Metamath Proof Explorer


Theorem ismblfin

Description: Measurability in terms of inner and outer measure. Proposition 7 of Viaclovsky8 p. 3. (Contributed by Brendan Leahy, 4-Mar-2018) (Revised by Brendan Leahy, 28-Mar-2018)

Ref Expression
Assertion ismblfin ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( 𝐴 ∈ dom vol ↔ ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) )

Proof

Step Hyp Ref Expression
1 mblfinlem4 ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) → ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) )
2 elpwi ( 𝑤 ∈ 𝒫 ℝ → 𝑤 ⊆ ℝ )
3 elmapi ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) → 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) )
4 inss1 ( 𝑤𝐴 ) ⊆ 𝑤
5 ovolsscl ( ( ( 𝑤𝐴 ) ⊆ 𝑤𝑤 ⊆ ℝ ∧ ( vol* ‘ 𝑤 ) ∈ ℝ ) → ( vol* ‘ ( 𝑤𝐴 ) ) ∈ ℝ )
6 4 5 mp3an1 ( ( 𝑤 ⊆ ℝ ∧ ( vol* ‘ 𝑤 ) ∈ ℝ ) → ( vol* ‘ ( 𝑤𝐴 ) ) ∈ ℝ )
7 difss ( 𝑤𝐴 ) ⊆ 𝑤
8 ovolsscl ( ( ( 𝑤𝐴 ) ⊆ 𝑤𝑤 ⊆ ℝ ∧ ( vol* ‘ 𝑤 ) ∈ ℝ ) → ( vol* ‘ ( 𝑤𝐴 ) ) ∈ ℝ )
9 7 8 mp3an1 ( ( 𝑤 ⊆ ℝ ∧ ( vol* ‘ 𝑤 ) ∈ ℝ ) → ( vol* ‘ ( 𝑤𝐴 ) ) ∈ ℝ )
10 6 9 readdcld ( ( 𝑤 ⊆ ℝ ∧ ( vol* ‘ 𝑤 ) ∈ ℝ ) → ( ( vol* ‘ ( 𝑤𝐴 ) ) + ( vol* ‘ ( 𝑤𝐴 ) ) ) ∈ ℝ )
11 10 rexrd ( ( 𝑤 ⊆ ℝ ∧ ( vol* ‘ 𝑤 ) ∈ ℝ ) → ( ( vol* ‘ ( 𝑤𝐴 ) ) + ( vol* ‘ ( 𝑤𝐴 ) ) ) ∈ ℝ* )
12 11 ad3antlr ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) ∧ ( 𝑤 ⊆ ℝ ∧ ( vol* ‘ 𝑤 ) ∈ ℝ ) ) ∧ 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) ∧ 𝑤 ran ( (,) ∘ 𝑓 ) ) → ( ( vol* ‘ ( 𝑤𝐴 ) ) + ( vol* ‘ ( 𝑤𝐴 ) ) ) ∈ ℝ* )
13 rncoss ran ( (,) ∘ 𝑓 ) ⊆ ran (,)
14 13 unissi ran ( (,) ∘ 𝑓 ) ⊆ ran (,)
15 unirnioo ℝ = ran (,)
16 14 15 sseqtrri ran ( (,) ∘ 𝑓 ) ⊆ ℝ
17 ovolcl ( ran ( (,) ∘ 𝑓 ) ⊆ ℝ → ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ* )
18 16 17 mp1i ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) ∧ ( 𝑤 ⊆ ℝ ∧ ( vol* ‘ 𝑤 ) ∈ ℝ ) ) ∧ 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) ∧ 𝑤 ran ( (,) ∘ 𝑓 ) ) → ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ* )
19 eqid ( ( abs ∘ − ) ∘ 𝑓 ) = ( ( abs ∘ − ) ∘ 𝑓 )
20 eqid seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) )
21 19 20 ovolsf ( 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) : ℕ ⟶ ( 0 [,) +∞ ) )
22 frn ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) : ℕ ⟶ ( 0 [,) +∞ ) → ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ⊆ ( 0 [,) +∞ ) )
23 icossxr ( 0 [,) +∞ ) ⊆ ℝ*
24 22 23 sstrdi ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) : ℕ ⟶ ( 0 [,) +∞ ) → ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ⊆ ℝ* )
25 supxrcl ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ⊆ ℝ* → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ∈ ℝ* )
26 21 24 25 3syl ( 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ∈ ℝ* )
27 26 ad2antlr ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) ∧ ( 𝑤 ⊆ ℝ ∧ ( vol* ‘ 𝑤 ) ∈ ℝ ) ) ∧ 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) ∧ 𝑤 ran ( (,) ∘ 𝑓 ) ) → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ∈ ℝ* )
28 pnfge ( ( ( vol* ‘ ( 𝑤𝐴 ) ) + ( vol* ‘ ( 𝑤𝐴 ) ) ) ∈ ℝ* → ( ( vol* ‘ ( 𝑤𝐴 ) ) + ( vol* ‘ ( 𝑤𝐴 ) ) ) ≤ +∞ )
29 11 28 syl ( ( 𝑤 ⊆ ℝ ∧ ( vol* ‘ 𝑤 ) ∈ ℝ ) → ( ( vol* ‘ ( 𝑤𝐴 ) ) + ( vol* ‘ ( 𝑤𝐴 ) ) ) ≤ +∞ )
30 29 ad2antrr ( ( ( ( 𝑤 ⊆ ℝ ∧ ( vol* ‘ 𝑤 ) ∈ ℝ ) ∧ 𝑤 ran ( (,) ∘ 𝑓 ) ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) = +∞ ) → ( ( vol* ‘ ( 𝑤𝐴 ) ) + ( vol* ‘ ( 𝑤𝐴 ) ) ) ≤ +∞ )
31 simpr ( ( ( ( 𝑤 ⊆ ℝ ∧ ( vol* ‘ 𝑤 ) ∈ ℝ ) ∧ 𝑤 ran ( (,) ∘ 𝑓 ) ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) = +∞ ) → ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) = +∞ )
32 30 31 breqtrrd ( ( ( ( 𝑤 ⊆ ℝ ∧ ( vol* ‘ 𝑤 ) ∈ ℝ ) ∧ 𝑤 ran ( (,) ∘ 𝑓 ) ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) = +∞ ) → ( ( vol* ‘ ( 𝑤𝐴 ) ) + ( vol* ‘ ( 𝑤𝐴 ) ) ) ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) )
33 32 adantlll ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) ∧ ( 𝑤 ⊆ ℝ ∧ ( vol* ‘ 𝑤 ) ∈ ℝ ) ) ∧ 𝑤 ran ( (,) ∘ 𝑓 ) ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) = +∞ ) → ( ( vol* ‘ ( 𝑤𝐴 ) ) + ( vol* ‘ ( 𝑤𝐴 ) ) ) ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) )
34 16 17 ax-mp ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ*
35 nltpnft ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ* → ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) = +∞ ↔ ¬ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) < +∞ ) )
36 34 35 ax-mp ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) = +∞ ↔ ¬ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) < +∞ )
37 36 necon2abii ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) < +∞ ↔ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≠ +∞ )
38 ovolge0 ( ran ( (,) ∘ 𝑓 ) ⊆ ℝ → 0 ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) )
39 16 38 ax-mp 0 ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) )
40 0re 0 ∈ ℝ
41 xrre3 ( ( ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ* ∧ 0 ∈ ℝ ) ∧ ( 0 ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) < +∞ ) ) → ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ )
42 34 40 41 mpanl12 ( ( 0 ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) < +∞ ) → ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ )
43 39 42 mpan ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) < +∞ → ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ )
44 37 43 sylbir ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≠ +∞ → ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ )
45 10 ad3antlr ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) ∧ ( 𝑤 ⊆ ℝ ∧ ( vol* ‘ 𝑤 ) ∈ ℝ ) ) ∧ 𝑤 ran ( (,) ∘ 𝑓 ) ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) → ( ( vol* ‘ ( 𝑤𝐴 ) ) + ( vol* ‘ ( 𝑤𝐴 ) ) ) ∈ ℝ )
46 simpr ( ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) → 𝑧 = ( vol ‘ 𝑎 ) )
47 eleq1w ( 𝑏 = 𝑎 → ( 𝑏 ∈ dom vol ↔ 𝑎 ∈ dom vol ) )
48 uniretop ℝ = ( topGen ‘ ran (,) )
49 48 cldss ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → 𝑏 ⊆ ℝ )
50 dfss4 ( 𝑏 ⊆ ℝ ↔ ( ℝ ∖ ( ℝ ∖ 𝑏 ) ) = 𝑏 )
51 49 50 sylib ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → ( ℝ ∖ ( ℝ ∖ 𝑏 ) ) = 𝑏 )
52 rembl ℝ ∈ dom vol
53 48 cldopn ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → ( ℝ ∖ 𝑏 ) ∈ ( topGen ‘ ran (,) ) )
54 opnmbl ( ( ℝ ∖ 𝑏 ) ∈ ( topGen ‘ ran (,) ) → ( ℝ ∖ 𝑏 ) ∈ dom vol )
55 53 54 syl ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → ( ℝ ∖ 𝑏 ) ∈ dom vol )
56 difmbl ( ( ℝ ∈ dom vol ∧ ( ℝ ∖ 𝑏 ) ∈ dom vol ) → ( ℝ ∖ ( ℝ ∖ 𝑏 ) ) ∈ dom vol )
57 52 55 56 sylancr ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → ( ℝ ∖ ( ℝ ∖ 𝑏 ) ) ∈ dom vol )
58 51 57 eqeltrrd ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → 𝑏 ∈ dom vol )
59 47 58 vtoclga ( 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → 𝑎 ∈ dom vol )
60 mblvol ( 𝑎 ∈ dom vol → ( vol ‘ 𝑎 ) = ( vol* ‘ 𝑎 ) )
61 59 60 syl ( 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → ( vol ‘ 𝑎 ) = ( vol* ‘ 𝑎 ) )
62 46 61 sylan9eqr ( ( 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) ) → 𝑧 = ( vol* ‘ 𝑎 ) )
63 62 adantl ( ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ∧ ( 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) ) ) → 𝑧 = ( vol* ‘ 𝑎 ) )
64 inss1 ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ⊆ ran ( (,) ∘ 𝑓 )
65 sstr ( ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ⊆ ran ( (,) ∘ 𝑓 ) ) → 𝑎 ran ( (,) ∘ 𝑓 ) )
66 64 65 mpan2 ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) → 𝑎 ran ( (,) ∘ 𝑓 ) )
67 66 ad2antrl ( ( 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) ) → 𝑎 ran ( (,) ∘ 𝑓 ) )
68 ovolsscl ( ( 𝑎 ran ( (,) ∘ 𝑓 ) ∧ ran ( (,) ∘ 𝑓 ) ⊆ ℝ ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) → ( vol* ‘ 𝑎 ) ∈ ℝ )
69 16 68 mp3an2 ( ( 𝑎 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) → ( vol* ‘ 𝑎 ) ∈ ℝ )
70 69 ancoms ( ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ∧ 𝑎 ran ( (,) ∘ 𝑓 ) ) → ( vol* ‘ 𝑎 ) ∈ ℝ )
71 67 70 sylan2 ( ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ∧ ( 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) ) ) → ( vol* ‘ 𝑎 ) ∈ ℝ )
72 63 71 eqeltrd ( ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ∧ ( 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) ) ) → 𝑧 ∈ ℝ )
73 72 rexlimdvaa ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ → ( ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) → 𝑧 ∈ ℝ ) )
74 73 abssdv ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ → { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } ⊆ ℝ )
75 eqeq1 ( 𝑧 = 𝑦 → ( 𝑧 = ( vol ‘ 𝑎 ) ↔ 𝑦 = ( vol ‘ 𝑎 ) ) )
76 75 anbi2d ( 𝑧 = 𝑦 → ( ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) ↔ ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑦 = ( vol ‘ 𝑎 ) ) ) )
77 76 rexbidv ( 𝑧 = 𝑦 → ( ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) ↔ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑦 = ( vol ‘ 𝑎 ) ) ) )
78 77 ralab ( ∀ 𝑦 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } 𝑦 ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ↔ ∀ 𝑦 ( ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑦 = ( vol ‘ 𝑎 ) ) → 𝑦 ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ) )
79 simpr ( ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑦 = ( vol ‘ 𝑎 ) ) → 𝑦 = ( vol ‘ 𝑎 ) )
80 79 61 sylan9eqr ( ( 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑦 = ( vol ‘ 𝑎 ) ) ) → 𝑦 = ( vol* ‘ 𝑎 ) )
81 ovolss ( ( 𝑎 ran ( (,) ∘ 𝑓 ) ∧ ran ( (,) ∘ 𝑓 ) ⊆ ℝ ) → ( vol* ‘ 𝑎 ) ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) )
82 66 16 81 sylancl ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) → ( vol* ‘ 𝑎 ) ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) )
83 82 ad2antrl ( ( 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑦 = ( vol ‘ 𝑎 ) ) ) → ( vol* ‘ 𝑎 ) ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) )
84 80 83 eqbrtrd ( ( 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑦 = ( vol ‘ 𝑎 ) ) ) → 𝑦 ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) )
85 84 rexlimiva ( ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑦 = ( vol ‘ 𝑎 ) ) → 𝑦 ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) )
86 78 85 mpgbir 𝑦 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } 𝑦 ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) )
87 brralrspcev ( ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ∧ ∀ 𝑦 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } 𝑦 ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } 𝑦𝑥 )
88 86 87 mpan2 ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } 𝑦𝑥 )
89 retop ( topGen ‘ ran (,) ) ∈ Top
90 0cld ( ( topGen ‘ ran (,) ) ∈ Top → ∅ ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) )
91 89 90 ax-mp ∅ ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) )
92 0ss ∅ ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 )
93 0mbl ∅ ∈ dom vol
94 mblvol ( ∅ ∈ dom vol → ( vol ‘ ∅ ) = ( vol* ‘ ∅ ) )
95 93 94 ax-mp ( vol ‘ ∅ ) = ( vol* ‘ ∅ )
96 ovol0 ( vol* ‘ ∅ ) = 0
97 95 96 eqtr2i 0 = ( vol ‘ ∅ )
98 92 97 pm3.2i ( ∅ ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 0 = ( vol ‘ ∅ ) )
99 sseq1 ( 𝑎 = ∅ → ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ↔ ∅ ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ) )
100 fveq2 ( 𝑎 = ∅ → ( vol ‘ 𝑎 ) = ( vol ‘ ∅ ) )
101 100 eqeq2d ( 𝑎 = ∅ → ( 0 = ( vol ‘ 𝑎 ) ↔ 0 = ( vol ‘ ∅ ) ) )
102 99 101 anbi12d ( 𝑎 = ∅ → ( ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 0 = ( vol ‘ 𝑎 ) ) ↔ ( ∅ ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 0 = ( vol ‘ ∅ ) ) ) )
103 102 rspcev ( ( ∅ ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( ∅ ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 0 = ( vol ‘ ∅ ) ) ) → ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 0 = ( vol ‘ 𝑎 ) ) )
104 91 98 103 mp2an 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 0 = ( vol ‘ 𝑎 ) )
105 c0ex 0 ∈ V
106 eqeq1 ( 𝑧 = 0 → ( 𝑧 = ( vol ‘ 𝑎 ) ↔ 0 = ( vol ‘ 𝑎 ) ) )
107 106 anbi2d ( 𝑧 = 0 → ( ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) ↔ ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 0 = ( vol ‘ 𝑎 ) ) ) )
108 107 rexbidv ( 𝑧 = 0 → ( ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) ↔ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 0 = ( vol ‘ 𝑎 ) ) ) )
109 105 108 elab ( 0 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } ↔ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 0 = ( vol ‘ 𝑎 ) ) )
110 104 109 mpbir 0 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) }
111 110 ne0ii { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } ≠ ∅
112 suprcl ( ( { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } ⊆ ℝ ∧ { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } 𝑦𝑥 ) → sup ( { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } , ℝ , < ) ∈ ℝ )
113 111 112 mp3an2 ( ( { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } 𝑦𝑥 ) → sup ( { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } , ℝ , < ) ∈ ℝ )
114 74 88 113 syl2anc ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ → sup ( { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } , ℝ , < ) ∈ ℝ )
115 simpr ( ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) → 𝑧 = ( vol ‘ 𝑐 ) )
116 eleq1w ( 𝑏 = 𝑐 → ( 𝑏 ∈ dom vol ↔ 𝑐 ∈ dom vol ) )
117 116 58 vtoclga ( 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → 𝑐 ∈ dom vol )
118 mblvol ( 𝑐 ∈ dom vol → ( vol ‘ 𝑐 ) = ( vol* ‘ 𝑐 ) )
119 117 118 syl ( 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → ( vol ‘ 𝑐 ) = ( vol* ‘ 𝑐 ) )
120 115 119 sylan9eqr ( ( 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) ) → 𝑧 = ( vol* ‘ 𝑐 ) )
121 120 adantl ( ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ∧ ( 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) ) ) → 𝑧 = ( vol* ‘ 𝑐 ) )
122 difss2 ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) → 𝑐 ran ( (,) ∘ 𝑓 ) )
123 122 ad2antrl ( ( 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) ) → 𝑐 ran ( (,) ∘ 𝑓 ) )
124 ovolsscl ( ( 𝑐 ran ( (,) ∘ 𝑓 ) ∧ ran ( (,) ∘ 𝑓 ) ⊆ ℝ ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) → ( vol* ‘ 𝑐 ) ∈ ℝ )
125 16 124 mp3an2 ( ( 𝑐 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) → ( vol* ‘ 𝑐 ) ∈ ℝ )
126 125 ancoms ( ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ∧ 𝑐 ran ( (,) ∘ 𝑓 ) ) → ( vol* ‘ 𝑐 ) ∈ ℝ )
127 123 126 sylan2 ( ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ∧ ( 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) ) ) → ( vol* ‘ 𝑐 ) ∈ ℝ )
128 121 127 eqeltrd ( ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ∧ ( 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) ) ) → 𝑧 ∈ ℝ )
129 128 rexlimdvaa ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ → ( ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) → 𝑧 ∈ ℝ ) )
130 129 abssdv ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ → { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } ⊆ ℝ )
131 eqeq1 ( 𝑧 = 𝑦 → ( 𝑧 = ( vol ‘ 𝑐 ) ↔ 𝑦 = ( vol ‘ 𝑐 ) ) )
132 131 anbi2d ( 𝑧 = 𝑦 → ( ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) ↔ ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑦 = ( vol ‘ 𝑐 ) ) ) )
133 132 rexbidv ( 𝑧 = 𝑦 → ( ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) ↔ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑦 = ( vol ‘ 𝑐 ) ) ) )
134 133 ralab ( ∀ 𝑦 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } 𝑦 ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ↔ ∀ 𝑦 ( ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑦 = ( vol ‘ 𝑐 ) ) → 𝑦 ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ) )
135 simpr ( ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑦 = ( vol ‘ 𝑐 ) ) → 𝑦 = ( vol ‘ 𝑐 ) )
136 135 119 sylan9eqr ( ( 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑦 = ( vol ‘ 𝑐 ) ) ) → 𝑦 = ( vol* ‘ 𝑐 ) )
137 ovolss ( ( 𝑐 ran ( (,) ∘ 𝑓 ) ∧ ran ( (,) ∘ 𝑓 ) ⊆ ℝ ) → ( vol* ‘ 𝑐 ) ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) )
138 122 16 137 sylancl ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) → ( vol* ‘ 𝑐 ) ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) )
139 138 ad2antrl ( ( 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑦 = ( vol ‘ 𝑐 ) ) ) → ( vol* ‘ 𝑐 ) ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) )
140 136 139 eqbrtrd ( ( 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑦 = ( vol ‘ 𝑐 ) ) ) → 𝑦 ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) )
141 140 rexlimiva ( ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑦 = ( vol ‘ 𝑐 ) ) → 𝑦 ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) )
142 134 141 mpgbir 𝑦 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } 𝑦 ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) )
143 brralrspcev ( ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ∧ ∀ 𝑦 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } 𝑦 ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } 𝑦𝑥 )
144 142 143 mpan2 ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } 𝑦𝑥 )
145 0ss ∅ ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 )
146 145 97 pm3.2i ( ∅ ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 0 = ( vol ‘ ∅ ) )
147 sseq1 ( 𝑐 = ∅ → ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ↔ ∅ ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) )
148 fveq2 ( 𝑐 = ∅ → ( vol ‘ 𝑐 ) = ( vol ‘ ∅ ) )
149 148 eqeq2d ( 𝑐 = ∅ → ( 0 = ( vol ‘ 𝑐 ) ↔ 0 = ( vol ‘ ∅ ) ) )
150 147 149 anbi12d ( 𝑐 = ∅ → ( ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 0 = ( vol ‘ 𝑐 ) ) ↔ ( ∅ ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 0 = ( vol ‘ ∅ ) ) ) )
151 150 rspcev ( ( ∅ ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( ∅ ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 0 = ( vol ‘ ∅ ) ) ) → ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 0 = ( vol ‘ 𝑐 ) ) )
152 91 146 151 mp2an 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 0 = ( vol ‘ 𝑐 ) )
153 eqeq1 ( 𝑧 = 0 → ( 𝑧 = ( vol ‘ 𝑐 ) ↔ 0 = ( vol ‘ 𝑐 ) ) )
154 153 anbi2d ( 𝑧 = 0 → ( ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) ↔ ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 0 = ( vol ‘ 𝑐 ) ) ) )
155 154 rexbidv ( 𝑧 = 0 → ( ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) ↔ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 0 = ( vol ‘ 𝑐 ) ) ) )
156 105 155 elab ( 0 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } ↔ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 0 = ( vol ‘ 𝑐 ) ) )
157 152 156 mpbir 0 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) }
158 157 ne0ii { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } ≠ ∅
159 suprcl ( ( { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } ⊆ ℝ ∧ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } 𝑦𝑥 ) → sup ( { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } , ℝ , < ) ∈ ℝ )
160 158 159 mp3an2 ( ( { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } 𝑦𝑥 ) → sup ( { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } , ℝ , < ) ∈ ℝ )
161 130 144 160 syl2anc ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ → sup ( { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } , ℝ , < ) ∈ ℝ )
162 114 161 readdcld ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ → ( sup ( { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } , ℝ , < ) + sup ( { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } , ℝ , < ) ) ∈ ℝ )
163 162 adantl ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) ∧ ( 𝑤 ⊆ ℝ ∧ ( vol* ‘ 𝑤 ) ∈ ℝ ) ) ∧ 𝑤 ran ( (,) ∘ 𝑓 ) ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) → ( sup ( { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } , ℝ , < ) + sup ( { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } , ℝ , < ) ) ∈ ℝ )
164 simpr ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) ∧ ( 𝑤 ⊆ ℝ ∧ ( vol* ‘ 𝑤 ) ∈ ℝ ) ) ∧ 𝑤 ran ( (,) ∘ 𝑓 ) ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) → ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ )
165 6 ad2antrr ( ( ( ( 𝑤 ⊆ ℝ ∧ ( vol* ‘ 𝑤 ) ∈ ℝ ) ∧ 𝑤 ran ( (,) ∘ 𝑓 ) ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) → ( vol* ‘ ( 𝑤𝐴 ) ) ∈ ℝ )
166 9 ad2antrr ( ( ( ( 𝑤 ⊆ ℝ ∧ ( vol* ‘ 𝑤 ) ∈ ℝ ) ∧ 𝑤 ran ( (,) ∘ 𝑓 ) ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) → ( vol* ‘ ( 𝑤𝐴 ) ) ∈ ℝ )
167 ovolsscl ( ( ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ⊆ ran ( (,) ∘ 𝑓 ) ∧ ran ( (,) ∘ 𝑓 ) ⊆ ℝ ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) → ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ) ∈ ℝ )
168 64 16 167 mp3an12 ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ → ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ) ∈ ℝ )
169 168 adantl ( ( ( ( 𝑤 ⊆ ℝ ∧ ( vol* ‘ 𝑤 ) ∈ ℝ ) ∧ 𝑤 ran ( (,) ∘ 𝑓 ) ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) → ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ) ∈ ℝ )
170 difss ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑓 )
171 ovolsscl ( ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑓 ) ∧ ran ( (,) ∘ 𝑓 ) ⊆ ℝ ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) → ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∈ ℝ )
172 170 16 171 mp3an12 ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ → ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∈ ℝ )
173 172 adantl ( ( ( ( 𝑤 ⊆ ℝ ∧ ( vol* ‘ 𝑤 ) ∈ ℝ ) ∧ 𝑤 ran ( (,) ∘ 𝑓 ) ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) → ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∈ ℝ )
174 ssrin ( 𝑤 ran ( (,) ∘ 𝑓 ) → ( 𝑤𝐴 ) ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) )
175 64 16 sstri ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ⊆ ℝ
176 ovolss ( ( ( 𝑤𝐴 ) ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ⊆ ℝ ) → ( vol* ‘ ( 𝑤𝐴 ) ) ≤ ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ) )
177 174 175 176 sylancl ( 𝑤 ran ( (,) ∘ 𝑓 ) → ( vol* ‘ ( 𝑤𝐴 ) ) ≤ ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ) )
178 177 ad2antlr ( ( ( ( 𝑤 ⊆ ℝ ∧ ( vol* ‘ 𝑤 ) ∈ ℝ ) ∧ 𝑤 ran ( (,) ∘ 𝑓 ) ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) → ( vol* ‘ ( 𝑤𝐴 ) ) ≤ ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ) )
179 ssdif ( 𝑤 ran ( (,) ∘ 𝑓 ) → ( 𝑤𝐴 ) ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) )
180 170 16 sstri ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ℝ
181 ovolss ( ( ( 𝑤𝐴 ) ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ℝ ) → ( vol* ‘ ( 𝑤𝐴 ) ) ≤ ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) )
182 179 180 181 sylancl ( 𝑤 ran ( (,) ∘ 𝑓 ) → ( vol* ‘ ( 𝑤𝐴 ) ) ≤ ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) )
183 182 ad2antlr ( ( ( ( 𝑤 ⊆ ℝ ∧ ( vol* ‘ 𝑤 ) ∈ ℝ ) ∧ 𝑤 ran ( (,) ∘ 𝑓 ) ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) → ( vol* ‘ ( 𝑤𝐴 ) ) ≤ ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) )
184 165 166 169 173 178 183 le2addd ( ( ( ( 𝑤 ⊆ ℝ ∧ ( vol* ‘ 𝑤 ) ∈ ℝ ) ∧ 𝑤 ran ( (,) ∘ 𝑓 ) ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) → ( ( vol* ‘ ( 𝑤𝐴 ) ) + ( vol* ‘ ( 𝑤𝐴 ) ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ) + ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) )
185 dfin4 ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) = ( ran ( (,) ∘ 𝑓 ) ∖ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) )
186 185 fveq2i ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ) = ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) )
187 186 oveq1i ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ) + ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) = ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) + ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) )
188 184 187 breqtrdi ( ( ( ( 𝑤 ⊆ ℝ ∧ ( vol* ‘ 𝑤 ) ∈ ℝ ) ∧ 𝑤 ran ( (,) ∘ 𝑓 ) ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) → ( ( vol* ‘ ( 𝑤𝐴 ) ) + ( vol* ‘ ( 𝑤𝐴 ) ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) + ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) )
189 188 adantlll ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) ∧ ( 𝑤 ⊆ ℝ ∧ ( vol* ‘ 𝑤 ) ∈ ℝ ) ) ∧ 𝑤 ran ( (,) ∘ 𝑓 ) ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) → ( ( vol* ‘ ( 𝑤𝐴 ) ) + ( vol* ‘ ( 𝑤𝐴 ) ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) + ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) )
190 simpll ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) ∧ ( 𝑤 ⊆ ℝ ∧ ( vol* ‘ 𝑤 ) ∈ ℝ ) ) ∧ 𝑤 ran ( (,) ∘ 𝑓 ) ) → ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) )
191 185 sseq2i ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ↔ 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) )
192 191 anbi1i ( ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) ↔ ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) )
193 192 rexbii ( ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) ↔ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) )
194 193 abbii { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } = { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) }
195 194 supeq1i sup ( { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } , ℝ , < ) = sup ( { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } , ℝ , < )
196 16 jctl ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ → ( ran ( (,) ∘ 𝑓 ) ⊆ ℝ ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) )
197 196 adantl ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) → ( ran ( (,) ∘ 𝑓 ) ⊆ ℝ ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) )
198 172 180 jctil ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ → ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ℝ ∧ ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∈ ℝ ) )
199 198 adantl ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) → ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ℝ ∧ ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∈ ℝ ) )
200 ltso < Or ℝ
201 200 a1i ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ → < Or ℝ )
202 id ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ → ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ )
203 vex 𝑥 ∈ V
204 eqeq1 ( 𝑧 = 𝑥 → ( 𝑧 = ( vol ‘ 𝑐 ) ↔ 𝑥 = ( vol ‘ 𝑐 ) ) )
205 204 anbi2d ( 𝑧 = 𝑥 → ( ( 𝑐 ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) ↔ ( 𝑐 ran ( (,) ∘ 𝑓 ) ∧ 𝑥 = ( vol ‘ 𝑐 ) ) ) )
206 205 rexbidv ( 𝑧 = 𝑥 → ( ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) ↔ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ran ( (,) ∘ 𝑓 ) ∧ 𝑥 = ( vol ‘ 𝑐 ) ) ) )
207 203 206 elab ( 𝑥 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } ↔ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ran ( (,) ∘ 𝑓 ) ∧ 𝑥 = ( vol ‘ 𝑐 ) ) )
208 16 137 mpan2 ( 𝑐 ran ( (,) ∘ 𝑓 ) → ( vol* ‘ 𝑐 ) ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) )
209 208 ad2antrl ( ( 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑐 ran ( (,) ∘ 𝑓 ) ∧ 𝑥 = ( vol ‘ 𝑐 ) ) ) → ( vol* ‘ 𝑐 ) ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) )
210 48 cldss ( 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → 𝑐 ⊆ ℝ )
211 ovolcl ( 𝑐 ⊆ ℝ → ( vol* ‘ 𝑐 ) ∈ ℝ* )
212 210 211 syl ( 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → ( vol* ‘ 𝑐 ) ∈ ℝ* )
213 xrlenlt ( ( ( vol* ‘ 𝑐 ) ∈ ℝ* ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ* ) → ( ( vol* ‘ 𝑐 ) ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ↔ ¬ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) < ( vol* ‘ 𝑐 ) ) )
214 212 34 213 sylancl ( 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → ( ( vol* ‘ 𝑐 ) ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ↔ ¬ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) < ( vol* ‘ 𝑐 ) ) )
215 214 adantr ( ( 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑐 ran ( (,) ∘ 𝑓 ) ∧ 𝑥 = ( vol ‘ 𝑐 ) ) ) → ( ( vol* ‘ 𝑐 ) ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ↔ ¬ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) < ( vol* ‘ 𝑐 ) ) )
216 id ( 𝑥 = ( vol ‘ 𝑐 ) → 𝑥 = ( vol ‘ 𝑐 ) )
217 216 119 sylan9eqr ( ( 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑥 = ( vol ‘ 𝑐 ) ) → 𝑥 = ( vol* ‘ 𝑐 ) )
218 breq2 ( 𝑥 = ( vol* ‘ 𝑐 ) → ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) < 𝑥 ↔ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) < ( vol* ‘ 𝑐 ) ) )
219 218 notbid ( 𝑥 = ( vol* ‘ 𝑐 ) → ( ¬ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) < 𝑥 ↔ ¬ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) < ( vol* ‘ 𝑐 ) ) )
220 217 219 syl ( ( 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑥 = ( vol ‘ 𝑐 ) ) → ( ¬ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) < 𝑥 ↔ ¬ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) < ( vol* ‘ 𝑐 ) ) )
221 220 adantrl ( ( 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑐 ran ( (,) ∘ 𝑓 ) ∧ 𝑥 = ( vol ‘ 𝑐 ) ) ) → ( ¬ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) < 𝑥 ↔ ¬ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) < ( vol* ‘ 𝑐 ) ) )
222 215 221 bitr4d ( ( 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑐 ran ( (,) ∘ 𝑓 ) ∧ 𝑥 = ( vol ‘ 𝑐 ) ) ) → ( ( vol* ‘ 𝑐 ) ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ↔ ¬ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) < 𝑥 ) )
223 209 222 mpbid ( ( 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑐 ran ( (,) ∘ 𝑓 ) ∧ 𝑥 = ( vol ‘ 𝑐 ) ) ) → ¬ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) < 𝑥 )
224 223 rexlimiva ( ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ran ( (,) ∘ 𝑓 ) ∧ 𝑥 = ( vol ‘ 𝑐 ) ) → ¬ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) < 𝑥 )
225 207 224 sylbi ( 𝑥 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } → ¬ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) < 𝑥 )
226 225 adantl ( ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ∧ 𝑥 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } ) → ¬ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) < 𝑥 )
227 retopbas ran (,) ∈ TopBases
228 bastg ( ran (,) ∈ TopBases → ran (,) ⊆ ( topGen ‘ ran (,) ) )
229 227 228 ax-mp ran (,) ⊆ ( topGen ‘ ran (,) )
230 13 229 sstri ran ( (,) ∘ 𝑓 ) ⊆ ( topGen ‘ ran (,) )
231 uniopn ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ran ( (,) ∘ 𝑓 ) ⊆ ( topGen ‘ ran (,) ) ) → ran ( (,) ∘ 𝑓 ) ∈ ( topGen ‘ ran (,) ) )
232 89 230 231 mp2an ran ( (,) ∘ 𝑓 ) ∈ ( topGen ‘ ran (,) )
233 mblfinlem2 ( ( ran ( (,) ∘ 𝑓 ) ∈ ( topGen ‘ ran (,) ) ∧ 𝑥 ∈ ℝ ∧ 𝑥 < ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ) → ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ran ( (,) ∘ 𝑓 ) ∧ 𝑥 < ( vol* ‘ 𝑐 ) ) )
234 232 233 mp3an1 ( ( 𝑥 ∈ ℝ ∧ 𝑥 < ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ) → ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ran ( (,) ∘ 𝑓 ) ∧ 𝑥 < ( vol* ‘ 𝑐 ) ) )
235 119 eqcomd ( 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → ( vol* ‘ 𝑐 ) = ( vol ‘ 𝑐 ) )
236 235 anim1i ( ( 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑥 < ( vol* ‘ 𝑐 ) ) → ( ( vol* ‘ 𝑐 ) = ( vol ‘ 𝑐 ) ∧ 𝑥 < ( vol* ‘ 𝑐 ) ) )
237 236 ex ( 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → ( 𝑥 < ( vol* ‘ 𝑐 ) → ( ( vol* ‘ 𝑐 ) = ( vol ‘ 𝑐 ) ∧ 𝑥 < ( vol* ‘ 𝑐 ) ) ) )
238 237 anim2d ( 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → ( ( 𝑐 ran ( (,) ∘ 𝑓 ) ∧ 𝑥 < ( vol* ‘ 𝑐 ) ) → ( 𝑐 ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ 𝑐 ) = ( vol ‘ 𝑐 ) ∧ 𝑥 < ( vol* ‘ 𝑐 ) ) ) ) )
239 fvex ( vol* ‘ 𝑐 ) ∈ V
240 eqeq1 ( 𝑦 = ( vol* ‘ 𝑐 ) → ( 𝑦 = ( vol ‘ 𝑐 ) ↔ ( vol* ‘ 𝑐 ) = ( vol ‘ 𝑐 ) ) )
241 240 anbi2d ( 𝑦 = ( vol* ‘ 𝑐 ) → ( ( 𝑐 ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( vol ‘ 𝑐 ) ) ↔ ( 𝑐 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ 𝑐 ) = ( vol ‘ 𝑐 ) ) ) )
242 breq2 ( 𝑦 = ( vol* ‘ 𝑐 ) → ( 𝑥 < 𝑦𝑥 < ( vol* ‘ 𝑐 ) ) )
243 241 242 anbi12d ( 𝑦 = ( vol* ‘ 𝑐 ) → ( ( ( 𝑐 ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( vol ‘ 𝑐 ) ) ∧ 𝑥 < 𝑦 ) ↔ ( ( 𝑐 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ 𝑐 ) = ( vol ‘ 𝑐 ) ) ∧ 𝑥 < ( vol* ‘ 𝑐 ) ) ) )
244 239 243 spcev ( ( ( 𝑐 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ 𝑐 ) = ( vol ‘ 𝑐 ) ) ∧ 𝑥 < ( vol* ‘ 𝑐 ) ) → ∃ 𝑦 ( ( 𝑐 ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( vol ‘ 𝑐 ) ) ∧ 𝑥 < 𝑦 ) )
245 244 anasss ( ( 𝑐 ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ 𝑐 ) = ( vol ‘ 𝑐 ) ∧ 𝑥 < ( vol* ‘ 𝑐 ) ) ) → ∃ 𝑦 ( ( 𝑐 ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( vol ‘ 𝑐 ) ) ∧ 𝑥 < 𝑦 ) )
246 238 245 syl6 ( 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → ( ( 𝑐 ran ( (,) ∘ 𝑓 ) ∧ 𝑥 < ( vol* ‘ 𝑐 ) ) → ∃ 𝑦 ( ( 𝑐 ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( vol ‘ 𝑐 ) ) ∧ 𝑥 < 𝑦 ) ) )
247 246 reximia ( ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ran ( (,) ∘ 𝑓 ) ∧ 𝑥 < ( vol* ‘ 𝑐 ) ) → ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∃ 𝑦 ( ( 𝑐 ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( vol ‘ 𝑐 ) ) ∧ 𝑥 < 𝑦 ) )
248 234 247 syl ( ( 𝑥 ∈ ℝ ∧ 𝑥 < ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ) → ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∃ 𝑦 ( ( 𝑐 ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( vol ‘ 𝑐 ) ) ∧ 𝑥 < 𝑦 ) )
249 r19.41v ( ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( ( 𝑐 ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( vol ‘ 𝑐 ) ) ∧ 𝑥 < 𝑦 ) ↔ ( ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( vol ‘ 𝑐 ) ) ∧ 𝑥 < 𝑦 ) )
250 249 exbii ( ∃ 𝑦𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( ( 𝑐 ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( vol ‘ 𝑐 ) ) ∧ 𝑥 < 𝑦 ) ↔ ∃ 𝑦 ( ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( vol ‘ 𝑐 ) ) ∧ 𝑥 < 𝑦 ) )
251 rexcom4 ( ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∃ 𝑦 ( ( 𝑐 ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( vol ‘ 𝑐 ) ) ∧ 𝑥 < 𝑦 ) ↔ ∃ 𝑦𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( ( 𝑐 ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( vol ‘ 𝑐 ) ) ∧ 𝑥 < 𝑦 ) )
252 131 anbi2d ( 𝑧 = 𝑦 → ( ( 𝑐 ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) ↔ ( 𝑐 ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( vol ‘ 𝑐 ) ) ) )
253 252 rexbidv ( 𝑧 = 𝑦 → ( ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) ↔ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( vol ‘ 𝑐 ) ) ) )
254 253 rexab ( ∃ 𝑦 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } 𝑥 < 𝑦 ↔ ∃ 𝑦 ( ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( vol ‘ 𝑐 ) ) ∧ 𝑥 < 𝑦 ) )
255 250 251 254 3bitr4i ( ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∃ 𝑦 ( ( 𝑐 ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( vol ‘ 𝑐 ) ) ∧ 𝑥 < 𝑦 ) ↔ ∃ 𝑦 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } 𝑥 < 𝑦 )
256 248 255 sylib ( ( 𝑥 ∈ ℝ ∧ 𝑥 < ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ) → ∃ 𝑦 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } 𝑥 < 𝑦 )
257 256 adantl ( ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ) ) → ∃ 𝑦 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } 𝑥 < 𝑦 )
258 201 202 226 257 eqsupd ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ → sup ( { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } , ℝ , < ) = ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) )
259 258 eqcomd ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ → ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) = sup ( { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } , ℝ , < ) )
260 259 adantl ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) → ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) = sup ( { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } , ℝ , < ) )
261 sseq1 ( 𝑐 = 𝑎 → ( 𝑐 ran ( (,) ∘ 𝑓 ) ↔ 𝑎 ran ( (,) ∘ 𝑓 ) ) )
262 fveq2 ( 𝑐 = 𝑎 → ( vol ‘ 𝑐 ) = ( vol ‘ 𝑎 ) )
263 262 eqeq2d ( 𝑐 = 𝑎 → ( 𝑧 = ( vol ‘ 𝑐 ) ↔ 𝑧 = ( vol ‘ 𝑎 ) ) )
264 261 263 anbi12d ( 𝑐 = 𝑎 → ( ( 𝑐 ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) ↔ ( 𝑎 ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) ) )
265 264 cbvrexvw ( ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) ↔ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) )
266 265 abbii { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } = { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) }
267 266 supeq1i sup ( { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } , ℝ , < ) = sup ( { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } , ℝ , < )
268 260 267 eqtrdi ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) → ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) = sup ( { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } , ℝ , < ) )
269 simpll ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) → ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) )
270 eqeq1 ( 𝑦 = 𝑧 → ( 𝑦 = ( vol ‘ 𝑏 ) ↔ 𝑧 = ( vol ‘ 𝑏 ) ) )
271 270 anbi2d ( 𝑦 = 𝑧 → ( ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) ↔ ( 𝑏𝐴𝑧 = ( vol ‘ 𝑏 ) ) ) )
272 271 rexbidv ( 𝑦 = 𝑧 → ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) ↔ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑧 = ( vol ‘ 𝑏 ) ) ) )
273 sseq1 ( 𝑏 = 𝑐 → ( 𝑏𝐴𝑐𝐴 ) )
274 fveq2 ( 𝑏 = 𝑐 → ( vol ‘ 𝑏 ) = ( vol ‘ 𝑐 ) )
275 274 eqeq2d ( 𝑏 = 𝑐 → ( 𝑧 = ( vol ‘ 𝑏 ) ↔ 𝑧 = ( vol ‘ 𝑐 ) ) )
276 273 275 anbi12d ( 𝑏 = 𝑐 → ( ( 𝑏𝐴𝑧 = ( vol ‘ 𝑏 ) ) ↔ ( 𝑐𝐴𝑧 = ( vol ‘ 𝑐 ) ) ) )
277 276 cbvrexvw ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑧 = ( vol ‘ 𝑏 ) ) ↔ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐𝐴𝑧 = ( vol ‘ 𝑐 ) ) )
278 272 277 bitrdi ( 𝑦 = 𝑧 → ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) ↔ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐𝐴𝑧 = ( vol ‘ 𝑐 ) ) ) )
279 278 cbvabv { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } = { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐𝐴𝑧 = ( vol ‘ 𝑐 ) ) }
280 279 supeq1i sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) = sup ( { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐𝐴𝑧 = ( vol ‘ 𝑐 ) ) } , ℝ , < )
281 280 eqeq2i ( ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ↔ ( vol* ‘ 𝐴 ) = sup ( { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐𝐴𝑧 = ( vol ‘ 𝑐 ) ) } , ℝ , < ) )
282 281 biimpi ( ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) → ( vol* ‘ 𝐴 ) = sup ( { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐𝐴𝑧 = ( vol ‘ 𝑐 ) ) } , ℝ , < ) )
283 282 ad2antlr ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) → ( vol* ‘ 𝐴 ) = sup ( { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐𝐴𝑧 = ( vol ‘ 𝑐 ) ) } , ℝ , < ) )
284 mblfinlem3 ( ( ( ran ( (,) ∘ 𝑓 ) ⊆ ℝ ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) ∧ ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) = sup ( { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } , ℝ , < ) ∧ ( vol* ‘ 𝐴 ) = sup ( { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐𝐴𝑧 = ( vol ‘ 𝑐 ) ) } , ℝ , < ) ) ) → sup ( { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } , ℝ , < ) = ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) )
285 197 269 260 283 284 syl112anc ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) → sup ( { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } , ℝ , < ) = ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) )
286 sseq1 ( 𝑐 = 𝑎 → ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ↔ 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) )
287 286 263 anbi12d ( 𝑐 = 𝑎 → ( ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) ↔ ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) ) )
288 287 cbvrexvw ( ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) ↔ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) )
289 288 abbii { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } = { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) }
290 289 supeq1i sup ( { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } , ℝ , < ) = sup ( { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } , ℝ , < )
291 285 290 eqtr3di ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) → ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) = sup ( { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } , ℝ , < ) )
292 mblfinlem3 ( ( ( ran ( (,) ∘ 𝑓 ) ⊆ ℝ ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ℝ ∧ ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∈ ℝ ) ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) = sup ( { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } , ℝ , < ) ∧ ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) = sup ( { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } , ℝ , < ) ) ) → sup ( { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } , ℝ , < ) = ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) )
293 197 199 268 291 292 syl112anc ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) → sup ( { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } , ℝ , < ) = ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) )
294 195 293 syl5eq ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) → sup ( { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } , ℝ , < ) = ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) )
295 294 285 oveq12d ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) → ( sup ( { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } , ℝ , < ) + sup ( { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } , ℝ , < ) ) = ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) + ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) )
296 190 295 sylan ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) ∧ ( 𝑤 ⊆ ℝ ∧ ( vol* ‘ 𝑤 ) ∈ ℝ ) ) ∧ 𝑤 ran ( (,) ∘ 𝑓 ) ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) → ( sup ( { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } , ℝ , < ) + sup ( { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } , ℝ , < ) ) = ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) + ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) )
297 189 296 breqtrrd ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) ∧ ( 𝑤 ⊆ ℝ ∧ ( vol* ‘ 𝑤 ) ∈ ℝ ) ) ∧ 𝑤 ran ( (,) ∘ 𝑓 ) ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) → ( ( vol* ‘ ( 𝑤𝐴 ) ) + ( vol* ‘ ( 𝑤𝐴 ) ) ) ≤ ( sup ( { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } , ℝ , < ) + sup ( { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } , ℝ , < ) ) )
298 ne0i ( 0 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } → { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } ≠ ∅ )
299 110 298 mp1i ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ → { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } ≠ ∅ )
300 ne0i ( 0 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } → { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } ≠ ∅ )
301 157 300 mp1i ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ → { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } ≠ ∅ )
302 eqid { 𝑡 ∣ ∃ 𝑢 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } ∃ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } 𝑡 = ( 𝑢 + 𝑣 ) } = { 𝑡 ∣ ∃ 𝑢 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } ∃ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } 𝑡 = ( 𝑢 + 𝑣 ) }
303 74 299 88 130 301 144 302 supadd ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ → ( sup ( { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } , ℝ , < ) + sup ( { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } , ℝ , < ) ) = sup ( { 𝑡 ∣ ∃ 𝑢 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } ∃ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } 𝑡 = ( 𝑢 + 𝑣 ) } , ℝ , < ) )
304 reeanv ( ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑢 = ( vol ‘ 𝑎 ) ) ∧ ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑣 = ( vol ‘ 𝑐 ) ) ) ↔ ( ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑢 = ( vol ‘ 𝑎 ) ) ∧ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑣 = ( vol ‘ 𝑐 ) ) ) )
305 vex 𝑢 ∈ V
306 eqeq1 ( 𝑧 = 𝑢 → ( 𝑧 = ( vol ‘ 𝑎 ) ↔ 𝑢 = ( vol ‘ 𝑎 ) ) )
307 306 anbi2d ( 𝑧 = 𝑢 → ( ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) ↔ ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑢 = ( vol ‘ 𝑎 ) ) ) )
308 307 rexbidv ( 𝑧 = 𝑢 → ( ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) ↔ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑢 = ( vol ‘ 𝑎 ) ) ) )
309 305 308 elab ( 𝑢 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } ↔ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑢 = ( vol ‘ 𝑎 ) ) )
310 vex 𝑣 ∈ V
311 eqeq1 ( 𝑧 = 𝑣 → ( 𝑧 = ( vol ‘ 𝑐 ) ↔ 𝑣 = ( vol ‘ 𝑐 ) ) )
312 311 anbi2d ( 𝑧 = 𝑣 → ( ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) ↔ ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑣 = ( vol ‘ 𝑐 ) ) ) )
313 312 rexbidv ( 𝑧 = 𝑣 → ( ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) ↔ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑣 = ( vol ‘ 𝑐 ) ) ) )
314 310 313 elab ( 𝑣 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } ↔ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑣 = ( vol ‘ 𝑐 ) ) )
315 309 314 anbi12i ( ( 𝑢 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } ∧ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } ) ↔ ( ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑢 = ( vol ‘ 𝑎 ) ) ∧ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑣 = ( vol ‘ 𝑐 ) ) ) )
316 304 315 bitr4i ( ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑢 = ( vol ‘ 𝑎 ) ) ∧ ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑣 = ( vol ‘ 𝑐 ) ) ) ↔ ( 𝑢 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } ∧ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } ) )
317 an4 ( ( ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∧ ( 𝑢 = ( vol ‘ 𝑎 ) ∧ 𝑣 = ( vol ‘ 𝑐 ) ) ) ↔ ( ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑢 = ( vol ‘ 𝑎 ) ) ∧ ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑣 = ( vol ‘ 𝑐 ) ) ) )
318 oveq12 ( ( 𝑢 = ( vol ‘ 𝑎 ) ∧ 𝑣 = ( vol ‘ 𝑐 ) ) → ( 𝑢 + 𝑣 ) = ( ( vol ‘ 𝑎 ) + ( vol ‘ 𝑐 ) ) )
319 59 adantr ( ( 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) → 𝑎 ∈ dom vol )
320 319 ad2antlr ( ( ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ∧ ( 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) → 𝑎 ∈ dom vol )
321 117 adantl ( ( 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) → 𝑐 ∈ dom vol )
322 321 ad2antlr ( ( ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ∧ ( 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) → 𝑐 ∈ dom vol )
323 ss2in ( ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) → ( 𝑎𝑐 ) ⊆ ( ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∩ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) )
324 185 ineq1i ( ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∩ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) = ( ( ran ( (,) ∘ 𝑓 ) ∖ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∩ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) )
325 incom ( ( ran ( (,) ∘ 𝑓 ) ∖ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∩ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) = ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∩ ( ran ( (,) ∘ 𝑓 ) ∖ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) )
326 disjdif ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∩ ( ran ( (,) ∘ 𝑓 ) ∖ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) = ∅
327 324 325 326 3eqtri ( ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∩ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) = ∅
328 323 327 sseqtrdi ( ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) → ( 𝑎𝑐 ) ⊆ ∅ )
329 ss0 ( ( 𝑎𝑐 ) ⊆ ∅ → ( 𝑎𝑐 ) = ∅ )
330 328 329 syl ( ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) → ( 𝑎𝑐 ) = ∅ )
331 330 adantl ( ( ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ∧ ( 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) → ( 𝑎𝑐 ) = ∅ )
332 61 adantr ( ( 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) → ( vol ‘ 𝑎 ) = ( vol* ‘ 𝑎 ) )
333 332 ad2antlr ( ( ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ∧ ( 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) → ( vol ‘ 𝑎 ) = ( vol* ‘ 𝑎 ) )
334 66 16 jctir ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) → ( 𝑎 ran ( (,) ∘ 𝑓 ) ∧ ran ( (,) ∘ 𝑓 ) ⊆ ℝ ) )
335 68 3expa ( ( ( 𝑎 ran ( (,) ∘ 𝑓 ) ∧ ran ( (,) ∘ 𝑓 ) ⊆ ℝ ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) → ( vol* ‘ 𝑎 ) ∈ ℝ )
336 334 335 sylan ( ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) → ( vol* ‘ 𝑎 ) ∈ ℝ )
337 336 ancoms ( ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ∧ 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ) → ( vol* ‘ 𝑎 ) ∈ ℝ )
338 337 ad2ant2r ( ( ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ∧ ( 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) → ( vol* ‘ 𝑎 ) ∈ ℝ )
339 333 338 eqeltrd ( ( ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ∧ ( 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) → ( vol ‘ 𝑎 ) ∈ ℝ )
340 119 adantl ( ( 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) → ( vol ‘ 𝑐 ) = ( vol* ‘ 𝑐 ) )
341 340 ad2antlr ( ( ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ∧ ( 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) → ( vol ‘ 𝑐 ) = ( vol* ‘ 𝑐 ) )
342 122 16 jctir ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) → ( 𝑐 ran ( (,) ∘ 𝑓 ) ∧ ran ( (,) ∘ 𝑓 ) ⊆ ℝ ) )
343 124 3expa ( ( ( 𝑐 ran ( (,) ∘ 𝑓 ) ∧ ran ( (,) ∘ 𝑓 ) ⊆ ℝ ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) → ( vol* ‘ 𝑐 ) ∈ ℝ )
344 342 343 sylan ( ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) → ( vol* ‘ 𝑐 ) ∈ ℝ )
345 344 ancoms ( ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ∧ 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) → ( vol* ‘ 𝑐 ) ∈ ℝ )
346 345 ad2ant2rl ( ( ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ∧ ( 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) → ( vol* ‘ 𝑐 ) ∈ ℝ )
347 341 346 eqeltrd ( ( ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ∧ ( 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) → ( vol ‘ 𝑐 ) ∈ ℝ )
348 volun ( ( ( 𝑎 ∈ dom vol ∧ 𝑐 ∈ dom vol ∧ ( 𝑎𝑐 ) = ∅ ) ∧ ( ( vol ‘ 𝑎 ) ∈ ℝ ∧ ( vol ‘ 𝑐 ) ∈ ℝ ) ) → ( vol ‘ ( 𝑎𝑐 ) ) = ( ( vol ‘ 𝑎 ) + ( vol ‘ 𝑐 ) ) )
349 320 322 331 339 347 348 syl32anc ( ( ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ∧ ( 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) → ( vol ‘ ( 𝑎𝑐 ) ) = ( ( vol ‘ 𝑎 ) + ( vol ‘ 𝑐 ) ) )
350 unmbl ( ( 𝑎 ∈ dom vol ∧ 𝑐 ∈ dom vol ) → ( 𝑎𝑐 ) ∈ dom vol )
351 59 117 350 syl2an ( ( 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) → ( 𝑎𝑐 ) ∈ dom vol )
352 mblvol ( ( 𝑎𝑐 ) ∈ dom vol → ( vol ‘ ( 𝑎𝑐 ) ) = ( vol* ‘ ( 𝑎𝑐 ) ) )
353 351 352 syl ( ( 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) → ( vol ‘ ( 𝑎𝑐 ) ) = ( vol* ‘ ( 𝑎𝑐 ) ) )
354 353 ad2antlr ( ( ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ∧ ( 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) → ( vol ‘ ( 𝑎𝑐 ) ) = ( vol* ‘ ( 𝑎𝑐 ) ) )
355 349 354 eqtr3d ( ( ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ∧ ( 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) → ( ( vol ‘ 𝑎 ) + ( vol ‘ 𝑐 ) ) = ( vol* ‘ ( 𝑎𝑐 ) ) )
356 318 355 sylan9eqr ( ( ( ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ∧ ( 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ∧ ( 𝑢 = ( vol ‘ 𝑎 ) ∧ 𝑣 = ( vol ‘ 𝑐 ) ) ) → ( 𝑢 + 𝑣 ) = ( vol* ‘ ( 𝑎𝑐 ) ) )
357 eqtr ( ( 𝑦 = ( 𝑢 + 𝑣 ) ∧ ( 𝑢 + 𝑣 ) = ( vol* ‘ ( 𝑎𝑐 ) ) ) → 𝑦 = ( vol* ‘ ( 𝑎𝑐 ) ) )
358 357 ancoms ( ( ( 𝑢 + 𝑣 ) = ( vol* ‘ ( 𝑎𝑐 ) ) ∧ 𝑦 = ( 𝑢 + 𝑣 ) ) → 𝑦 = ( vol* ‘ ( 𝑎𝑐 ) ) )
359 356 358 sylan ( ( ( ( ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ∧ ( 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ∧ ( 𝑢 = ( vol ‘ 𝑎 ) ∧ 𝑣 = ( vol ‘ 𝑐 ) ) ) ∧ 𝑦 = ( 𝑢 + 𝑣 ) ) → 𝑦 = ( vol* ‘ ( 𝑎𝑐 ) ) )
360 66 122 anim12i ( ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) → ( 𝑎 ran ( (,) ∘ 𝑓 ) ∧ 𝑐 ran ( (,) ∘ 𝑓 ) ) )
361 unss ( ( 𝑎 ran ( (,) ∘ 𝑓 ) ∧ 𝑐 ran ( (,) ∘ 𝑓 ) ) ↔ ( 𝑎𝑐 ) ⊆ ran ( (,) ∘ 𝑓 ) )
362 360 361 sylib ( ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) → ( 𝑎𝑐 ) ⊆ ran ( (,) ∘ 𝑓 ) )
363 ovolss ( ( ( 𝑎𝑐 ) ⊆ ran ( (,) ∘ 𝑓 ) ∧ ran ( (,) ∘ 𝑓 ) ⊆ ℝ ) → ( vol* ‘ ( 𝑎𝑐 ) ) ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) )
364 362 16 363 sylancl ( ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) → ( vol* ‘ ( 𝑎𝑐 ) ) ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) )
365 364 ad3antlr ( ( ( ( ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ∧ ( 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ∧ ( 𝑢 = ( vol ‘ 𝑎 ) ∧ 𝑣 = ( vol ‘ 𝑐 ) ) ) ∧ 𝑦 = ( 𝑢 + 𝑣 ) ) → ( vol* ‘ ( 𝑎𝑐 ) ) ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) )
366 359 365 eqbrtrd ( ( ( ( ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ∧ ( 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ∧ ( 𝑢 = ( vol ‘ 𝑎 ) ∧ 𝑣 = ( vol ‘ 𝑐 ) ) ) ∧ 𝑦 = ( 𝑢 + 𝑣 ) ) → 𝑦 ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) )
367 366 ex ( ( ( ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ∧ ( 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ∧ ( 𝑢 = ( vol ‘ 𝑎 ) ∧ 𝑣 = ( vol ‘ 𝑐 ) ) ) → ( 𝑦 = ( 𝑢 + 𝑣 ) → 𝑦 ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ) )
368 367 expl ( ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ∧ ( 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) → ( ( ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∧ ( 𝑢 = ( vol ‘ 𝑎 ) ∧ 𝑣 = ( vol ‘ 𝑐 ) ) ) → ( 𝑦 = ( 𝑢 + 𝑣 ) → 𝑦 ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ) ) )
369 317 368 syl5bir ( ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ∧ ( 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) → ( ( ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑢 = ( vol ‘ 𝑎 ) ) ∧ ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑣 = ( vol ‘ 𝑐 ) ) ) → ( 𝑦 = ( 𝑢 + 𝑣 ) → 𝑦 ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ) ) )
370 369 rexlimdvva ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ → ( ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑢 = ( vol ‘ 𝑎 ) ) ∧ ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑣 = ( vol ‘ 𝑐 ) ) ) → ( 𝑦 = ( 𝑢 + 𝑣 ) → 𝑦 ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ) ) )
371 316 370 syl5bir ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ → ( ( 𝑢 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } ∧ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } ) → ( 𝑦 = ( 𝑢 + 𝑣 ) → 𝑦 ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ) ) )
372 371 rexlimdvv ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ → ( ∃ 𝑢 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } ∃ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } 𝑦 = ( 𝑢 + 𝑣 ) → 𝑦 ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ) )
373 372 alrimiv ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ → ∀ 𝑦 ( ∃ 𝑢 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } ∃ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } 𝑦 = ( 𝑢 + 𝑣 ) → 𝑦 ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ) )
374 eqeq1 ( 𝑡 = 𝑦 → ( 𝑡 = ( 𝑢 + 𝑣 ) ↔ 𝑦 = ( 𝑢 + 𝑣 ) ) )
375 374 2rexbidv ( 𝑡 = 𝑦 → ( ∃ 𝑢 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } ∃ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } 𝑡 = ( 𝑢 + 𝑣 ) ↔ ∃ 𝑢 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } ∃ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } 𝑦 = ( 𝑢 + 𝑣 ) ) )
376 375 ralab ( ∀ 𝑦 ∈ { 𝑡 ∣ ∃ 𝑢 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } ∃ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } 𝑡 = ( 𝑢 + 𝑣 ) } 𝑦 ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ↔ ∀ 𝑦 ( ∃ 𝑢 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } ∃ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } 𝑦 = ( 𝑢 + 𝑣 ) → 𝑦 ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ) )
377 373 376 sylibr ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ → ∀ 𝑦 ∈ { 𝑡 ∣ ∃ 𝑢 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } ∃ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } 𝑡 = ( 𝑢 + 𝑣 ) } 𝑦 ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) )
378 simpr ( ( ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ∧ ( 𝑢 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } ∧ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } ) ) ∧ 𝑡 = ( 𝑢 + 𝑣 ) ) → 𝑡 = ( 𝑢 + 𝑣 ) )
379 74 sselda ( ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ∧ 𝑢 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } ) → 𝑢 ∈ ℝ )
380 130 sselda ( ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ∧ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } ) → 𝑣 ∈ ℝ )
381 readdcl ( ( 𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ ) → ( 𝑢 + 𝑣 ) ∈ ℝ )
382 379 380 381 syl2an ( ( ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ∧ 𝑢 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } ) ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ∧ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } ) ) → ( 𝑢 + 𝑣 ) ∈ ℝ )
383 382 anandis ( ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ∧ ( 𝑢 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } ∧ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } ) ) → ( 𝑢 + 𝑣 ) ∈ ℝ )
384 383 adantr ( ( ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ∧ ( 𝑢 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } ∧ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } ) ) ∧ 𝑡 = ( 𝑢 + 𝑣 ) ) → ( 𝑢 + 𝑣 ) ∈ ℝ )
385 378 384 eqeltrd ( ( ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ∧ ( 𝑢 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } ∧ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } ) ) ∧ 𝑡 = ( 𝑢 + 𝑣 ) ) → 𝑡 ∈ ℝ )
386 385 ex ( ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ∧ ( 𝑢 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } ∧ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } ) ) → ( 𝑡 = ( 𝑢 + 𝑣 ) → 𝑡 ∈ ℝ ) )
387 386 rexlimdvva ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ → ( ∃ 𝑢 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } ∃ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } 𝑡 = ( 𝑢 + 𝑣 ) → 𝑡 ∈ ℝ ) )
388 387 abssdv ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ → { 𝑡 ∣ ∃ 𝑢 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } ∃ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } 𝑡 = ( 𝑢 + 𝑣 ) } ⊆ ℝ )
389 00id ( 0 + 0 ) = 0
390 389 eqcomi 0 = ( 0 + 0 )
391 rspceov ( ( 0 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } ∧ 0 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } ∧ 0 = ( 0 + 0 ) ) → ∃ 𝑢 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } ∃ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } 0 = ( 𝑢 + 𝑣 ) )
392 110 157 390 391 mp3an 𝑢 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } ∃ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } 0 = ( 𝑢 + 𝑣 )
393 eqeq1 ( 𝑡 = 0 → ( 𝑡 = ( 𝑢 + 𝑣 ) ↔ 0 = ( 𝑢 + 𝑣 ) ) )
394 393 2rexbidv ( 𝑡 = 0 → ( ∃ 𝑢 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } ∃ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } 𝑡 = ( 𝑢 + 𝑣 ) ↔ ∃ 𝑢 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } ∃ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } 0 = ( 𝑢 + 𝑣 ) ) )
395 105 394 spcev ( ∃ 𝑢 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } ∃ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } 0 = ( 𝑢 + 𝑣 ) → ∃ 𝑡𝑢 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } ∃ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } 𝑡 = ( 𝑢 + 𝑣 ) )
396 392 395 ax-mp 𝑡𝑢 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } ∃ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } 𝑡 = ( 𝑢 + 𝑣 )
397 abn0 ( { 𝑡 ∣ ∃ 𝑢 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } ∃ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } 𝑡 = ( 𝑢 + 𝑣 ) } ≠ ∅ ↔ ∃ 𝑡𝑢 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } ∃ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } 𝑡 = ( 𝑢 + 𝑣 ) )
398 396 397 mpbir { 𝑡 ∣ ∃ 𝑢 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } ∃ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } 𝑡 = ( 𝑢 + 𝑣 ) } ≠ ∅
399 398 a1i ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ → { 𝑡 ∣ ∃ 𝑢 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } ∃ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } 𝑡 = ( 𝑢 + 𝑣 ) } ≠ ∅ )
400 brralrspcev ( ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ∧ ∀ 𝑦 ∈ { 𝑡 ∣ ∃ 𝑢 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } ∃ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } 𝑡 = ( 𝑢 + 𝑣 ) } 𝑦 ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ { 𝑡 ∣ ∃ 𝑢 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } ∃ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } 𝑡 = ( 𝑢 + 𝑣 ) } 𝑦𝑥 )
401 377 400 mpdan ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ { 𝑡 ∣ ∃ 𝑢 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } ∃ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } 𝑡 = ( 𝑢 + 𝑣 ) } 𝑦𝑥 )
402 388 399 401 3jca ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ → ( { 𝑡 ∣ ∃ 𝑢 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } ∃ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } 𝑡 = ( 𝑢 + 𝑣 ) } ⊆ ℝ ∧ { 𝑡 ∣ ∃ 𝑢 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } ∃ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } 𝑡 = ( 𝑢 + 𝑣 ) } ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ { 𝑡 ∣ ∃ 𝑢 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } ∃ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } 𝑡 = ( 𝑢 + 𝑣 ) } 𝑦𝑥 ) )
403 suprleub ( ( ( { 𝑡 ∣ ∃ 𝑢 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } ∃ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } 𝑡 = ( 𝑢 + 𝑣 ) } ⊆ ℝ ∧ { 𝑡 ∣ ∃ 𝑢 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } ∃ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } 𝑡 = ( 𝑢 + 𝑣 ) } ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ { 𝑡 ∣ ∃ 𝑢 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } ∃ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } 𝑡 = ( 𝑢 + 𝑣 ) } 𝑦𝑥 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) → ( sup ( { 𝑡 ∣ ∃ 𝑢 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } ∃ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } 𝑡 = ( 𝑢 + 𝑣 ) } , ℝ , < ) ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ↔ ∀ 𝑦 ∈ { 𝑡 ∣ ∃ 𝑢 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } ∃ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } 𝑡 = ( 𝑢 + 𝑣 ) } 𝑦 ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ) )
404 402 403 mpancom ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ → ( sup ( { 𝑡 ∣ ∃ 𝑢 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } ∃ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } 𝑡 = ( 𝑢 + 𝑣 ) } , ℝ , < ) ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ↔ ∀ 𝑦 ∈ { 𝑡 ∣ ∃ 𝑢 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } ∃ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } 𝑡 = ( 𝑢 + 𝑣 ) } 𝑦 ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ) )
405 377 404 mpbird ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ → sup ( { 𝑡 ∣ ∃ 𝑢 ∈ { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } ∃ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } 𝑡 = ( 𝑢 + 𝑣 ) } , ℝ , < ) ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) )
406 303 405 eqbrtrd ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ → ( sup ( { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } , ℝ , < ) + sup ( { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } , ℝ , < ) ) ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) )
407 406 adantl ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) ∧ ( 𝑤 ⊆ ℝ ∧ ( vol* ‘ 𝑤 ) ∈ ℝ ) ) ∧ 𝑤 ran ( (,) ∘ 𝑓 ) ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) → ( sup ( { 𝑧 ∣ ∃ 𝑎 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑎 ⊆ ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑎 ) ) } , ℝ , < ) + sup ( { 𝑧 ∣ ∃ 𝑐 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑐 ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∧ 𝑧 = ( vol ‘ 𝑐 ) ) } , ℝ , < ) ) ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) )
408 45 163 164 297 407 letrd ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) ∧ ( 𝑤 ⊆ ℝ ∧ ( vol* ‘ 𝑤 ) ∈ ℝ ) ) ∧ 𝑤 ran ( (,) ∘ 𝑓 ) ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) → ( ( vol* ‘ ( 𝑤𝐴 ) ) + ( vol* ‘ ( 𝑤𝐴 ) ) ) ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) )
409 44 408 sylan2 ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) ∧ ( 𝑤 ⊆ ℝ ∧ ( vol* ‘ 𝑤 ) ∈ ℝ ) ) ∧ 𝑤 ran ( (,) ∘ 𝑓 ) ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≠ +∞ ) → ( ( vol* ‘ ( 𝑤𝐴 ) ) + ( vol* ‘ ( 𝑤𝐴 ) ) ) ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) )
410 33 409 pm2.61dane ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) ∧ ( 𝑤 ⊆ ℝ ∧ ( vol* ‘ 𝑤 ) ∈ ℝ ) ) ∧ 𝑤 ran ( (,) ∘ 𝑓 ) ) → ( ( vol* ‘ ( 𝑤𝐴 ) ) + ( vol* ‘ ( 𝑤𝐴 ) ) ) ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) )
411 410 adantlr ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) ∧ ( 𝑤 ⊆ ℝ ∧ ( vol* ‘ 𝑤 ) ∈ ℝ ) ) ∧ 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) ∧ 𝑤 ran ( (,) ∘ 𝑓 ) ) → ( ( vol* ‘ ( 𝑤𝐴 ) ) + ( vol* ‘ ( 𝑤𝐴 ) ) ) ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) )
412 ssid ran ( (,) ∘ 𝑓 ) ⊆ ran ( (,) ∘ 𝑓 )
413 20 ovollb ( ( 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ran ( (,) ∘ 𝑓 ) ⊆ ran ( (,) ∘ 𝑓 ) ) → ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) )
414 412 413 mpan2 ( 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) )
415 414 ad2antlr ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) ∧ ( 𝑤 ⊆ ℝ ∧ ( vol* ‘ 𝑤 ) ∈ ℝ ) ) ∧ 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) ∧ 𝑤 ran ( (,) ∘ 𝑓 ) ) → ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) )
416 12 18 27 411 415 xrletrd ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) ∧ ( 𝑤 ⊆ ℝ ∧ ( vol* ‘ 𝑤 ) ∈ ℝ ) ) ∧ 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) ∧ 𝑤 ran ( (,) ∘ 𝑓 ) ) → ( ( vol* ‘ ( 𝑤𝐴 ) ) + ( vol* ‘ ( 𝑤𝐴 ) ) ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) )
417 416 adantr ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) ∧ ( 𝑤 ⊆ ℝ ∧ ( vol* ‘ 𝑤 ) ∈ ℝ ) ) ∧ 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) ∧ 𝑤 ran ( (,) ∘ 𝑓 ) ) ∧ 𝑢 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) → ( ( vol* ‘ ( 𝑤𝐴 ) ) + ( vol* ‘ ( 𝑤𝐴 ) ) ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) )
418 simpr ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) ∧ ( 𝑤 ⊆ ℝ ∧ ( vol* ‘ 𝑤 ) ∈ ℝ ) ) ∧ 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) ∧ 𝑤 ran ( (,) ∘ 𝑓 ) ) ∧ 𝑢 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) → 𝑢 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) )
419 417 418 breqtrrd ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) ∧ ( 𝑤 ⊆ ℝ ∧ ( vol* ‘ 𝑤 ) ∈ ℝ ) ) ∧ 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) ∧ 𝑤 ran ( (,) ∘ 𝑓 ) ) ∧ 𝑢 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) → ( ( vol* ‘ ( 𝑤𝐴 ) ) + ( vol* ‘ ( 𝑤𝐴 ) ) ) ≤ 𝑢 )
420 419 expl ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) ∧ ( 𝑤 ⊆ ℝ ∧ ( vol* ‘ 𝑤 ) ∈ ℝ ) ) ∧ 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) → ( ( 𝑤 ran ( (,) ∘ 𝑓 ) ∧ 𝑢 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) → ( ( vol* ‘ ( 𝑤𝐴 ) ) + ( vol* ‘ ( 𝑤𝐴 ) ) ) ≤ 𝑢 ) )
421 3 420 sylan2 ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) ∧ ( 𝑤 ⊆ ℝ ∧ ( vol* ‘ 𝑤 ) ∈ ℝ ) ) ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) → ( ( 𝑤 ran ( (,) ∘ 𝑓 ) ∧ 𝑢 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) → ( ( vol* ‘ ( 𝑤𝐴 ) ) + ( vol* ‘ ( 𝑤𝐴 ) ) ) ≤ 𝑢 ) )
422 421 rexlimdva ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) ∧ ( 𝑤 ⊆ ℝ ∧ ( vol* ‘ 𝑤 ) ∈ ℝ ) ) → ( ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝑤 ran ( (,) ∘ 𝑓 ) ∧ 𝑢 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) → ( ( vol* ‘ ( 𝑤𝐴 ) ) + ( vol* ‘ ( 𝑤𝐴 ) ) ) ≤ 𝑢 ) )
423 422 ralrimivw ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) ∧ ( 𝑤 ⊆ ℝ ∧ ( vol* ‘ 𝑤 ) ∈ ℝ ) ) → ∀ 𝑢 ∈ ℝ* ( ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝑤 ran ( (,) ∘ 𝑓 ) ∧ 𝑢 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) → ( ( vol* ‘ ( 𝑤𝐴 ) ) + ( vol* ‘ ( 𝑤𝐴 ) ) ) ≤ 𝑢 ) )
424 eqeq1 ( 𝑣 = 𝑢 → ( 𝑣 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ↔ 𝑢 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) )
425 424 anbi2d ( 𝑣 = 𝑢 → ( ( 𝑤 ran ( (,) ∘ 𝑓 ) ∧ 𝑣 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ↔ ( 𝑤 ran ( (,) ∘ 𝑓 ) ∧ 𝑢 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ) )
426 425 rexbidv ( 𝑣 = 𝑢 → ( ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝑤 ran ( (,) ∘ 𝑓 ) ∧ 𝑣 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ↔ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝑤 ran ( (,) ∘ 𝑓 ) ∧ 𝑢 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ) )
427 426 ralrab ( ∀ 𝑢 ∈ { 𝑣 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝑤 ran ( (,) ∘ 𝑓 ) ∧ 𝑣 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } ( ( vol* ‘ ( 𝑤𝐴 ) ) + ( vol* ‘ ( 𝑤𝐴 ) ) ) ≤ 𝑢 ↔ ∀ 𝑢 ∈ ℝ* ( ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝑤 ran ( (,) ∘ 𝑓 ) ∧ 𝑢 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) → ( ( vol* ‘ ( 𝑤𝐴 ) ) + ( vol* ‘ ( 𝑤𝐴 ) ) ) ≤ 𝑢 ) )
428 423 427 sylibr ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) ∧ ( 𝑤 ⊆ ℝ ∧ ( vol* ‘ 𝑤 ) ∈ ℝ ) ) → ∀ 𝑢 ∈ { 𝑣 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝑤 ran ( (,) ∘ 𝑓 ) ∧ 𝑣 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } ( ( vol* ‘ ( 𝑤𝐴 ) ) + ( vol* ‘ ( 𝑤𝐴 ) ) ) ≤ 𝑢 )
429 ssrab2 { 𝑣 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝑤 ran ( (,) ∘ 𝑓 ) ∧ 𝑣 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } ⊆ ℝ*
430 11 adantl ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) ∧ ( 𝑤 ⊆ ℝ ∧ ( vol* ‘ 𝑤 ) ∈ ℝ ) ) → ( ( vol* ‘ ( 𝑤𝐴 ) ) + ( vol* ‘ ( 𝑤𝐴 ) ) ) ∈ ℝ* )
431 infxrgelb ( ( { 𝑣 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝑤 ran ( (,) ∘ 𝑓 ) ∧ 𝑣 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } ⊆ ℝ* ∧ ( ( vol* ‘ ( 𝑤𝐴 ) ) + ( vol* ‘ ( 𝑤𝐴 ) ) ) ∈ ℝ* ) → ( ( ( vol* ‘ ( 𝑤𝐴 ) ) + ( vol* ‘ ( 𝑤𝐴 ) ) ) ≤ inf ( { 𝑣 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝑤 ran ( (,) ∘ 𝑓 ) ∧ 𝑣 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } , ℝ* , < ) ↔ ∀ 𝑢 ∈ { 𝑣 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝑤 ran ( (,) ∘ 𝑓 ) ∧ 𝑣 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } ( ( vol* ‘ ( 𝑤𝐴 ) ) + ( vol* ‘ ( 𝑤𝐴 ) ) ) ≤ 𝑢 ) )
432 429 430 431 sylancr ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) ∧ ( 𝑤 ⊆ ℝ ∧ ( vol* ‘ 𝑤 ) ∈ ℝ ) ) → ( ( ( vol* ‘ ( 𝑤𝐴 ) ) + ( vol* ‘ ( 𝑤𝐴 ) ) ) ≤ inf ( { 𝑣 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝑤 ran ( (,) ∘ 𝑓 ) ∧ 𝑣 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } , ℝ* , < ) ↔ ∀ 𝑢 ∈ { 𝑣 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝑤 ran ( (,) ∘ 𝑓 ) ∧ 𝑣 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } ( ( vol* ‘ ( 𝑤𝐴 ) ) + ( vol* ‘ ( 𝑤𝐴 ) ) ) ≤ 𝑢 ) )
433 428 432 mpbird ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) ∧ ( 𝑤 ⊆ ℝ ∧ ( vol* ‘ 𝑤 ) ∈ ℝ ) ) → ( ( vol* ‘ ( 𝑤𝐴 ) ) + ( vol* ‘ ( 𝑤𝐴 ) ) ) ≤ inf ( { 𝑣 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝑤 ran ( (,) ∘ 𝑓 ) ∧ 𝑣 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } , ℝ* , < ) )
434 eqid { 𝑣 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝑤 ran ( (,) ∘ 𝑓 ) ∧ 𝑣 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } = { 𝑣 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝑤 ran ( (,) ∘ 𝑓 ) ∧ 𝑣 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) }
435 434 ovolval ( 𝑤 ⊆ ℝ → ( vol* ‘ 𝑤 ) = inf ( { 𝑣 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝑤 ran ( (,) ∘ 𝑓 ) ∧ 𝑣 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } , ℝ* , < ) )
436 435 ad2antrl ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) ∧ ( 𝑤 ⊆ ℝ ∧ ( vol* ‘ 𝑤 ) ∈ ℝ ) ) → ( vol* ‘ 𝑤 ) = inf ( { 𝑣 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝑤 ran ( (,) ∘ 𝑓 ) ∧ 𝑣 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } , ℝ* , < ) )
437 433 436 breqtrrd ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) ∧ ( 𝑤 ⊆ ℝ ∧ ( vol* ‘ 𝑤 ) ∈ ℝ ) ) → ( ( vol* ‘ ( 𝑤𝐴 ) ) + ( vol* ‘ ( 𝑤𝐴 ) ) ) ≤ ( vol* ‘ 𝑤 ) )
438 437 expr ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) ∧ 𝑤 ⊆ ℝ ) → ( ( vol* ‘ 𝑤 ) ∈ ℝ → ( ( vol* ‘ ( 𝑤𝐴 ) ) + ( vol* ‘ ( 𝑤𝐴 ) ) ) ≤ ( vol* ‘ 𝑤 ) ) )
439 2 438 sylan2 ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) ∧ 𝑤 ∈ 𝒫 ℝ ) → ( ( vol* ‘ 𝑤 ) ∈ ℝ → ( ( vol* ‘ ( 𝑤𝐴 ) ) + ( vol* ‘ ( 𝑤𝐴 ) ) ) ≤ ( vol* ‘ 𝑤 ) ) )
440 439 ralrimiva ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) → ∀ 𝑤 ∈ 𝒫 ℝ ( ( vol* ‘ 𝑤 ) ∈ ℝ → ( ( vol* ‘ ( 𝑤𝐴 ) ) + ( vol* ‘ ( 𝑤𝐴 ) ) ) ≤ ( vol* ‘ 𝑤 ) ) )
441 ismbl2 ( 𝐴 ∈ dom vol ↔ ( 𝐴 ⊆ ℝ ∧ ∀ 𝑤 ∈ 𝒫 ℝ ( ( vol* ‘ 𝑤 ) ∈ ℝ → ( ( vol* ‘ ( 𝑤𝐴 ) ) + ( vol* ‘ ( 𝑤𝐴 ) ) ) ≤ ( vol* ‘ 𝑤 ) ) ) )
442 441 baibr ( 𝐴 ⊆ ℝ → ( ∀ 𝑤 ∈ 𝒫 ℝ ( ( vol* ‘ 𝑤 ) ∈ ℝ → ( ( vol* ‘ ( 𝑤𝐴 ) ) + ( vol* ‘ ( 𝑤𝐴 ) ) ) ≤ ( vol* ‘ 𝑤 ) ) ↔ 𝐴 ∈ dom vol ) )
443 442 ad2antrr ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) → ( ∀ 𝑤 ∈ 𝒫 ℝ ( ( vol* ‘ 𝑤 ) ∈ ℝ → ( ( vol* ‘ ( 𝑤𝐴 ) ) + ( vol* ‘ ( 𝑤𝐴 ) ) ) ≤ ( vol* ‘ 𝑤 ) ) ↔ 𝐴 ∈ dom vol ) )
444 440 443 mpbid ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) → 𝐴 ∈ dom vol )
445 1 444 impbida ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( 𝐴 ∈ dom vol ↔ ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) )