Metamath Proof Explorer


Theorem opnmbllem0

Description: Lemma for ismblfin ; could also be used to shorten proof of opnmbllem . (Contributed by Brendan Leahy, 13-Jul-2018)

Ref Expression
Assertion opnmbllem0 ( 𝐴 ∈ ( topGen ‘ ran (,) ) → ( [,] “ { 𝑧 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 fveq2 ( 𝑧 = 𝑤 → ( [,] ‘ 𝑧 ) = ( [,] ‘ 𝑤 ) )
2 1 sseq1d ( 𝑧 = 𝑤 → ( ( [,] ‘ 𝑧 ) ⊆ 𝐴 ↔ ( [,] ‘ 𝑤 ) ⊆ 𝐴 ) )
3 2 elrab ( 𝑤 ∈ { 𝑧 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ↔ ( 𝑤 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) ∧ ( [,] ‘ 𝑤 ) ⊆ 𝐴 ) )
4 simprr ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ ( 𝑤 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) ∧ ( [,] ‘ 𝑤 ) ⊆ 𝐴 ) ) → ( [,] ‘ 𝑤 ) ⊆ 𝐴 )
5 fvex ( [,] ‘ 𝑤 ) ∈ V
6 5 elpw ( ( [,] ‘ 𝑤 ) ∈ 𝒫 𝐴 ↔ ( [,] ‘ 𝑤 ) ⊆ 𝐴 )
7 4 6 sylibr ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ ( 𝑤 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) ∧ ( [,] ‘ 𝑤 ) ⊆ 𝐴 ) ) → ( [,] ‘ 𝑤 ) ∈ 𝒫 𝐴 )
8 3 7 sylan2b ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤 ∈ { 𝑧 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ) → ( [,] ‘ 𝑤 ) ∈ 𝒫 𝐴 )
9 8 ralrimiva ( 𝐴 ∈ ( topGen ‘ ran (,) ) → ∀ 𝑤 ∈ { 𝑧 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ( [,] ‘ 𝑤 ) ∈ 𝒫 𝐴 )
10 iccf [,] : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ*
11 ffun ( [,] : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* → Fun [,] )
12 10 11 ax-mp Fun [,]
13 ssrab2 { 𝑧 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ⊆ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ )
14 oveq1 ( 𝑥 = 𝑟 → ( 𝑥 / ( 2 ↑ 𝑦 ) ) = ( 𝑟 / ( 2 ↑ 𝑦 ) ) )
15 oveq1 ( 𝑥 = 𝑟 → ( 𝑥 + 1 ) = ( 𝑟 + 1 ) )
16 15 oveq1d ( 𝑥 = 𝑟 → ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) = ( ( 𝑟 + 1 ) / ( 2 ↑ 𝑦 ) ) )
17 14 16 opeq12d ( 𝑥 = 𝑟 → ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ = ⟨ ( 𝑟 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑟 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ )
18 oveq2 ( 𝑦 = 𝑠 → ( 2 ↑ 𝑦 ) = ( 2 ↑ 𝑠 ) )
19 18 oveq2d ( 𝑦 = 𝑠 → ( 𝑟 / ( 2 ↑ 𝑦 ) ) = ( 𝑟 / ( 2 ↑ 𝑠 ) ) )
20 18 oveq2d ( 𝑦 = 𝑠 → ( ( 𝑟 + 1 ) / ( 2 ↑ 𝑦 ) ) = ( ( 𝑟 + 1 ) / ( 2 ↑ 𝑠 ) ) )
21 19 20 opeq12d ( 𝑦 = 𝑠 → ⟨ ( 𝑟 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑟 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ = ⟨ ( 𝑟 / ( 2 ↑ 𝑠 ) ) , ( ( 𝑟 + 1 ) / ( 2 ↑ 𝑠 ) ) ⟩ )
22 17 21 cbvmpov ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) = ( 𝑟 ∈ ℤ , 𝑠 ∈ ℕ0 ↦ ⟨ ( 𝑟 / ( 2 ↑ 𝑠 ) ) , ( ( 𝑟 + 1 ) / ( 2 ↑ 𝑠 ) ) ⟩ )
23 22 dyadf ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) : ( ℤ × ℕ0 ) ⟶ ( ≤ ∩ ( ℝ × ℝ ) )
24 frn ( ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) : ( ℤ × ℕ0 ) ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) ⊆ ( ≤ ∩ ( ℝ × ℝ ) ) )
25 23 24 ax-mp ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) ⊆ ( ≤ ∩ ( ℝ × ℝ ) )
26 inss2 ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ × ℝ )
27 rexpssxrxp ( ℝ × ℝ ) ⊆ ( ℝ* × ℝ* )
28 26 27 sstri ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ* × ℝ* )
29 25 28 sstri ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) ⊆ ( ℝ* × ℝ* )
30 13 29 sstri { 𝑧 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ⊆ ( ℝ* × ℝ* )
31 10 fdmi dom [,] = ( ℝ* × ℝ* )
32 30 31 sseqtrri { 𝑧 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ⊆ dom [,]
33 funimass4 ( ( Fun [,] ∧ { 𝑧 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ⊆ dom [,] ) → ( ( [,] “ { 𝑧 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ) ⊆ 𝒫 𝐴 ↔ ∀ 𝑤 ∈ { 𝑧 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ( [,] ‘ 𝑤 ) ∈ 𝒫 𝐴 ) )
34 12 32 33 mp2an ( ( [,] “ { 𝑧 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ) ⊆ 𝒫 𝐴 ↔ ∀ 𝑤 ∈ { 𝑧 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ( [,] ‘ 𝑤 ) ∈ 𝒫 𝐴 )
35 9 34 sylibr ( 𝐴 ∈ ( topGen ‘ ran (,) ) → ( [,] “ { 𝑧 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ) ⊆ 𝒫 𝐴 )
36 sspwuni ( ( [,] “ { 𝑧 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ) ⊆ 𝒫 𝐴 ( [,] “ { 𝑧 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ) ⊆ 𝐴 )
37 35 36 sylib ( 𝐴 ∈ ( topGen ‘ ran (,) ) → ( [,] “ { 𝑧 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ) ⊆ 𝐴 )
38 eqid ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) )
39 38 rexmet ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( ∞Met ‘ ℝ )
40 eqid ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) )
41 38 40 tgioo ( topGen ‘ ran (,) ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) )
42 41 mopni2 ( ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( ∞Met ‘ ℝ ) ∧ 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) → ∃ 𝑟 ∈ ℝ+ ( 𝑤 ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ 𝐴 )
43 39 42 mp3an1 ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) → ∃ 𝑟 ∈ ℝ+ ( 𝑤 ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ 𝐴 )
44 elssuni ( 𝐴 ∈ ( topGen ‘ ran (,) ) → 𝐴 ( topGen ‘ ran (,) ) )
45 uniretop ℝ = ( topGen ‘ ran (,) )
46 44 45 sseqtrrdi ( 𝐴 ∈ ( topGen ‘ ran (,) ) → 𝐴 ⊆ ℝ )
47 46 sselda ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) → 𝑤 ∈ ℝ )
48 rpre ( 𝑟 ∈ ℝ+𝑟 ∈ ℝ )
49 38 bl2ioo ( ( 𝑤 ∈ ℝ ∧ 𝑟 ∈ ℝ ) → ( 𝑤 ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) = ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) )
50 47 48 49 syl2an ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ 𝑟 ∈ ℝ+ ) → ( 𝑤 ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) = ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) )
51 50 sseq1d ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ 𝑟 ∈ ℝ+ ) → ( ( 𝑤 ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ 𝐴 ↔ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) )
52 2re 2 ∈ ℝ
53 1lt2 1 < 2
54 expnlbnd ( ( 𝑟 ∈ ℝ+ ∧ 2 ∈ ℝ ∧ 1 < 2 ) → ∃ 𝑛 ∈ ℕ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 )
55 52 53 54 mp3an23 ( 𝑟 ∈ ℝ+ → ∃ 𝑛 ∈ ℕ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 )
56 55 ad2antrl ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) → ∃ 𝑛 ∈ ℕ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 )
57 47 ad2antrr ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → 𝑤 ∈ ℝ )
58 2nn 2 ∈ ℕ
59 nnnn0 ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 )
60 59 ad2antrl ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → 𝑛 ∈ ℕ0 )
61 nnexpcl ( ( 2 ∈ ℕ ∧ 𝑛 ∈ ℕ0 ) → ( 2 ↑ 𝑛 ) ∈ ℕ )
62 58 60 61 sylancr ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( 2 ↑ 𝑛 ) ∈ ℕ )
63 62 nnred ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( 2 ↑ 𝑛 ) ∈ ℝ )
64 57 63 remulcld ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( 𝑤 · ( 2 ↑ 𝑛 ) ) ∈ ℝ )
65 fllelt ( ( 𝑤 · ( 2 ↑ 𝑛 ) ) ∈ ℝ → ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) ≤ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ∧ ( 𝑤 · ( 2 ↑ 𝑛 ) ) < ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) ) )
66 64 65 syl ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) ≤ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ∧ ( 𝑤 · ( 2 ↑ 𝑛 ) ) < ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) ) )
67 66 simpld ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) ≤ ( 𝑤 · ( 2 ↑ 𝑛 ) ) )
68 reflcl ( ( 𝑤 · ( 2 ↑ 𝑛 ) ) ∈ ℝ → ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) ∈ ℝ )
69 64 68 syl ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) ∈ ℝ )
70 62 nngt0d ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → 0 < ( 2 ↑ 𝑛 ) )
71 ledivmul2 ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ ( ( 2 ↑ 𝑛 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝑛 ) ) ) → ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) ≤ 𝑤 ↔ ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) ≤ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) )
72 69 57 63 70 71 syl112anc ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) ≤ 𝑤 ↔ ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) ≤ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) )
73 67 72 mpbird ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) ≤ 𝑤 )
74 peano2re ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) ∈ ℝ → ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) ∈ ℝ )
75 69 74 syl ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) ∈ ℝ )
76 75 62 nndivred ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) / ( 2 ↑ 𝑛 ) ) ∈ ℝ )
77 66 simprd ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( 𝑤 · ( 2 ↑ 𝑛 ) ) < ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) )
78 ltmuldiv ( ( 𝑤 ∈ ℝ ∧ ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) ∈ ℝ ∧ ( ( 2 ↑ 𝑛 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝑛 ) ) ) → ( ( 𝑤 · ( 2 ↑ 𝑛 ) ) < ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) ↔ 𝑤 < ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) / ( 2 ↑ 𝑛 ) ) ) )
79 57 75 63 70 78 syl112anc ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( ( 𝑤 · ( 2 ↑ 𝑛 ) ) < ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) ↔ 𝑤 < ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) / ( 2 ↑ 𝑛 ) ) ) )
80 77 79 mpbid ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → 𝑤 < ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) / ( 2 ↑ 𝑛 ) ) )
81 57 76 80 ltled ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → 𝑤 ≤ ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) / ( 2 ↑ 𝑛 ) ) )
82 69 62 nndivred ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) ∈ ℝ )
83 elicc2 ( ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) ∈ ℝ ∧ ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) / ( 2 ↑ 𝑛 ) ) ∈ ℝ ) → ( 𝑤 ∈ ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) [,] ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) / ( 2 ↑ 𝑛 ) ) ) ↔ ( 𝑤 ∈ ℝ ∧ ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) ≤ 𝑤𝑤 ≤ ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) )
84 82 76 83 syl2anc ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( 𝑤 ∈ ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) [,] ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) / ( 2 ↑ 𝑛 ) ) ) ↔ ( 𝑤 ∈ ℝ ∧ ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) ≤ 𝑤𝑤 ≤ ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) )
85 57 73 81 84 mpbir3and ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → 𝑤 ∈ ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) [,] ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) / ( 2 ↑ 𝑛 ) ) ) )
86 64 flcld ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) ∈ ℤ )
87 22 dyadval ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) ∈ ℤ ∧ 𝑛 ∈ ℕ0 ) → ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) 𝑛 ) = ⟨ ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) , ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) / ( 2 ↑ 𝑛 ) ) ⟩ )
88 86 60 87 syl2anc ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) 𝑛 ) = ⟨ ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) , ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) / ( 2 ↑ 𝑛 ) ) ⟩ )
89 88 fveq2d ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( [,] ‘ ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) 𝑛 ) ) = ( [,] ‘ ⟨ ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) , ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) / ( 2 ↑ 𝑛 ) ) ⟩ ) )
90 df-ov ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) [,] ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) / ( 2 ↑ 𝑛 ) ) ) = ( [,] ‘ ⟨ ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) , ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) / ( 2 ↑ 𝑛 ) ) ⟩ )
91 89 90 eqtr4di ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( [,] ‘ ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) 𝑛 ) ) = ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) [,] ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) / ( 2 ↑ 𝑛 ) ) ) )
92 85 91 eleqtrrd ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → 𝑤 ∈ ( [,] ‘ ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) 𝑛 ) ) )
93 ffn ( ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) : ( ℤ × ℕ0 ) ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) Fn ( ℤ × ℕ0 ) )
94 23 93 ax-mp ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) Fn ( ℤ × ℕ0 )
95 fnovrn ( ( ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) Fn ( ℤ × ℕ0 ) ∧ ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) ∈ ℤ ∧ 𝑛 ∈ ℕ0 ) → ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) 𝑛 ) ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) )
96 94 95 mp3an1 ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) ∈ ℤ ∧ 𝑛 ∈ ℕ0 ) → ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) 𝑛 ) ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) )
97 86 60 96 syl2anc ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) 𝑛 ) ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) )
98 simplrl ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → 𝑟 ∈ ℝ+ )
99 98 rpred ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → 𝑟 ∈ ℝ )
100 57 99 resubcld ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( 𝑤𝑟 ) ∈ ℝ )
101 100 rexrd ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( 𝑤𝑟 ) ∈ ℝ* )
102 57 99 readdcld ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( 𝑤 + 𝑟 ) ∈ ℝ )
103 102 rexrd ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( 𝑤 + 𝑟 ) ∈ ℝ* )
104 82 99 readdcld ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) + 𝑟 ) ∈ ℝ )
105 69 recnd ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) ∈ ℂ )
106 1cnd ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → 1 ∈ ℂ )
107 63 recnd ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( 2 ↑ 𝑛 ) ∈ ℂ )
108 62 nnne0d ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( 2 ↑ 𝑛 ) ≠ 0 )
109 105 106 107 108 divdird ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) / ( 2 ↑ 𝑛 ) ) = ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) + ( 1 / ( 2 ↑ 𝑛 ) ) ) )
110 62 nnrecred ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( 1 / ( 2 ↑ 𝑛 ) ) ∈ ℝ )
111 simprr ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 )
112 110 99 82 111 ltadd2dd ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) + ( 1 / ( 2 ↑ 𝑛 ) ) ) < ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) + 𝑟 ) )
113 109 112 eqbrtrd ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) / ( 2 ↑ 𝑛 ) ) < ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) + 𝑟 ) )
114 57 76 104 80 113 lttrd ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → 𝑤 < ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) + 𝑟 ) )
115 57 99 82 ltsubaddd ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( ( 𝑤𝑟 ) < ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) ↔ 𝑤 < ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) + 𝑟 ) ) )
116 114 115 mpbird ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( 𝑤𝑟 ) < ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) )
117 57 110 readdcld ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( 𝑤 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ∈ ℝ )
118 82 57 110 73 leadd1dd ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) + ( 1 / ( 2 ↑ 𝑛 ) ) ) ≤ ( 𝑤 + ( 1 / ( 2 ↑ 𝑛 ) ) ) )
119 109 118 eqbrtrd ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) / ( 2 ↑ 𝑛 ) ) ≤ ( 𝑤 + ( 1 / ( 2 ↑ 𝑛 ) ) ) )
120 110 99 57 111 ltadd2dd ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( 𝑤 + ( 1 / ( 2 ↑ 𝑛 ) ) ) < ( 𝑤 + 𝑟 ) )
121 76 117 102 119 120 lelttrd ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) / ( 2 ↑ 𝑛 ) ) < ( 𝑤 + 𝑟 ) )
122 iccssioo ( ( ( ( 𝑤𝑟 ) ∈ ℝ* ∧ ( 𝑤 + 𝑟 ) ∈ ℝ* ) ∧ ( ( 𝑤𝑟 ) < ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) ∧ ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) / ( 2 ↑ 𝑛 ) ) < ( 𝑤 + 𝑟 ) ) ) → ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) [,] ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) / ( 2 ↑ 𝑛 ) ) ) ⊆ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) )
123 101 103 116 121 122 syl22anc ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) [,] ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) + 1 ) / ( 2 ↑ 𝑛 ) ) ) ⊆ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) )
124 91 123 eqsstrd ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( [,] ‘ ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) 𝑛 ) ) ⊆ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) )
125 simplrr ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 )
126 124 125 sstrd ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( [,] ‘ ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) 𝑛 ) ) ⊆ 𝐴 )
127 fveq2 ( 𝑧 = ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) 𝑛 ) → ( [,] ‘ 𝑧 ) = ( [,] ‘ ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) 𝑛 ) ) )
128 127 sseq1d ( 𝑧 = ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) 𝑛 ) → ( ( [,] ‘ 𝑧 ) ⊆ 𝐴 ↔ ( [,] ‘ ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) 𝑛 ) ) ⊆ 𝐴 ) )
129 128 elrab ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) 𝑛 ) ∈ { 𝑧 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ↔ ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) 𝑛 ) ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) ∧ ( [,] ‘ ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) 𝑛 ) ) ⊆ 𝐴 ) )
130 97 126 129 sylanbrc ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) 𝑛 ) ∈ { 𝑧 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } )
131 funfvima2 ( ( Fun [,] ∧ { 𝑧 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ⊆ dom [,] ) → ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) 𝑛 ) ∈ { 𝑧 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } → ( [,] ‘ ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) 𝑛 ) ) ∈ ( [,] “ { 𝑧 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ) ) )
132 12 32 131 mp2an ( ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) 𝑛 ) ∈ { 𝑧 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } → ( [,] ‘ ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) 𝑛 ) ) ∈ ( [,] “ { 𝑧 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ) )
133 130 132 syl ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → ( [,] ‘ ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) 𝑛 ) ) ∈ ( [,] “ { 𝑧 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ) )
134 elunii ( ( 𝑤 ∈ ( [,] ‘ ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) 𝑛 ) ) ∧ ( [,] ‘ ( ( ⌊ ‘ ( 𝑤 · ( 2 ↑ 𝑛 ) ) ) ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) 𝑛 ) ) ∈ ( [,] “ { 𝑧 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ) ) → 𝑤 ( [,] “ { 𝑧 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ) )
135 92 133 134 syl2anc ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / ( 2 ↑ 𝑛 ) ) < 𝑟 ) ) → 𝑤 ( [,] “ { 𝑧 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ) )
136 56 135 rexlimddv ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴 ) ) → 𝑤 ( [,] “ { 𝑧 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ) )
137 136 expr ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ 𝑟 ∈ ℝ+ ) → ( ( ( 𝑤𝑟 ) (,) ( 𝑤 + 𝑟 ) ) ⊆ 𝐴𝑤 ( [,] “ { 𝑧 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ) ) )
138 51 137 sylbid ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) ∧ 𝑟 ∈ ℝ+ ) → ( ( 𝑤 ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ 𝐴𝑤 ( [,] “ { 𝑧 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ) ) )
139 138 rexlimdva ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) → ( ∃ 𝑟 ∈ ℝ+ ( 𝑤 ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ 𝐴𝑤 ( [,] “ { 𝑧 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ) ) )
140 43 139 mpd ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑤𝐴 ) → 𝑤 ( [,] “ { 𝑧 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ) )
141 37 140 eqelssd ( 𝐴 ∈ ( topGen ‘ ran (,) ) → ( [,] “ { 𝑧 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ ⟨ ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ⟩ ) ∣ ( [,] ‘ 𝑧 ) ⊆ 𝐴 } ) = 𝐴 )