𝑥 ∈ 𝑏 ↔ ( 𝑥 ∈ 𝑋 ∧ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ) |
270 |
269
|
biimpd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) → ( 𝑥 ∈ 𝑏 → ( 𝑥 ∈ 𝑋 ∧ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ) |
271 |
270
|
an32s |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ 𝑏 ∈ 𝑠 ) → ( 𝑥 ∈ 𝑏 → ( 𝑥 ∈ 𝑋 ∧ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ) |
272 |
271
|
impr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( 𝑥 ∈ 𝑋 ∧ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) |
273 |
272
|
simprd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) |
274 |
260 262 273
|
xrltled |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) ≤ ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) |
275 |
226
|
ffvelrnda |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → ( 𝑔 ‘ 𝑏 ) ∈ ( 𝑋 × ℝ+ ) ) |
276 |
275 246
|
syl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ 𝑋 ) |
277 |
|
simplrl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → 𝑥 ∈ 𝑋 ) |
278 |
264 276 277 259
|
syl3anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) ∈ ℝ* ) |
279 |
|
xmetge0 |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → 0 ≤ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) ) |
280 |
264 276 277 279
|
syl3anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → 0 ≤ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) ) |
281 |
|
xrrege0 |
⊢ ( ( ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) ∈ ℝ* ∧ ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ ℝ ) ∧ ( 0 ≤ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) ∧ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) ≤ ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) → ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) ∈ ℝ ) |
282 |
281
|
an4s |
⊢ ( ( ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) ∈ ℝ* ∧ 0 ≤ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) ) ∧ ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ ℝ ∧ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) ≤ ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) → ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) ∈ ℝ ) |
283 |
282
|
ex |
⊢ ( ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) ∈ ℝ* ∧ 0 ≤ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) ) → ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ ℝ ∧ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) ≤ ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) ∈ ℝ ) ) |
284 |
278 280 283
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ ℝ ∧ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) ≤ ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) ∈ ℝ ) ) |
285 |
284
|
ad2ant2r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ ℝ ∧ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) ≤ ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) ∈ ℝ ) ) |
286 |
257 274 285
|
mp2and |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) ∈ ℝ ) |
287 |
286
|
adantr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( 𝑥 𝐶 𝑤 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) ∈ ℝ ) |
288 |
|
xrltle |
⊢ ( ( ( 𝑥 𝐶 𝑤 ) ∈ ℝ* ∧ ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ ℝ* ) → ( ( 𝑥 𝐶 𝑤 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) → ( 𝑥 𝐶 𝑤 ) ≤ ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) |
289 |
225 238 288
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( 𝑥 𝐶 𝑤 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) → ( 𝑥 𝐶 𝑤 ) ≤ ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) |
290 |
|
xmetge0 |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) → 0 ≤ ( 𝑥 𝐶 𝑤 ) ) |
291 |
290
|
3expb |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → 0 ≤ ( 𝑥 𝐶 𝑤 ) ) |
292 |
221 291
|
sylan |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → 0 ≤ ( 𝑥 𝐶 𝑤 ) ) |
293 |
292
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → 0 ≤ ( 𝑥 𝐶 𝑤 ) ) |
294 |
236
|
rpred |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ 𝑏 ∈ 𝑠 ) → ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ ℝ ) |
295 |
294
|
ad2ant2r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ ℝ ) |
296 |
|
xrrege0 |
⊢ ( ( ( ( 𝑥 𝐶 𝑤 ) ∈ ℝ* ∧ ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ ℝ ) ∧ ( 0 ≤ ( 𝑥 𝐶 𝑤 ) ∧ ( 𝑥 𝐶 𝑤 ) ≤ ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) → ( 𝑥 𝐶 𝑤 ) ∈ ℝ ) |
297 |
296
|
ex |
⊢ ( ( ( 𝑥 𝐶 𝑤 ) ∈ ℝ* ∧ ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ ℝ ) → ( ( 0 ≤ ( 𝑥 𝐶 𝑤 ) ∧ ( 𝑥 𝐶 𝑤 ) ≤ ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( 𝑥 𝐶 𝑤 ) ∈ ℝ ) ) |
298 |
225 295 297
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( 0 ≤ ( 𝑥 𝐶 𝑤 ) ∧ ( 𝑥 𝐶 𝑤 ) ≤ ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( 𝑥 𝐶 𝑤 ) ∈ ℝ ) ) |
299 |
293 298
|
mpand |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( 𝑥 𝐶 𝑤 ) ≤ ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) → ( 𝑥 𝐶 𝑤 ) ∈ ℝ ) ) |
300 |
289 299
|
syld |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( 𝑥 𝐶 𝑤 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) → ( 𝑥 𝐶 𝑤 ) ∈ ℝ ) ) |
301 |
300
|
adantlr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( 𝑥 𝐶 𝑤 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) → ( 𝑥 𝐶 𝑤 ) ∈ ℝ ) ) |
302 |
301
|
imp |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( 𝑥 𝐶 𝑤 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( 𝑥 𝐶 𝑤 ) ∈ ℝ ) |
303 |
287 302
|
readdcld |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( 𝑥 𝐶 𝑤 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) + ( 𝑥 𝐶 𝑤 ) ) ∈ ℝ ) |
304 |
303
|
rexrd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( 𝑥 𝐶 𝑤 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) + ( 𝑥 𝐶 𝑤 ) ) ∈ ℝ* ) |
305 |
256 256
|
rpaddcld |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∈ ℝ+ ) |
306 |
305
|
rpxrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∈ ℝ* ) |
307 |
306
|
adantr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( 𝑥 𝐶 𝑤 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∈ ℝ* ) |
308 |
|
xmettri |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑤 ) ≤ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) +𝑒 ( 𝑥 𝐶 𝑤 ) ) ) |
309 |
243 248 250 258 308
|
syl13anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑤 ) ≤ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) +𝑒 ( 𝑥 𝐶 𝑤 ) ) ) |
310 |
309
|
adantr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( 𝑥 𝐶 𝑤 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑤 ) ≤ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) +𝑒 ( 𝑥 𝐶 𝑤 ) ) ) |
311 |
|
rexadd |
⊢ ( ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) ∈ ℝ ∧ ( 𝑥 𝐶 𝑤 ) ∈ ℝ ) → ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) +𝑒 ( 𝑥 𝐶 𝑤 ) ) = ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) + ( 𝑥 𝐶 𝑤 ) ) ) |
312 |
287 302 311
|
syl2anc |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( 𝑥 𝐶 𝑤 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) +𝑒 ( 𝑥 𝐶 𝑤 ) ) = ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) + ( 𝑥 𝐶 𝑤 ) ) ) |
313 |
310 312
|
breqtrd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( 𝑥 𝐶 𝑤 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑤 ) ≤ ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) + ( 𝑥 𝐶 𝑤 ) ) ) |
314 |
257
|
adantr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( 𝑥 𝐶 𝑤 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ ℝ ) |
315 |
273
|
adantr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( 𝑥 𝐶 𝑤 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) |
316 |
|
simpr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( 𝑥 𝐶 𝑤 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( 𝑥 𝐶 𝑤 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) |
317 |
287 302 314 314 315 316
|
lt2addd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( 𝑥 𝐶 𝑤 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) + ( 𝑥 𝐶 𝑤 ) ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) |
318 |
253 304 307 313 317
|
xrlelttrd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( 𝑥 𝐶 𝑤 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑤 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) |
319 |
318
|
ex |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( 𝑥 𝐶 𝑤 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) → ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑤 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ) |
320 |
254
|
rpred |
⊢ ( ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ∧ 𝑏 ∈ 𝑠 ) → ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ∈ ℝ ) |
321 |
320 254
|
ltaddrpd |
⊢ ( ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ∧ 𝑏 ∈ 𝑠 ) → ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) |
322 |
244 227 321
|
syl2an |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) |
323 |
260 262 306 273 322
|
xrlttrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) |
324 |
319 323
|
jctild |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( 𝑥 𝐶 𝑤 ) < ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) → ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑤 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ) ) |
325 |
242 324
|
syld |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( 𝑥 𝐶 𝑤 ) < inf ( ran ran 𝑔 , ℝ , < ) → ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑤 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ) ) |
326 |
|
simpll |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) → ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ) |
327 |
|
ffvelrn |
⊢ ( ( 𝑓 : 𝑋 ⟶ 𝑌 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑥 ) ∈ 𝑌 ) |
328 |
|
ffvelrn |
⊢ ( ( 𝑓 : 𝑋 ⟶ 𝑌 ∧ 𝑤 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑤 ) ∈ 𝑌 ) |
329 |
327 328
|
anim12dan |
⊢ ( ( 𝑓 : 𝑋 ⟶ 𝑌 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑌 ∧ ( 𝑓 ‘ 𝑤 ) ∈ 𝑌 ) ) |
330 |
|
xmetcl |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ ( 𝑓 ‘ 𝑥 ) ∈ 𝑌 ∧ ( 𝑓 ‘ 𝑤 ) ∈ 𝑌 ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ∈ ℝ* ) |
331 |
330
|
3expb |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑌 ∧ ( 𝑓 ‘ 𝑤 ) ∈ 𝑌 ) ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ∈ ℝ* ) |
332 |
2 329 331
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑋 ⟶ 𝑌 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ∈ ℝ* ) |
333 |
332
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ∈ ℝ* ) |
334 |
326 333
|
sylan |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ∈ ℝ* ) |
335 |
334
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ∈ ℝ* ) |
336 |
2
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) |
337 |
|
simp-5r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → 𝑓 : 𝑋 ⟶ 𝑌 ) |
338 |
337 276
|
ffvelrnd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∈ 𝑌 ) |
339 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) → 𝑓 : 𝑋 ⟶ 𝑌 ) |
340 |
339
|
ffvelrnda |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑥 ) ∈ 𝑌 ) |
341 |
340
|
adantrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝑓 ‘ 𝑥 ) ∈ 𝑌 ) |
342 |
341
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → ( 𝑓 ‘ 𝑥 ) ∈ 𝑌 ) |
343 |
|
xmetcl |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∈ 𝑌 ∧ ( 𝑓 ‘ 𝑥 ) ∈ 𝑌 ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ∈ ℝ* ) |
344 |
336 338 342 343
|
syl3anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ∈ ℝ* ) |
345 |
14
|
rpxrd |
⊢ ( 𝑑 ∈ ℝ+ → ( 𝑑 / 2 ) ∈ ℝ* ) |
346 |
345
|
ad4antlr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → ( 𝑑 / 2 ) ∈ ℝ* ) |
347 |
|
xrltle |
⊢ ( ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ∈ ℝ* ∧ ( 𝑑 / 2 ) ∈ ℝ* ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑑 / 2 ) ) ) |
348 |
344 346 347
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑑 / 2 ) ) ) |
349 |
|
xmetge0 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∈ 𝑌 ∧ ( 𝑓 ‘ 𝑥 ) ∈ 𝑌 ) → 0 ≤ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ) |
350 |
336 338 342 349
|
syl3anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → 0 ≤ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ) |
351 |
14
|
rpred |
⊢ ( 𝑑 ∈ ℝ+ → ( 𝑑 / 2 ) ∈ ℝ ) |
352 |
351
|
ad4antlr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → ( 𝑑 / 2 ) ∈ ℝ ) |
353 |
|
xrrege0 |
⊢ ( ( ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ∈ ℝ* ∧ ( 𝑑 / 2 ) ∈ ℝ ) ∧ ( 0 ≤ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑑 / 2 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ∈ ℝ ) |
354 |
353
|
ex |
⊢ ( ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ∈ ℝ* ∧ ( 𝑑 / 2 ) ∈ ℝ ) → ( ( 0 ≤ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑑 / 2 ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ∈ ℝ ) ) |
355 |
344 352 354
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → ( ( 0 ≤ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑑 / 2 ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ∈ ℝ ) ) |
356 |
350 355
|
mpand |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑑 / 2 ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ∈ ℝ ) ) |
357 |
348 356
|
syld |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ∈ ℝ ) ) |
358 |
357
|
ad2ant2r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ∈ ℝ ) ) |
359 |
358
|
imp |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ∈ ℝ ) |
360 |
339
|
ffvelrnda |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ 𝑤 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑤 ) ∈ 𝑌 ) |
361 |
360
|
adantrl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝑓 ‘ 𝑤 ) ∈ 𝑌 ) |
362 |
361
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → ( 𝑓 ‘ 𝑤 ) ∈ 𝑌 ) |
363 |
|
xmetcl |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∈ 𝑌 ∧ ( 𝑓 ‘ 𝑤 ) ∈ 𝑌 ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ∈ ℝ* ) |
364 |
336 338 362 363
|
syl3anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ∈ ℝ* ) |
365 |
|
xrltle |
⊢ ( ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ∈ ℝ* ∧ ( 𝑑 / 2 ) ∈ ℝ* ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ≤ ( 𝑑 / 2 ) ) ) |
366 |
364 346 365
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ≤ ( 𝑑 / 2 ) ) ) |
367 |
|
xmetge0 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∈ 𝑌 ∧ ( 𝑓 ‘ 𝑤 ) ∈ 𝑌 ) → 0 ≤ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) |
368 |
336 338 362 367
|
syl3anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → 0 ≤ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) |
369 |
|
xrrege0 |
⊢ ( ( ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ∈ ℝ* ∧ ( 𝑑 / 2 ) ∈ ℝ ) ∧ ( 0 ≤ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ≤ ( 𝑑 / 2 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ∈ ℝ ) |
370 |
369
|
ex |
⊢ ( ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ∈ ℝ* ∧ ( 𝑑 / 2 ) ∈ ℝ ) → ( ( 0 ≤ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ≤ ( 𝑑 / 2 ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ∈ ℝ ) ) |
371 |
364 352 370
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → ( ( 0 ≤ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ≤ ( 𝑑 / 2 ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ∈ ℝ ) ) |
372 |
368 371
|
mpand |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ≤ ( 𝑑 / 2 ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ∈ ℝ ) ) |
373 |
366 372
|
syld |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ∈ ℝ ) ) |
374 |
373
|
ad2ant2r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ∈ ℝ ) ) |
375 |
374
|
imp |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ∈ ℝ ) |
376 |
|
readdcl |
⊢ ( ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ∈ ℝ ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ∈ ℝ ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) + ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) ∈ ℝ ) |
377 |
359 375 376
|
syl2an |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ) ∧ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) + ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) ∈ ℝ ) |
378 |
377
|
anandis |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) + ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) ∈ ℝ ) |
379 |
378
|
rexrd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) + ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) ∈ ℝ* ) |
380 |
|
rpxr |
⊢ ( 𝑑 ∈ ℝ+ → 𝑑 ∈ ℝ* ) |
381 |
380
|
ad6antlr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → 𝑑 ∈ ℝ* ) |
382 |
|
xmettri |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑌 ∧ ( 𝑓 ‘ 𝑤 ) ∈ 𝑌 ∧ ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∈ 𝑌 ) ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ≤ ( ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) +𝑒 ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) ) |
383 |
336 342 362 338 382
|
syl13anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ≤ ( ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) +𝑒 ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) ) |
384 |
383
|
ad2ant2r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ≤ ( ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) +𝑒 ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) ) |
385 |
384
|
adantr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ≤ ( ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) +𝑒 ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) ) |
386 |
|
xmetsym |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ ( 𝑓 ‘ 𝑥 ) ∈ 𝑌 ∧ ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∈ 𝑌 ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) = ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ) |
387 |
336 342 338 386
|
syl3anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) = ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ) |
388 |
387
|
ad2ant2r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) = ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ) |
389 |
388
|
adantr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) = ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ) |
390 |
389
|
oveq1d |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → ( ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) +𝑒 ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) = ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) +𝑒 ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) ) |
391 |
|
rexadd |
⊢ ( ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ∈ ℝ ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ∈ ℝ ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) +𝑒 ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) = ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) + ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) ) |
392 |
359 375 391
|
syl2an |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ) ∧ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) +𝑒 ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) = ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) + ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) ) |
393 |
392
|
anandis |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) +𝑒 ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) = ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) + ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) ) |
394 |
390 393
|
eqtrd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → ( ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) +𝑒 ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) = ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) + ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) ) |
395 |
385 394
|
breqtrd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ≤ ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) + ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) ) |
396 |
|
lt2add |
⊢ ( ( ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ∈ ℝ ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ∈ ℝ ) ∧ ( ( 𝑑 / 2 ) ∈ ℝ ∧ ( 𝑑 / 2 ) ∈ ℝ ) ) → ( ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) + ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) < ( ( 𝑑 / 2 ) + ( 𝑑 / 2 ) ) ) ) |
397 |
396
|
expcom |
⊢ ( ( ( 𝑑 / 2 ) ∈ ℝ ∧ ( 𝑑 / 2 ) ∈ ℝ ) → ( ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ∈ ℝ ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ∈ ℝ ) → ( ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) + ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) < ( ( 𝑑 / 2 ) + ( 𝑑 / 2 ) ) ) ) ) |
398 |
352 352 397
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → ( ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) ∈ ℝ ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ∈ ℝ ) → ( ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) + ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) < ( ( 𝑑 / 2 ) + ( 𝑑 / 2 ) ) ) ) ) |
399 |
357 373 398
|
syl2and |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → ( ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) → ( ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) + ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) < ( ( 𝑑 / 2 ) + ( 𝑑 / 2 ) ) ) ) ) |
400 |
399
|
pm2.43d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 ∈ 𝑠 ) → ( ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) + ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) < ( ( 𝑑 / 2 ) + ( 𝑑 / 2 ) ) ) ) |
401 |
400
|
ad2ant2r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) + ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) < ( ( 𝑑 / 2 ) + ( 𝑑 / 2 ) ) ) ) |
402 |
401
|
imp |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) + ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) < ( ( 𝑑 / 2 ) + ( 𝑑 / 2 ) ) ) |
403 |
|
rpcn |
⊢ ( 𝑑 ∈ ℝ+ → 𝑑 ∈ ℂ ) |
404 |
403
|
2halvesd |
⊢ ( 𝑑 ∈ ℝ+ → ( ( 𝑑 / 2 ) + ( 𝑑 / 2 ) ) = 𝑑 ) |
405 |
404
|
ad6antlr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → ( ( 𝑑 / 2 ) + ( 𝑑 / 2 ) ) = 𝑑 ) |
406 |
402 405
|
breqtrd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) + ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) ) < 𝑑 ) |
407 |
335 379 381 395 406
|
xrlelttrd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) ∧ ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) |
408 |
407
|
ex |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) |
409 |
325 408
|
imim12d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑤 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → ( ( 𝑥 𝐶 𝑤 ) < inf ( ran ran 𝑔 , ℝ , < ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) ) |
410 |
198 409
|
sylanl1 |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑤 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → ( ( 𝑥 𝐶 𝑤 ) < inf ( ran ran 𝑔 , ℝ , < ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) ) |
411 |
410
|
adantlrr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑥 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑤 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑥 ) ) < ( 𝑑 / 2 ) ∧ ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) ) → ( ( 𝑥 𝐶 𝑤 ) < inf ( ran ran 𝑔 , ℝ , < ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) ) |
412 |
195 411
|
mpd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ∧ ( 𝑏 ∈ 𝑠 ∧ 𝑥 ∈ 𝑏 ) ) → ( ( 𝑥 𝐶 𝑤 ) < inf ( ran ran 𝑔 , ℝ , < ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) |
413 |
412
|
exp32 |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) → ( 𝑏 ∈ 𝑠 → ( 𝑥 ∈ 𝑏 → ( ( 𝑥 𝐶 𝑤 ) < inf ( ran ran 𝑔 , ℝ , < ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) ) ) |
414 |
176 413
|
sylan2 |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( ∀ 𝑏 ∈ 𝑠 ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ∧ 𝑏 ∈ 𝑠 ) ) → ( 𝑏 ∈ 𝑠 → ( 𝑥 ∈ 𝑏 → ( ( 𝑥 𝐶 𝑤 ) < inf ( ran ran 𝑔 , ℝ , < ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) ) ) |
415 |
414
|
expr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ∀ 𝑏 ∈ 𝑠 ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) → ( 𝑏 ∈ 𝑠 → ( 𝑏 ∈ 𝑠 → ( 𝑥 ∈ 𝑏 → ( ( 𝑥 𝐶 𝑤 ) < inf ( ran ran 𝑔 , ℝ , < ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) ) ) ) |
416 |
415
|
pm2.43d |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ∀ 𝑏 ∈ 𝑠 ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) → ( 𝑏 ∈ 𝑠 → ( 𝑥 ∈ 𝑏 → ( ( 𝑥 𝐶 𝑤 ) < inf ( ran ran 𝑔 , ℝ , < ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) ) ) |
417 |
416
|
an32s |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ∀ 𝑏 ∈ 𝑠 ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝑏 ∈ 𝑠 → ( 𝑥 ∈ 𝑏 → ( ( 𝑥 𝐶 𝑤 ) < inf ( ran ran 𝑔 , ℝ , < ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) ) ) |
418 |
174 175 417
|
rexlimd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ∀ 𝑏 ∈ 𝑠 ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ∃ 𝑏 ∈ 𝑠 𝑥 ∈ 𝑏 → ( ( 𝑥 𝐶 𝑤 ) < inf ( ran ran 𝑔 , ℝ , < ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) ) |
419 |
169 418
|
mpd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ∀ 𝑏 ∈ 𝑠 ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ( 𝑥 𝐶 𝑤 ) < inf ( ran ran 𝑔 , ℝ , < ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) |
420 |
419
|
ralrimivva |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ∀ 𝑏 ∈ 𝑠 ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < inf ( ran ran 𝑔 , ℝ , < ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) |
421 |
|
breq2 |
⊢ ( 𝑧 = inf ( ran ran 𝑔 , ℝ , < ) → ( ( 𝑥 𝐶 𝑤 ) < 𝑧 ↔ ( 𝑥 𝐶 𝑤 ) < inf ( ran ran 𝑔 , ℝ , < ) ) ) |
422 |
421
|
imbi1d |
⊢ ( 𝑧 = inf ( ran ran 𝑔 , ℝ , < ) → ( ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ↔ ( ( 𝑥 𝐶 𝑤 ) < inf ( ran ran 𝑔 , ℝ , < ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) ) |
423 |
422
|
2ralbidv |
⊢ ( 𝑧 = inf ( ran ran 𝑔 , ℝ , < ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < inf ( ran ran 𝑔 , ℝ , < ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) ) |
424 |
423
|
rspcev |
⊢ ( ( inf ( ran ran 𝑔 , ℝ , < ) ∈ ℝ+ ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < inf ( ran ran 𝑔 , ℝ , < ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) |
425 |
160 420 424
|
syl2anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) ∧ 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ) ∧ ∀ 𝑏 ∈ 𝑠 ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) |
426 |
425
|
expl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) → ( ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ∧ ∀ 𝑏 ∈ 𝑠 ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) ) |
427 |
426
|
exlimdv |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑠 ∈ Fin ) ∧ ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ) → ( ∃ 𝑔 ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ∧ ∀ 𝑏 ∈ 𝑠 ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) ) |
428 |
427
|
expimpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑠 ∈ Fin ) → ( ( ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ∧ ∃ 𝑔 ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ∧ ∀ 𝑏 ∈ 𝑠 ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) ) |
429 |
105 428
|
sylan2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑠 ∈ ( 𝒫 ( MetOpen ‘ 𝐶 ) ∩ Fin ) ) → ( ( ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ∧ ∃ 𝑔 ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ∧ ∀ 𝑏 ∈ 𝑠 ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) ) |
430 |
429
|
rexlimdva |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) → ( ∃ 𝑠 ∈ ( 𝒫 ( MetOpen ‘ 𝐶 ) ∩ Fin ) ( ∪ ( MetOpen ‘ 𝐶 ) = ∪ 𝑠 ∧ ∃ 𝑔 ( 𝑔 : 𝑠 ⟶ ( 𝑋 × ℝ+ ) ∧ ∀ 𝑏 ∈ 𝑠 ( 𝑏 = ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ( ball ‘ 𝐶 ) ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) ∧ ∀ 𝑐 ∈ 𝑋 ( ( ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) 𝐶 𝑐 ) < ( ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) + ( 2nd ‘ ( 𝑔 ‘ 𝑏 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( 𝑔 ‘ 𝑏 ) ) ) 𝐷 ( 𝑓 ‘ 𝑐 ) ) < ( 𝑑 / 2 ) ) ) ) ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) ) |
431 |
104 430
|
syld |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) → ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < ( 𝑑 / 2 ) ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) ) |
432 |
20 431
|
syl5 |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) → ( ( ( 𝑑 / 2 ) ∈ ℝ+ ∧ ∀ 𝑦 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) ) |
433 |
432
|
exp4b |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) → ( 𝑑 ∈ ℝ+ → ( ( 𝑑 / 2 ) ∈ ℝ+ → ( ∀ 𝑦 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) ) ) ) |
434 |
14 433
|
mpdi |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) → ( 𝑑 ∈ ℝ+ → ( ∀ 𝑦 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) ) ) |
435 |
434
|
ralrimiv |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) → ∀ 𝑑 ∈ ℝ+ ( ∀ 𝑦 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) ) |
436 |
|
r19.21v |
⊢ ( ∀ 𝑑 ∈ ℝ+ ( ∀ 𝑦 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) ↔ ( ∀ 𝑦 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) → ∀ 𝑑 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) ) |
437 |
435 436
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) → ( ∀ 𝑦 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) → ∀ 𝑑 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) ) |
438 |
13 437
|
impbid2 |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) → ( ∀ 𝑑 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ↔ ∀ 𝑦 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) ) ) |
439 |
|
ralcom |
⊢ ( ∀ 𝑦 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) ) |
440 |
438 439
|
bitrdi |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) → ( ∀ 𝑑 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) ) ) |
441 |
440
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝑓 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑑 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) ↔ ( 𝑓 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) ) ) ) |
442 |
|
eqid |
⊢ ( metUnif ‘ 𝐶 ) = ( metUnif ‘ 𝐶 ) |
443 |
|
eqid |
⊢ ( metUnif ‘ 𝐷 ) = ( metUnif ‘ 𝐷 ) |
444 |
|
xmetpsmet |
⊢ ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) → 𝐶 ∈ ( PsMet ‘ 𝑋 ) ) |
445 |
1 444
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ ( PsMet ‘ 𝑋 ) ) |
446 |
|
xmetpsmet |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑌 ) → 𝐷 ∈ ( PsMet ‘ 𝑌 ) ) |
447 |
2 446
|
syl |
⊢ ( 𝜑 → 𝐷 ∈ ( PsMet ‘ 𝑌 ) ) |
448 |
442 443 4 5 445 447
|
metucn |
⊢ ( 𝜑 → ( 𝑓 ∈ ( ( metUnif ‘ 𝐶 ) Cnu ( metUnif ‘ 𝐷 ) ) ↔ ( 𝑓 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑑 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑑 ) ) ) ) |
449 |
|
eqid |
⊢ ( MetOpen ‘ 𝐷 ) = ( MetOpen ‘ 𝐷 ) |
450 |
26 449
|
metcn |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) → ( 𝑓 ∈ ( ( MetOpen ‘ 𝐶 ) Cn ( MetOpen ‘ 𝐷 ) ) ↔ ( 𝑓 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) ) ) ) |
451 |
1 2 450
|
syl2anc |
⊢ ( 𝜑 → ( 𝑓 ∈ ( ( MetOpen ‘ 𝐶 ) Cn ( MetOpen ‘ 𝐷 ) ) ↔ ( 𝑓 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) ) ) ) |
452 |
441 448 451
|
3bitr4d |
⊢ ( 𝜑 → ( 𝑓 ∈ ( ( metUnif ‘ 𝐶 ) Cnu ( metUnif ‘ 𝐷 ) ) ↔ 𝑓 ∈ ( ( MetOpen ‘ 𝐶 ) Cn ( MetOpen ‘ 𝐷 ) ) ) ) |
453 |
452
|
eqrdv |
⊢ ( 𝜑 → ( ( metUnif ‘ 𝐶 ) Cnu ( metUnif ‘ 𝐷 ) ) = ( ( MetOpen ‘ 𝐶 ) Cn ( MetOpen ‘ 𝐷 ) ) ) |