| Step |
Hyp |
Ref |
Expression |
| 1 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
| 2 |
|
0cld |
⊢ ( ( topGen ‘ ran (,) ) ∈ Top → ∅ ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
| 3 |
1 2
|
ax-mp |
⊢ ∅ ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) |
| 4 |
|
simpl3 |
⊢ ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < ( vol* ‘ 𝐴 ) ) ∧ 𝐴 = ∅ ) → 𝑀 < ( vol* ‘ 𝐴 ) ) |
| 5 |
|
fveq2 |
⊢ ( 𝐴 = ∅ → ( vol* ‘ 𝐴 ) = ( vol* ‘ ∅ ) ) |
| 6 |
5
|
adantl |
⊢ ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < ( vol* ‘ 𝐴 ) ) ∧ 𝐴 = ∅ ) → ( vol* ‘ 𝐴 ) = ( vol* ‘ ∅ ) ) |
| 7 |
4 6
|
breqtrd |
⊢ ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < ( vol* ‘ 𝐴 ) ) ∧ 𝐴 = ∅ ) → 𝑀 < ( vol* ‘ ∅ ) ) |
| 8 |
|
0ss |
⊢ ∅ ⊆ 𝐴 |
| 9 |
7 8
|
jctil |
⊢ ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < ( vol* ‘ 𝐴 ) ) ∧ 𝐴 = ∅ ) → ( ∅ ⊆ 𝐴 ∧ 𝑀 < ( vol* ‘ ∅ ) ) ) |
| 10 |
|
sseq1 |
⊢ ( 𝑠 = ∅ → ( 𝑠 ⊆ 𝐴 ↔ ∅ ⊆ 𝐴 ) ) |
| 11 |
|
fveq2 |
⊢ ( 𝑠 = ∅ → ( vol* ‘ 𝑠 ) = ( vol* ‘ ∅ ) ) |
| 12 |
11
|
breq2d |
⊢ ( 𝑠 = ∅ → ( 𝑀 < ( vol* ‘ 𝑠 ) ↔ 𝑀 < ( vol* ‘ ∅ ) ) ) |
| 13 |
10 12
|
anbi12d |
⊢ ( 𝑠 = ∅ → ( ( 𝑠 ⊆ 𝐴 ∧ 𝑀 < ( vol* ‘ 𝑠 ) ) ↔ ( ∅ ⊆ 𝐴 ∧ 𝑀 < ( vol* ‘ ∅ ) ) ) ) |
| 14 |
13
|
rspcev |
⊢ ( ( ∅ ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( ∅ ⊆ 𝐴 ∧ 𝑀 < ( vol* ‘ ∅ ) ) ) → ∃ 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑠 ⊆ 𝐴 ∧ 𝑀 < ( vol* ‘ 𝑠 ) ) ) |
| 15 |
3 9 14
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < ( vol* ‘ 𝐴 ) ) ∧ 𝐴 = ∅ ) → ∃ 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑠 ⊆ 𝐴 ∧ 𝑀 < ( vol* ‘ 𝑠 ) ) ) |
| 16 |
|
mblfinlem1 |
⊢ ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝐴 ≠ ∅ ) → ∃ 𝑓 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) |
| 17 |
16
|
3ad2antl1 |
⊢ ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < ( vol* ‘ 𝐴 ) ) ∧ 𝐴 ≠ ∅ ) → ∃ 𝑓 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) |
| 18 |
|
simpl3 |
⊢ ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < ( vol* ‘ 𝐴 ) ) ∧ 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) → 𝑀 < ( vol* ‘ 𝐴 ) ) |
| 19 |
|
f1ofo |
⊢ ( 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } → 𝑓 : ℕ –onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) |
| 20 |
|
rnco2 |
⊢ ran ( [,] ∘ 𝑓 ) = ( [,] “ ran 𝑓 ) |
| 21 |
|
forn |
⊢ ( 𝑓 : ℕ –onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } → ran 𝑓 = { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) |
| 22 |
21
|
imaeq2d |
⊢ ( 𝑓 : ℕ –onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } → ( [,] “ ran 𝑓 ) = ( [,] “ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) ) |
| 23 |
20 22
|
eqtrid |
⊢ ( 𝑓 : ℕ –onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } → ran ( [,] ∘ 𝑓 ) = ( [,] “ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) ) |
| 24 |
23
|
unieqd |
⊢ ( 𝑓 : ℕ –onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } → ∪ ran ( [,] ∘ 𝑓 ) = ∪ ( [,] “ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) ) |
| 25 |
19 24
|
syl |
⊢ ( 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } → ∪ ran ( [,] ∘ 𝑓 ) = ∪ ( [,] “ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) ) |
| 26 |
25
|
adantl |
⊢ ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < ( vol* ‘ 𝐴 ) ) ∧ 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) → ∪ ran ( [,] ∘ 𝑓 ) = ∪ ( [,] “ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) ) |
| 27 |
|
oveq1 |
⊢ ( 𝑥 = 𝑢 → ( 𝑥 / ( 2 ↑ 𝑦 ) ) = ( 𝑢 / ( 2 ↑ 𝑦 ) ) ) |
| 28 |
|
oveq1 |
⊢ ( 𝑥 = 𝑢 → ( 𝑥 + 1 ) = ( 𝑢 + 1 ) ) |
| 29 |
28
|
oveq1d |
⊢ ( 𝑥 = 𝑢 → ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) = ( ( 𝑢 + 1 ) / ( 2 ↑ 𝑦 ) ) ) |
| 30 |
27 29
|
opeq12d |
⊢ ( 𝑥 = 𝑢 → 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 = 〈 ( 𝑢 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑢 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) |
| 31 |
|
oveq2 |
⊢ ( 𝑦 = 𝑣 → ( 2 ↑ 𝑦 ) = ( 2 ↑ 𝑣 ) ) |
| 32 |
31
|
oveq2d |
⊢ ( 𝑦 = 𝑣 → ( 𝑢 / ( 2 ↑ 𝑦 ) ) = ( 𝑢 / ( 2 ↑ 𝑣 ) ) ) |
| 33 |
31
|
oveq2d |
⊢ ( 𝑦 = 𝑣 → ( ( 𝑢 + 1 ) / ( 2 ↑ 𝑦 ) ) = ( ( 𝑢 + 1 ) / ( 2 ↑ 𝑣 ) ) ) |
| 34 |
32 33
|
opeq12d |
⊢ ( 𝑦 = 𝑣 → 〈 ( 𝑢 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑢 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 = 〈 ( 𝑢 / ( 2 ↑ 𝑣 ) ) , ( ( 𝑢 + 1 ) / ( 2 ↑ 𝑣 ) ) 〉 ) |
| 35 |
30 34
|
cbvmpov |
⊢ ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) = ( 𝑢 ∈ ℤ , 𝑣 ∈ ℕ0 ↦ 〈 ( 𝑢 / ( 2 ↑ 𝑣 ) ) , ( ( 𝑢 + 1 ) / ( 2 ↑ 𝑣 ) ) 〉 ) |
| 36 |
|
fveq2 |
⊢ ( 𝑎 = 𝑧 → ( [,] ‘ 𝑎 ) = ( [,] ‘ 𝑧 ) ) |
| 37 |
36
|
sseq1d |
⊢ ( 𝑎 = 𝑧 → ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) ↔ ( [,] ‘ 𝑧 ) ⊆ ( [,] ‘ 𝑐 ) ) ) |
| 38 |
|
eqeq1 |
⊢ ( 𝑎 = 𝑧 → ( 𝑎 = 𝑐 ↔ 𝑧 = 𝑐 ) ) |
| 39 |
37 38
|
imbi12d |
⊢ ( 𝑎 = 𝑧 → ( ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) ↔ ( ( [,] ‘ 𝑧 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑧 = 𝑐 ) ) ) |
| 40 |
39
|
ralbidv |
⊢ ( 𝑎 = 𝑧 → ( ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) ↔ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑧 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑧 = 𝑐 ) ) ) |
| 41 |
40
|
cbvrabv |
⊢ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } = { 𝑧 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑧 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑧 = 𝑐 ) } |
| 42 |
|
ssrab2 |
⊢ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ⊆ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) |
| 43 |
42
|
a1i |
⊢ ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < ( vol* ‘ 𝐴 ) ) → { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ⊆ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ) |
| 44 |
35 41 43
|
dyadmbllem |
⊢ ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < ( vol* ‘ 𝐴 ) ) → ∪ ( [,] “ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ) = ∪ ( [,] “ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) ) |
| 45 |
44
|
adantr |
⊢ ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < ( vol* ‘ 𝐴 ) ) ∧ 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) → ∪ ( [,] “ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ) = ∪ ( [,] “ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) ) |
| 46 |
26 45
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < ( vol* ‘ 𝐴 ) ) ∧ 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) → ∪ ran ( [,] ∘ 𝑓 ) = ∪ ( [,] “ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ) ) |
| 47 |
|
opnmbllem0 |
⊢ ( 𝐴 ∈ ( topGen ‘ ran (,) ) → ∪ ( [,] “ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ) = 𝐴 ) |
| 48 |
47
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < ( vol* ‘ 𝐴 ) ) → ∪ ( [,] “ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ) = 𝐴 ) |
| 49 |
48
|
adantr |
⊢ ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < ( vol* ‘ 𝐴 ) ) ∧ 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) → ∪ ( [,] “ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ) = 𝐴 ) |
| 50 |
46 49
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < ( vol* ‘ 𝐴 ) ) ∧ 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) → ∪ ran ( [,] ∘ 𝑓 ) = 𝐴 ) |
| 51 |
50
|
fveq2d |
⊢ ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < ( vol* ‘ 𝐴 ) ) ∧ 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) → ( vol* ‘ ∪ ran ( [,] ∘ 𝑓 ) ) = ( vol* ‘ 𝐴 ) ) |
| 52 |
|
f1of |
⊢ ( 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } → 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) |
| 53 |
|
ssrab2 |
⊢ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ⊆ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } |
| 54 |
35
|
dyadf |
⊢ ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) : ( ℤ × ℕ0 ) ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) |
| 55 |
|
frn |
⊢ ( ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) : ( ℤ × ℕ0 ) ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ⊆ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 56 |
54 55
|
ax-mp |
⊢ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ⊆ ( ≤ ∩ ( ℝ × ℝ ) ) |
| 57 |
42 56
|
sstri |
⊢ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ⊆ ( ≤ ∩ ( ℝ × ℝ ) ) |
| 58 |
53 57
|
sstri |
⊢ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ⊆ ( ≤ ∩ ( ℝ × ℝ ) ) |
| 59 |
|
fss |
⊢ ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ⊆ ( ≤ ∩ ( ℝ × ℝ ) ) ) → 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 60 |
52 58 59
|
sylancl |
⊢ ( 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } → 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 61 |
53 42
|
sstri |
⊢ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ⊆ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) |
| 62 |
|
ffvelcdm |
⊢ ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑚 ∈ ℕ ) → ( 𝑓 ‘ 𝑚 ) ∈ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) |
| 63 |
61 62
|
sselid |
⊢ ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑚 ∈ ℕ ) → ( 𝑓 ‘ 𝑚 ) ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ) |
| 64 |
63
|
adantrr |
⊢ ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ ( 𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ) → ( 𝑓 ‘ 𝑚 ) ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ) |
| 65 |
|
ffvelcdm |
⊢ ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑧 ∈ ℕ ) → ( 𝑓 ‘ 𝑧 ) ∈ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) |
| 66 |
61 65
|
sselid |
⊢ ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑧 ∈ ℕ ) → ( 𝑓 ‘ 𝑧 ) ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ) |
| 67 |
66
|
adantrl |
⊢ ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ ( 𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ) → ( 𝑓 ‘ 𝑧 ) ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ) |
| 68 |
35
|
dyaddisj |
⊢ ( ( ( 𝑓 ‘ 𝑚 ) ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∧ ( 𝑓 ‘ 𝑧 ) ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ) → ( ( [,] ‘ ( 𝑓 ‘ 𝑚 ) ) ⊆ ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ∨ ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ⊆ ( [,] ‘ ( 𝑓 ‘ 𝑚 ) ) ∨ ( ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) ) = ∅ ) ) |
| 69 |
64 67 68
|
syl2anc |
⊢ ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ ( 𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ) → ( ( [,] ‘ ( 𝑓 ‘ 𝑚 ) ) ⊆ ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ∨ ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ⊆ ( [,] ‘ ( 𝑓 ‘ 𝑚 ) ) ∨ ( ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) ) = ∅ ) ) |
| 70 |
52 69
|
sylan |
⊢ ( ( 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ ( 𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ) → ( ( [,] ‘ ( 𝑓 ‘ 𝑚 ) ) ⊆ ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ∨ ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ⊆ ( [,] ‘ ( 𝑓 ‘ 𝑚 ) ) ∨ ( ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) ) = ∅ ) ) |
| 71 |
|
df-3or |
⊢ ( ( ( [,] ‘ ( 𝑓 ‘ 𝑚 ) ) ⊆ ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ∨ ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ⊆ ( [,] ‘ ( 𝑓 ‘ 𝑚 ) ) ∨ ( ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) ) = ∅ ) ↔ ( ( ( [,] ‘ ( 𝑓 ‘ 𝑚 ) ) ⊆ ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ∨ ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ⊆ ( [,] ‘ ( 𝑓 ‘ 𝑚 ) ) ) ∨ ( ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) ) = ∅ ) ) |
| 72 |
70 71
|
sylib |
⊢ ( ( 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ ( 𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ) → ( ( ( [,] ‘ ( 𝑓 ‘ 𝑚 ) ) ⊆ ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ∨ ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ⊆ ( [,] ‘ ( 𝑓 ‘ 𝑚 ) ) ) ∨ ( ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) ) = ∅ ) ) |
| 73 |
|
elrabi |
⊢ ( ( 𝑓 ‘ 𝑧 ) ∈ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } → ( 𝑓 ‘ 𝑧 ) ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ) |
| 74 |
|
fveq2 |
⊢ ( 𝑎 = ( 𝑓 ‘ 𝑚 ) → ( [,] ‘ 𝑎 ) = ( [,] ‘ ( 𝑓 ‘ 𝑚 ) ) ) |
| 75 |
74
|
sseq1d |
⊢ ( 𝑎 = ( 𝑓 ‘ 𝑚 ) → ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) ↔ ( [,] ‘ ( 𝑓 ‘ 𝑚 ) ) ⊆ ( [,] ‘ 𝑐 ) ) ) |
| 76 |
|
eqeq1 |
⊢ ( 𝑎 = ( 𝑓 ‘ 𝑚 ) → ( 𝑎 = 𝑐 ↔ ( 𝑓 ‘ 𝑚 ) = 𝑐 ) ) |
| 77 |
75 76
|
imbi12d |
⊢ ( 𝑎 = ( 𝑓 ‘ 𝑚 ) → ( ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) ↔ ( ( [,] ‘ ( 𝑓 ‘ 𝑚 ) ) ⊆ ( [,] ‘ 𝑐 ) → ( 𝑓 ‘ 𝑚 ) = 𝑐 ) ) ) |
| 78 |
77
|
ralbidv |
⊢ ( 𝑎 = ( 𝑓 ‘ 𝑚 ) → ( ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) ↔ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ ( 𝑓 ‘ 𝑚 ) ) ⊆ ( [,] ‘ 𝑐 ) → ( 𝑓 ‘ 𝑚 ) = 𝑐 ) ) ) |
| 79 |
78
|
elrab |
⊢ ( ( 𝑓 ‘ 𝑚 ) ∈ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ↔ ( ( 𝑓 ‘ 𝑚 ) ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∧ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ ( 𝑓 ‘ 𝑚 ) ) ⊆ ( [,] ‘ 𝑐 ) → ( 𝑓 ‘ 𝑚 ) = 𝑐 ) ) ) |
| 80 |
79
|
simprbi |
⊢ ( ( 𝑓 ‘ 𝑚 ) ∈ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } → ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ ( 𝑓 ‘ 𝑚 ) ) ⊆ ( [,] ‘ 𝑐 ) → ( 𝑓 ‘ 𝑚 ) = 𝑐 ) ) |
| 81 |
|
fveq2 |
⊢ ( 𝑐 = ( 𝑓 ‘ 𝑧 ) → ( [,] ‘ 𝑐 ) = ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ) |
| 82 |
81
|
sseq2d |
⊢ ( 𝑐 = ( 𝑓 ‘ 𝑧 ) → ( ( [,] ‘ ( 𝑓 ‘ 𝑚 ) ) ⊆ ( [,] ‘ 𝑐 ) ↔ ( [,] ‘ ( 𝑓 ‘ 𝑚 ) ) ⊆ ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ) ) |
| 83 |
|
eqeq2 |
⊢ ( 𝑐 = ( 𝑓 ‘ 𝑧 ) → ( ( 𝑓 ‘ 𝑚 ) = 𝑐 ↔ ( 𝑓 ‘ 𝑚 ) = ( 𝑓 ‘ 𝑧 ) ) ) |
| 84 |
82 83
|
imbi12d |
⊢ ( 𝑐 = ( 𝑓 ‘ 𝑧 ) → ( ( ( [,] ‘ ( 𝑓 ‘ 𝑚 ) ) ⊆ ( [,] ‘ 𝑐 ) → ( 𝑓 ‘ 𝑚 ) = 𝑐 ) ↔ ( ( [,] ‘ ( 𝑓 ‘ 𝑚 ) ) ⊆ ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) → ( 𝑓 ‘ 𝑚 ) = ( 𝑓 ‘ 𝑧 ) ) ) ) |
| 85 |
84
|
rspcva |
⊢ ( ( ( 𝑓 ‘ 𝑧 ) ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∧ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ ( 𝑓 ‘ 𝑚 ) ) ⊆ ( [,] ‘ 𝑐 ) → ( 𝑓 ‘ 𝑚 ) = 𝑐 ) ) → ( ( [,] ‘ ( 𝑓 ‘ 𝑚 ) ) ⊆ ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) → ( 𝑓 ‘ 𝑚 ) = ( 𝑓 ‘ 𝑧 ) ) ) |
| 86 |
73 80 85
|
syl2anr |
⊢ ( ( ( 𝑓 ‘ 𝑚 ) ∈ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ ( 𝑓 ‘ 𝑧 ) ∈ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) → ( ( [,] ‘ ( 𝑓 ‘ 𝑚 ) ) ⊆ ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) → ( 𝑓 ‘ 𝑚 ) = ( 𝑓 ‘ 𝑧 ) ) ) |
| 87 |
|
elrabi |
⊢ ( ( 𝑓 ‘ 𝑚 ) ∈ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } → ( 𝑓 ‘ 𝑚 ) ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ) |
| 88 |
|
fveq2 |
⊢ ( 𝑎 = ( 𝑓 ‘ 𝑧 ) → ( [,] ‘ 𝑎 ) = ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ) |
| 89 |
88
|
sseq1d |
⊢ ( 𝑎 = ( 𝑓 ‘ 𝑧 ) → ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) ↔ ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ⊆ ( [,] ‘ 𝑐 ) ) ) |
| 90 |
|
eqeq1 |
⊢ ( 𝑎 = ( 𝑓 ‘ 𝑧 ) → ( 𝑎 = 𝑐 ↔ ( 𝑓 ‘ 𝑧 ) = 𝑐 ) ) |
| 91 |
89 90
|
imbi12d |
⊢ ( 𝑎 = ( 𝑓 ‘ 𝑧 ) → ( ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) ↔ ( ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ⊆ ( [,] ‘ 𝑐 ) → ( 𝑓 ‘ 𝑧 ) = 𝑐 ) ) ) |
| 92 |
91
|
ralbidv |
⊢ ( 𝑎 = ( 𝑓 ‘ 𝑧 ) → ( ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) ↔ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ⊆ ( [,] ‘ 𝑐 ) → ( 𝑓 ‘ 𝑧 ) = 𝑐 ) ) ) |
| 93 |
92
|
elrab |
⊢ ( ( 𝑓 ‘ 𝑧 ) ∈ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ↔ ( ( 𝑓 ‘ 𝑧 ) ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∧ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ⊆ ( [,] ‘ 𝑐 ) → ( 𝑓 ‘ 𝑧 ) = 𝑐 ) ) ) |
| 94 |
93
|
simprbi |
⊢ ( ( 𝑓 ‘ 𝑧 ) ∈ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } → ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ⊆ ( [,] ‘ 𝑐 ) → ( 𝑓 ‘ 𝑧 ) = 𝑐 ) ) |
| 95 |
|
fveq2 |
⊢ ( 𝑐 = ( 𝑓 ‘ 𝑚 ) → ( [,] ‘ 𝑐 ) = ( [,] ‘ ( 𝑓 ‘ 𝑚 ) ) ) |
| 96 |
95
|
sseq2d |
⊢ ( 𝑐 = ( 𝑓 ‘ 𝑚 ) → ( ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ⊆ ( [,] ‘ 𝑐 ) ↔ ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ⊆ ( [,] ‘ ( 𝑓 ‘ 𝑚 ) ) ) ) |
| 97 |
|
eqeq2 |
⊢ ( 𝑐 = ( 𝑓 ‘ 𝑚 ) → ( ( 𝑓 ‘ 𝑧 ) = 𝑐 ↔ ( 𝑓 ‘ 𝑧 ) = ( 𝑓 ‘ 𝑚 ) ) ) |
| 98 |
96 97
|
imbi12d |
⊢ ( 𝑐 = ( 𝑓 ‘ 𝑚 ) → ( ( ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ⊆ ( [,] ‘ 𝑐 ) → ( 𝑓 ‘ 𝑧 ) = 𝑐 ) ↔ ( ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ⊆ ( [,] ‘ ( 𝑓 ‘ 𝑚 ) ) → ( 𝑓 ‘ 𝑧 ) = ( 𝑓 ‘ 𝑚 ) ) ) ) |
| 99 |
98
|
rspcva |
⊢ ( ( ( 𝑓 ‘ 𝑚 ) ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∧ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ⊆ ( [,] ‘ 𝑐 ) → ( 𝑓 ‘ 𝑧 ) = 𝑐 ) ) → ( ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ⊆ ( [,] ‘ ( 𝑓 ‘ 𝑚 ) ) → ( 𝑓 ‘ 𝑧 ) = ( 𝑓 ‘ 𝑚 ) ) ) |
| 100 |
87 94 99
|
syl2an |
⊢ ( ( ( 𝑓 ‘ 𝑚 ) ∈ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ ( 𝑓 ‘ 𝑧 ) ∈ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) → ( ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ⊆ ( [,] ‘ ( 𝑓 ‘ 𝑚 ) ) → ( 𝑓 ‘ 𝑧 ) = ( 𝑓 ‘ 𝑚 ) ) ) |
| 101 |
|
eqcom |
⊢ ( ( 𝑓 ‘ 𝑧 ) = ( 𝑓 ‘ 𝑚 ) ↔ ( 𝑓 ‘ 𝑚 ) = ( 𝑓 ‘ 𝑧 ) ) |
| 102 |
100 101
|
imbitrdi |
⊢ ( ( ( 𝑓 ‘ 𝑚 ) ∈ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ ( 𝑓 ‘ 𝑧 ) ∈ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) → ( ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ⊆ ( [,] ‘ ( 𝑓 ‘ 𝑚 ) ) → ( 𝑓 ‘ 𝑚 ) = ( 𝑓 ‘ 𝑧 ) ) ) |
| 103 |
86 102
|
jaod |
⊢ ( ( ( 𝑓 ‘ 𝑚 ) ∈ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ ( 𝑓 ‘ 𝑧 ) ∈ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) → ( ( ( [,] ‘ ( 𝑓 ‘ 𝑚 ) ) ⊆ ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ∨ ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ⊆ ( [,] ‘ ( 𝑓 ‘ 𝑚 ) ) ) → ( 𝑓 ‘ 𝑚 ) = ( 𝑓 ‘ 𝑧 ) ) ) |
| 104 |
62 65 103
|
syl2an |
⊢ ( ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑧 ∈ ℕ ) ) → ( ( ( [,] ‘ ( 𝑓 ‘ 𝑚 ) ) ⊆ ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ∨ ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ⊆ ( [,] ‘ ( 𝑓 ‘ 𝑚 ) ) ) → ( 𝑓 ‘ 𝑚 ) = ( 𝑓 ‘ 𝑧 ) ) ) |
| 105 |
104
|
anandis |
⊢ ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ ( 𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ) → ( ( ( [,] ‘ ( 𝑓 ‘ 𝑚 ) ) ⊆ ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ∨ ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ⊆ ( [,] ‘ ( 𝑓 ‘ 𝑚 ) ) ) → ( 𝑓 ‘ 𝑚 ) = ( 𝑓 ‘ 𝑧 ) ) ) |
| 106 |
52 105
|
sylan |
⊢ ( ( 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ ( 𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ) → ( ( ( [,] ‘ ( 𝑓 ‘ 𝑚 ) ) ⊆ ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ∨ ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ⊆ ( [,] ‘ ( 𝑓 ‘ 𝑚 ) ) ) → ( 𝑓 ‘ 𝑚 ) = ( 𝑓 ‘ 𝑧 ) ) ) |
| 107 |
|
f1of1 |
⊢ ( 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } → 𝑓 : ℕ –1-1→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) |
| 108 |
|
f1veqaeq |
⊢ ( ( 𝑓 : ℕ –1-1→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ ( 𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ) → ( ( 𝑓 ‘ 𝑚 ) = ( 𝑓 ‘ 𝑧 ) → 𝑚 = 𝑧 ) ) |
| 109 |
107 108
|
sylan |
⊢ ( ( 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ ( 𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ) → ( ( 𝑓 ‘ 𝑚 ) = ( 𝑓 ‘ 𝑧 ) → 𝑚 = 𝑧 ) ) |
| 110 |
106 109
|
syld |
⊢ ( ( 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ ( 𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ) → ( ( ( [,] ‘ ( 𝑓 ‘ 𝑚 ) ) ⊆ ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ∨ ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ⊆ ( [,] ‘ ( 𝑓 ‘ 𝑚 ) ) ) → 𝑚 = 𝑧 ) ) |
| 111 |
110
|
orim1d |
⊢ ( ( 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ ( 𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ) → ( ( ( ( [,] ‘ ( 𝑓 ‘ 𝑚 ) ) ⊆ ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ∨ ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ⊆ ( [,] ‘ ( 𝑓 ‘ 𝑚 ) ) ) ∨ ( ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) ) = ∅ ) → ( 𝑚 = 𝑧 ∨ ( ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) ) = ∅ ) ) ) |
| 112 |
72 111
|
mpd |
⊢ ( ( 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ ( 𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ) → ( 𝑚 = 𝑧 ∨ ( ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) ) = ∅ ) ) |
| 113 |
112
|
ralrimivva |
⊢ ( 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } → ∀ 𝑚 ∈ ℕ ∀ 𝑧 ∈ ℕ ( 𝑚 = 𝑧 ∨ ( ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) ) = ∅ ) ) |
| 114 |
|
eqeq1 |
⊢ ( 𝑚 = 𝑧 → ( 𝑚 = 𝑝 ↔ 𝑧 = 𝑝 ) ) |
| 115 |
|
2fveq3 |
⊢ ( 𝑚 = 𝑧 → ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) = ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) ) |
| 116 |
115
|
ineq1d |
⊢ ( 𝑚 = 𝑧 → ( ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑝 ) ) ) = ( ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑝 ) ) ) ) |
| 117 |
116
|
eqeq1d |
⊢ ( 𝑚 = 𝑧 → ( ( ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑝 ) ) ) = ∅ ↔ ( ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑝 ) ) ) = ∅ ) ) |
| 118 |
114 117
|
orbi12d |
⊢ ( 𝑚 = 𝑧 → ( ( 𝑚 = 𝑝 ∨ ( ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑝 ) ) ) = ∅ ) ↔ ( 𝑧 = 𝑝 ∨ ( ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑝 ) ) ) = ∅ ) ) ) |
| 119 |
118
|
ralbidv |
⊢ ( 𝑚 = 𝑧 → ( ∀ 𝑝 ∈ ℕ ( 𝑚 = 𝑝 ∨ ( ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑝 ) ) ) = ∅ ) ↔ ∀ 𝑝 ∈ ℕ ( 𝑧 = 𝑝 ∨ ( ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑝 ) ) ) = ∅ ) ) ) |
| 120 |
119
|
cbvralvw |
⊢ ( ∀ 𝑚 ∈ ℕ ∀ 𝑝 ∈ ℕ ( 𝑚 = 𝑝 ∨ ( ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑝 ) ) ) = ∅ ) ↔ ∀ 𝑧 ∈ ℕ ∀ 𝑝 ∈ ℕ ( 𝑧 = 𝑝 ∨ ( ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑝 ) ) ) = ∅ ) ) |
| 121 |
|
eqeq2 |
⊢ ( 𝑧 = 𝑝 → ( 𝑚 = 𝑧 ↔ 𝑚 = 𝑝 ) ) |
| 122 |
|
2fveq3 |
⊢ ( 𝑧 = 𝑝 → ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) = ( (,) ‘ ( 𝑓 ‘ 𝑝 ) ) ) |
| 123 |
122
|
ineq2d |
⊢ ( 𝑧 = 𝑝 → ( ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) ) = ( ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑝 ) ) ) ) |
| 124 |
123
|
eqeq1d |
⊢ ( 𝑧 = 𝑝 → ( ( ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) ) = ∅ ↔ ( ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑝 ) ) ) = ∅ ) ) |
| 125 |
121 124
|
orbi12d |
⊢ ( 𝑧 = 𝑝 → ( ( 𝑚 = 𝑧 ∨ ( ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) ) = ∅ ) ↔ ( 𝑚 = 𝑝 ∨ ( ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑝 ) ) ) = ∅ ) ) ) |
| 126 |
125
|
cbvralvw |
⊢ ( ∀ 𝑧 ∈ ℕ ( 𝑚 = 𝑧 ∨ ( ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) ) = ∅ ) ↔ ∀ 𝑝 ∈ ℕ ( 𝑚 = 𝑝 ∨ ( ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑝 ) ) ) = ∅ ) ) |
| 127 |
126
|
ralbii |
⊢ ( ∀ 𝑚 ∈ ℕ ∀ 𝑧 ∈ ℕ ( 𝑚 = 𝑧 ∨ ( ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) ) = ∅ ) ↔ ∀ 𝑚 ∈ ℕ ∀ 𝑝 ∈ ℕ ( 𝑚 = 𝑝 ∨ ( ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑝 ) ) ) = ∅ ) ) |
| 128 |
122
|
disjor |
⊢ ( Disj 𝑧 ∈ ℕ ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) ↔ ∀ 𝑧 ∈ ℕ ∀ 𝑝 ∈ ℕ ( 𝑧 = 𝑝 ∨ ( ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑝 ) ) ) = ∅ ) ) |
| 129 |
120 127 128
|
3bitr4ri |
⊢ ( Disj 𝑧 ∈ ℕ ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) ↔ ∀ 𝑚 ∈ ℕ ∀ 𝑧 ∈ ℕ ( 𝑚 = 𝑧 ∨ ( ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) ) = ∅ ) ) |
| 130 |
113 129
|
sylibr |
⊢ ( 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } → Disj 𝑧 ∈ ℕ ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) ) |
| 131 |
|
eqid |
⊢ seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) |
| 132 |
60 130 131
|
uniiccvol |
⊢ ( 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } → ( vol* ‘ ∪ ran ( [,] ∘ 𝑓 ) ) = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) |
| 133 |
132
|
adantl |
⊢ ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < ( vol* ‘ 𝐴 ) ) ∧ 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) → ( vol* ‘ ∪ ran ( [,] ∘ 𝑓 ) ) = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) |
| 134 |
51 133
|
eqtr3d |
⊢ ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < ( vol* ‘ 𝐴 ) ) ∧ 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) → ( vol* ‘ 𝐴 ) = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) |
| 135 |
18 134
|
breqtrd |
⊢ ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < ( vol* ‘ 𝐴 ) ) ∧ 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) → 𝑀 < sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) |
| 136 |
|
absf |
⊢ abs : ℂ ⟶ ℝ |
| 137 |
|
subf |
⊢ − : ( ℂ × ℂ ) ⟶ ℂ |
| 138 |
|
fco |
⊢ ( ( abs : ℂ ⟶ ℝ ∧ − : ( ℂ × ℂ ) ⟶ ℂ ) → ( abs ∘ − ) : ( ℂ × ℂ ) ⟶ ℝ ) |
| 139 |
136 137 138
|
mp2an |
⊢ ( abs ∘ − ) : ( ℂ × ℂ ) ⟶ ℝ |
| 140 |
|
zre |
⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℝ ) |
| 141 |
|
2re |
⊢ 2 ∈ ℝ |
| 142 |
|
reexpcl |
⊢ ( ( 2 ∈ ℝ ∧ 𝑦 ∈ ℕ0 ) → ( 2 ↑ 𝑦 ) ∈ ℝ ) |
| 143 |
141 142
|
mpan |
⊢ ( 𝑦 ∈ ℕ0 → ( 2 ↑ 𝑦 ) ∈ ℝ ) |
| 144 |
|
2cn |
⊢ 2 ∈ ℂ |
| 145 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 146 |
|
nn0z |
⊢ ( 𝑦 ∈ ℕ0 → 𝑦 ∈ ℤ ) |
| 147 |
|
expne0i |
⊢ ( ( 2 ∈ ℂ ∧ 2 ≠ 0 ∧ 𝑦 ∈ ℤ ) → ( 2 ↑ 𝑦 ) ≠ 0 ) |
| 148 |
144 145 146 147
|
mp3an12i |
⊢ ( 𝑦 ∈ ℕ0 → ( 2 ↑ 𝑦 ) ≠ 0 ) |
| 149 |
143 148
|
jca |
⊢ ( 𝑦 ∈ ℕ0 → ( ( 2 ↑ 𝑦 ) ∈ ℝ ∧ ( 2 ↑ 𝑦 ) ≠ 0 ) ) |
| 150 |
|
redivcl |
⊢ ( ( 𝑥 ∈ ℝ ∧ ( 2 ↑ 𝑦 ) ∈ ℝ ∧ ( 2 ↑ 𝑦 ) ≠ 0 ) → ( 𝑥 / ( 2 ↑ 𝑦 ) ) ∈ ℝ ) |
| 151 |
|
peano2re |
⊢ ( 𝑥 ∈ ℝ → ( 𝑥 + 1 ) ∈ ℝ ) |
| 152 |
|
redivcl |
⊢ ( ( ( 𝑥 + 1 ) ∈ ℝ ∧ ( 2 ↑ 𝑦 ) ∈ ℝ ∧ ( 2 ↑ 𝑦 ) ≠ 0 ) → ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ∈ ℝ ) |
| 153 |
151 152
|
syl3an1 |
⊢ ( ( 𝑥 ∈ ℝ ∧ ( 2 ↑ 𝑦 ) ∈ ℝ ∧ ( 2 ↑ 𝑦 ) ≠ 0 ) → ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ∈ ℝ ) |
| 154 |
150 153
|
opelxpd |
⊢ ( ( 𝑥 ∈ ℝ ∧ ( 2 ↑ 𝑦 ) ∈ ℝ ∧ ( 2 ↑ 𝑦 ) ≠ 0 ) → 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ∈ ( ℝ × ℝ ) ) |
| 155 |
154
|
3expb |
⊢ ( ( 𝑥 ∈ ℝ ∧ ( ( 2 ↑ 𝑦 ) ∈ ℝ ∧ ( 2 ↑ 𝑦 ) ≠ 0 ) ) → 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ∈ ( ℝ × ℝ ) ) |
| 156 |
140 149 155
|
syl2an |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0 ) → 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ∈ ( ℝ × ℝ ) ) |
| 157 |
156
|
rgen2 |
⊢ ∀ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ℕ0 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ∈ ( ℝ × ℝ ) |
| 158 |
|
eqid |
⊢ ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) = ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) |
| 159 |
158
|
fmpo |
⊢ ( ∀ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ℕ0 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ∈ ( ℝ × ℝ ) ↔ ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) : ( ℤ × ℕ0 ) ⟶ ( ℝ × ℝ ) ) |
| 160 |
157 159
|
mpbi |
⊢ ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) : ( ℤ × ℕ0 ) ⟶ ( ℝ × ℝ ) |
| 161 |
|
frn |
⊢ ( ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) : ( ℤ × ℕ0 ) ⟶ ( ℝ × ℝ ) → ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ⊆ ( ℝ × ℝ ) ) |
| 162 |
160 161
|
ax-mp |
⊢ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ⊆ ( ℝ × ℝ ) |
| 163 |
42 162
|
sstri |
⊢ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ⊆ ( ℝ × ℝ ) |
| 164 |
53 163
|
sstri |
⊢ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ⊆ ( ℝ × ℝ ) |
| 165 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 166 |
|
xpss12 |
⊢ ( ( ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ ) → ( ℝ × ℝ ) ⊆ ( ℂ × ℂ ) ) |
| 167 |
165 165 166
|
mp2an |
⊢ ( ℝ × ℝ ) ⊆ ( ℂ × ℂ ) |
| 168 |
164 167
|
sstri |
⊢ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ⊆ ( ℂ × ℂ ) |
| 169 |
|
fss |
⊢ ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ⊆ ( ℂ × ℂ ) ) → 𝑓 : ℕ ⟶ ( ℂ × ℂ ) ) |
| 170 |
168 169
|
mpan2 |
⊢ ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } → 𝑓 : ℕ ⟶ ( ℂ × ℂ ) ) |
| 171 |
|
fco |
⊢ ( ( ( abs ∘ − ) : ( ℂ × ℂ ) ⟶ ℝ ∧ 𝑓 : ℕ ⟶ ( ℂ × ℂ ) ) → ( ( abs ∘ − ) ∘ 𝑓 ) : ℕ ⟶ ℝ ) |
| 172 |
139 170 171
|
sylancr |
⊢ ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } → ( ( abs ∘ − ) ∘ 𝑓 ) : ℕ ⟶ ℝ ) |
| 173 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 174 |
|
1z |
⊢ 1 ∈ ℤ |
| 175 |
174
|
a1i |
⊢ ( ( ( abs ∘ − ) ∘ 𝑓 ) : ℕ ⟶ ℝ → 1 ∈ ℤ ) |
| 176 |
|
ffvelcdm |
⊢ ( ( ( ( abs ∘ − ) ∘ 𝑓 ) : ℕ ⟶ ℝ ∧ 𝑛 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝑓 ) ‘ 𝑛 ) ∈ ℝ ) |
| 177 |
173 175 176
|
serfre |
⊢ ( ( ( abs ∘ − ) ∘ 𝑓 ) : ℕ ⟶ ℝ → seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) : ℕ ⟶ ℝ ) |
| 178 |
|
frn |
⊢ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) : ℕ ⟶ ℝ → ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ⊆ ℝ ) |
| 179 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
| 180 |
178 179
|
sstrdi |
⊢ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) : ℕ ⟶ ℝ → ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ⊆ ℝ* ) |
| 181 |
52 172 177 180
|
4syl |
⊢ ( 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } → ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ⊆ ℝ* ) |
| 182 |
|
rexr |
⊢ ( 𝑀 ∈ ℝ → 𝑀 ∈ ℝ* ) |
| 183 |
182
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < ( vol* ‘ 𝐴 ) ) → 𝑀 ∈ ℝ* ) |
| 184 |
|
supxrlub |
⊢ ( ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ⊆ ℝ* ∧ 𝑀 ∈ ℝ* ) → ( 𝑀 < sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ↔ ∃ 𝑧 ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) 𝑀 < 𝑧 ) ) |
| 185 |
181 183 184
|
syl2anr |
⊢ ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < ( vol* ‘ 𝐴 ) ) ∧ 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) → ( 𝑀 < sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ↔ ∃ 𝑧 ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) 𝑀 < 𝑧 ) ) |
| 186 |
135 185
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < ( vol* ‘ 𝐴 ) ) ∧ 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) → ∃ 𝑧 ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) 𝑀 < 𝑧 ) |
| 187 |
|
seqfn |
⊢ ( 1 ∈ ℤ → seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) Fn ( ℤ≥ ‘ 1 ) ) |
| 188 |
174 187
|
ax-mp |
⊢ seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) Fn ( ℤ≥ ‘ 1 ) |
| 189 |
173
|
fneq2i |
⊢ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) Fn ℕ ↔ seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) Fn ( ℤ≥ ‘ 1 ) ) |
| 190 |
188 189
|
mpbir |
⊢ seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) Fn ℕ |
| 191 |
|
breq2 |
⊢ ( 𝑧 = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 𝑛 ) → ( 𝑀 < 𝑧 ↔ 𝑀 < ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 𝑛 ) ) ) |
| 192 |
191
|
rexrn |
⊢ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) Fn ℕ → ( ∃ 𝑧 ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) 𝑀 < 𝑧 ↔ ∃ 𝑛 ∈ ℕ 𝑀 < ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 𝑛 ) ) ) |
| 193 |
190 192
|
ax-mp |
⊢ ( ∃ 𝑧 ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) 𝑀 < 𝑧 ↔ ∃ 𝑛 ∈ ℕ 𝑀 < ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 𝑛 ) ) |
| 194 |
186 193
|
sylib |
⊢ ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < ( vol* ‘ 𝐴 ) ) ∧ 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) → ∃ 𝑛 ∈ ℕ 𝑀 < ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 𝑛 ) ) |
| 195 |
60
|
ffvelcdmda |
⊢ ( ( 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑧 ∈ ℕ ) → ( 𝑓 ‘ 𝑧 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 196 |
|
0le0 |
⊢ 0 ≤ 0 |
| 197 |
|
df-br |
⊢ ( 0 ≤ 0 ↔ 〈 0 , 0 〉 ∈ ≤ ) |
| 198 |
196 197
|
mpbi |
⊢ 〈 0 , 0 〉 ∈ ≤ |
| 199 |
|
0re |
⊢ 0 ∈ ℝ |
| 200 |
|
opelxpi |
⊢ ( ( 0 ∈ ℝ ∧ 0 ∈ ℝ ) → 〈 0 , 0 〉 ∈ ( ℝ × ℝ ) ) |
| 201 |
199 199 200
|
mp2an |
⊢ 〈 0 , 0 〉 ∈ ( ℝ × ℝ ) |
| 202 |
|
elin |
⊢ ( 〈 0 , 0 〉 ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ↔ ( 〈 0 , 0 〉 ∈ ≤ ∧ 〈 0 , 0 〉 ∈ ( ℝ × ℝ ) ) ) |
| 203 |
198 201 202
|
mpbir2an |
⊢ 〈 0 , 0 〉 ∈ ( ≤ ∩ ( ℝ × ℝ ) ) |
| 204 |
|
ifcl |
⊢ ( ( ( 𝑓 ‘ 𝑧 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 〈 0 , 0 〉 ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) → if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 205 |
195 203 204
|
sylancl |
⊢ ( ( 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑧 ∈ ℕ ) → if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 206 |
205
|
fmpttd |
⊢ ( 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } → ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 207 |
|
df-ov |
⊢ ( 0 (,) 0 ) = ( (,) ‘ 〈 0 , 0 〉 ) |
| 208 |
|
iooid |
⊢ ( 0 (,) 0 ) = ∅ |
| 209 |
207 208
|
eqtr3i |
⊢ ( (,) ‘ 〈 0 , 0 〉 ) = ∅ |
| 210 |
209
|
ineq1i |
⊢ ( ( (,) ‘ 〈 0 , 0 〉 ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) ) = ( ∅ ∩ ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) ) |
| 211 |
|
0in |
⊢ ( ∅ ∩ ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) ) = ∅ |
| 212 |
210 211
|
eqtri |
⊢ ( ( (,) ‘ 〈 0 , 0 〉 ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) ) = ∅ |
| 213 |
212
|
olci |
⊢ ( 𝑚 = 𝑧 ∨ ( ( (,) ‘ 〈 0 , 0 〉 ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) ) = ∅ ) |
| 214 |
|
ineq1 |
⊢ ( ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) = if ( 𝑚 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) → ( ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) ) = ( if ( 𝑚 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) ) ) |
| 215 |
214
|
eqeq1d |
⊢ ( ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) = if ( 𝑚 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) → ( ( ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) ) = ∅ ↔ ( if ( 𝑚 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) ) = ∅ ) ) |
| 216 |
215
|
orbi2d |
⊢ ( ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) = if ( 𝑚 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) → ( ( 𝑚 = 𝑧 ∨ ( ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) ) = ∅ ) ↔ ( 𝑚 = 𝑧 ∨ ( if ( 𝑚 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) ) = ∅ ) ) ) |
| 217 |
|
ineq1 |
⊢ ( ( (,) ‘ 〈 0 , 0 〉 ) = if ( 𝑚 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) → ( ( (,) ‘ 〈 0 , 0 〉 ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) ) = ( if ( 𝑚 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) ) ) |
| 218 |
217
|
eqeq1d |
⊢ ( ( (,) ‘ 〈 0 , 0 〉 ) = if ( 𝑚 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) → ( ( ( (,) ‘ 〈 0 , 0 〉 ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) ) = ∅ ↔ ( if ( 𝑚 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) ) = ∅ ) ) |
| 219 |
218
|
orbi2d |
⊢ ( ( (,) ‘ 〈 0 , 0 〉 ) = if ( 𝑚 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) → ( ( 𝑚 = 𝑧 ∨ ( ( (,) ‘ 〈 0 , 0 〉 ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) ) = ∅ ) ↔ ( 𝑚 = 𝑧 ∨ ( if ( 𝑚 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) ) = ∅ ) ) ) |
| 220 |
216 219
|
ifboth |
⊢ ( ( ( 𝑚 = 𝑧 ∨ ( ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) ) = ∅ ) ∧ ( 𝑚 = 𝑧 ∨ ( ( (,) ‘ 〈 0 , 0 〉 ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) ) = ∅ ) ) → ( 𝑚 = 𝑧 ∨ ( if ( 𝑚 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) ) = ∅ ) ) |
| 221 |
112 213 220
|
sylancl |
⊢ ( ( 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ ( 𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ) → ( 𝑚 = 𝑧 ∨ ( if ( 𝑚 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) ) = ∅ ) ) |
| 222 |
209
|
ineq2i |
⊢ ( if ( 𝑚 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) ∩ ( (,) ‘ 〈 0 , 0 〉 ) ) = ( if ( 𝑚 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) ∩ ∅ ) |
| 223 |
|
in0 |
⊢ ( if ( 𝑚 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) ∩ ∅ ) = ∅ |
| 224 |
222 223
|
eqtri |
⊢ ( if ( 𝑚 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) ∩ ( (,) ‘ 〈 0 , 0 〉 ) ) = ∅ |
| 225 |
224
|
olci |
⊢ ( 𝑚 = 𝑧 ∨ ( if ( 𝑚 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) ∩ ( (,) ‘ 〈 0 , 0 〉 ) ) = ∅ ) |
| 226 |
|
ineq2 |
⊢ ( ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) = if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) → ( if ( 𝑚 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) ) = ( if ( 𝑚 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) ∩ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) ) ) |
| 227 |
226
|
eqeq1d |
⊢ ( ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) = if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) → ( ( if ( 𝑚 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) ) = ∅ ↔ ( if ( 𝑚 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) ∩ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) ) = ∅ ) ) |
| 228 |
227
|
orbi2d |
⊢ ( ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) = if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) → ( ( 𝑚 = 𝑧 ∨ ( if ( 𝑚 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) ) = ∅ ) ↔ ( 𝑚 = 𝑧 ∨ ( if ( 𝑚 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) ∩ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) ) = ∅ ) ) ) |
| 229 |
|
ineq2 |
⊢ ( ( (,) ‘ 〈 0 , 0 〉 ) = if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) → ( if ( 𝑚 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) ∩ ( (,) ‘ 〈 0 , 0 〉 ) ) = ( if ( 𝑚 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) ∩ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) ) ) |
| 230 |
229
|
eqeq1d |
⊢ ( ( (,) ‘ 〈 0 , 0 〉 ) = if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) → ( ( if ( 𝑚 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) ∩ ( (,) ‘ 〈 0 , 0 〉 ) ) = ∅ ↔ ( if ( 𝑚 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) ∩ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) ) = ∅ ) ) |
| 231 |
230
|
orbi2d |
⊢ ( ( (,) ‘ 〈 0 , 0 〉 ) = if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) → ( ( 𝑚 = 𝑧 ∨ ( if ( 𝑚 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) ∩ ( (,) ‘ 〈 0 , 0 〉 ) ) = ∅ ) ↔ ( 𝑚 = 𝑧 ∨ ( if ( 𝑚 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) ∩ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) ) = ∅ ) ) ) |
| 232 |
228 231
|
ifboth |
⊢ ( ( ( 𝑚 = 𝑧 ∨ ( if ( 𝑚 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) ∩ ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) ) = ∅ ) ∧ ( 𝑚 = 𝑧 ∨ ( if ( 𝑚 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) ∩ ( (,) ‘ 〈 0 , 0 〉 ) ) = ∅ ) ) → ( 𝑚 = 𝑧 ∨ ( if ( 𝑚 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) ∩ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) ) = ∅ ) ) |
| 233 |
221 225 232
|
sylancl |
⊢ ( ( 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ ( 𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ) → ( 𝑚 = 𝑧 ∨ ( if ( 𝑚 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) ∩ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) ) = ∅ ) ) |
| 234 |
233
|
ralrimivva |
⊢ ( 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } → ∀ 𝑚 ∈ ℕ ∀ 𝑧 ∈ ℕ ( 𝑚 = 𝑧 ∨ ( if ( 𝑚 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) ∩ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) ) = ∅ ) ) |
| 235 |
|
disjeq2 |
⊢ ( ∀ 𝑚 ∈ ℕ ( (,) ‘ ( ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ‘ 𝑚 ) ) = if ( 𝑚 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) → ( Disj 𝑚 ∈ ℕ ( (,) ‘ ( ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ‘ 𝑚 ) ) ↔ Disj 𝑚 ∈ ℕ if ( 𝑚 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) ) ) |
| 236 |
|
eleq1w |
⊢ ( 𝑧 = 𝑚 → ( 𝑧 ∈ ( 1 ... 𝑛 ) ↔ 𝑚 ∈ ( 1 ... 𝑛 ) ) ) |
| 237 |
|
fveq2 |
⊢ ( 𝑧 = 𝑚 → ( 𝑓 ‘ 𝑧 ) = ( 𝑓 ‘ 𝑚 ) ) |
| 238 |
236 237
|
ifbieq1d |
⊢ ( 𝑧 = 𝑚 → if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) = if ( 𝑚 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑚 ) , 〈 0 , 0 〉 ) ) |
| 239 |
|
eqid |
⊢ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) = ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) |
| 240 |
|
fvex |
⊢ ( 𝑓 ‘ 𝑚 ) ∈ V |
| 241 |
|
opex |
⊢ 〈 0 , 0 〉 ∈ V |
| 242 |
240 241
|
ifex |
⊢ if ( 𝑚 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑚 ) , 〈 0 , 0 〉 ) ∈ V |
| 243 |
238 239 242
|
fvmpt |
⊢ ( 𝑚 ∈ ℕ → ( ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ‘ 𝑚 ) = if ( 𝑚 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑚 ) , 〈 0 , 0 〉 ) ) |
| 244 |
243
|
fveq2d |
⊢ ( 𝑚 ∈ ℕ → ( (,) ‘ ( ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ‘ 𝑚 ) ) = ( (,) ‘ if ( 𝑚 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑚 ) , 〈 0 , 0 〉 ) ) ) |
| 245 |
|
fvif |
⊢ ( (,) ‘ if ( 𝑚 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑚 ) , 〈 0 , 0 〉 ) ) = if ( 𝑚 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) |
| 246 |
244 245
|
eqtrdi |
⊢ ( 𝑚 ∈ ℕ → ( (,) ‘ ( ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ‘ 𝑚 ) ) = if ( 𝑚 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) ) |
| 247 |
235 246
|
mprg |
⊢ ( Disj 𝑚 ∈ ℕ ( (,) ‘ ( ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ‘ 𝑚 ) ) ↔ Disj 𝑚 ∈ ℕ if ( 𝑚 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) ) |
| 248 |
|
eleq1w |
⊢ ( 𝑚 = 𝑧 → ( 𝑚 ∈ ( 1 ... 𝑛 ) ↔ 𝑧 ∈ ( 1 ... 𝑛 ) ) ) |
| 249 |
248 115
|
ifbieq1d |
⊢ ( 𝑚 = 𝑧 → if ( 𝑚 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) = if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) ) |
| 250 |
249
|
disjor |
⊢ ( Disj 𝑚 ∈ ℕ if ( 𝑚 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) ↔ ∀ 𝑚 ∈ ℕ ∀ 𝑧 ∈ ℕ ( 𝑚 = 𝑧 ∨ ( if ( 𝑚 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) ∩ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) ) = ∅ ) ) |
| 251 |
247 250
|
bitri |
⊢ ( Disj 𝑚 ∈ ℕ ( (,) ‘ ( ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ‘ 𝑚 ) ) ↔ ∀ 𝑚 ∈ ℕ ∀ 𝑧 ∈ ℕ ( 𝑚 = 𝑧 ∨ ( if ( 𝑚 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑚 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) ∩ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( (,) ‘ ( 𝑓 ‘ 𝑧 ) ) , ( (,) ‘ 〈 0 , 0 〉 ) ) ) = ∅ ) ) |
| 252 |
234 251
|
sylibr |
⊢ ( 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } → Disj 𝑚 ∈ ℕ ( (,) ‘ ( ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ‘ 𝑚 ) ) ) |
| 253 |
|
eqid |
⊢ seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ) |
| 254 |
206 252 253
|
uniiccvol |
⊢ ( 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } → ( vol* ‘ ∪ ran ( [,] ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ) = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ) , ℝ* , < ) ) |
| 255 |
254
|
adantr |
⊢ ( ( 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) → ( vol* ‘ ∪ ran ( [,] ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ) = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ) , ℝ* , < ) ) |
| 256 |
|
rexpssxrxp |
⊢ ( ℝ × ℝ ) ⊆ ( ℝ* × ℝ* ) |
| 257 |
164 256
|
sstri |
⊢ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ⊆ ( ℝ* × ℝ* ) |
| 258 |
257 65
|
sselid |
⊢ ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑧 ∈ ℕ ) → ( 𝑓 ‘ 𝑧 ) ∈ ( ℝ* × ℝ* ) ) |
| 259 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 260 |
|
opelxpi |
⊢ ( ( 0 ∈ ℝ* ∧ 0 ∈ ℝ* ) → 〈 0 , 0 〉 ∈ ( ℝ* × ℝ* ) ) |
| 261 |
259 259 260
|
mp2an |
⊢ 〈 0 , 0 〉 ∈ ( ℝ* × ℝ* ) |
| 262 |
|
ifcl |
⊢ ( ( ( 𝑓 ‘ 𝑧 ) ∈ ( ℝ* × ℝ* ) ∧ 〈 0 , 0 〉 ∈ ( ℝ* × ℝ* ) ) → if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ∈ ( ℝ* × ℝ* ) ) |
| 263 |
258 261 262
|
sylancl |
⊢ ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑧 ∈ ℕ ) → if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ∈ ( ℝ* × ℝ* ) ) |
| 264 |
|
eqidd |
⊢ ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } → ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) = ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) |
| 265 |
|
iccf |
⊢ [,] : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* |
| 266 |
265
|
a1i |
⊢ ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } → [,] : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* ) |
| 267 |
266
|
feqmptd |
⊢ ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } → [,] = ( 𝑚 ∈ ( ℝ* × ℝ* ) ↦ ( [,] ‘ 𝑚 ) ) ) |
| 268 |
|
fveq2 |
⊢ ( 𝑚 = if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) → ( [,] ‘ 𝑚 ) = ( [,] ‘ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) |
| 269 |
263 264 267 268
|
fmptco |
⊢ ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } → ( [,] ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) = ( 𝑧 ∈ ℕ ↦ ( [,] ‘ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ) |
| 270 |
52 269
|
syl |
⊢ ( 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } → ( [,] ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) = ( 𝑧 ∈ ℕ ↦ ( [,] ‘ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ) |
| 271 |
270
|
rneqd |
⊢ ( 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } → ran ( [,] ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) = ran ( 𝑧 ∈ ℕ ↦ ( [,] ‘ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ) |
| 272 |
271
|
unieqd |
⊢ ( 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } → ∪ ran ( [,] ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) = ∪ ran ( 𝑧 ∈ ℕ ↦ ( [,] ‘ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ) |
| 273 |
|
peano2nn |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ∈ ℕ ) |
| 274 |
273 173
|
eleqtrdi |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 275 |
|
fzouzsplit |
⊢ ( ( 𝑛 + 1 ) ∈ ( ℤ≥ ‘ 1 ) → ( ℤ≥ ‘ 1 ) = ( ( 1 ..^ ( 𝑛 + 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) ) |
| 276 |
274 275
|
syl |
⊢ ( 𝑛 ∈ ℕ → ( ℤ≥ ‘ 1 ) = ( ( 1 ..^ ( 𝑛 + 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) ) |
| 277 |
173 276
|
eqtrid |
⊢ ( 𝑛 ∈ ℕ → ℕ = ( ( 1 ..^ ( 𝑛 + 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) ) |
| 278 |
|
nnz |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℤ ) |
| 279 |
|
fzval3 |
⊢ ( 𝑛 ∈ ℤ → ( 1 ... 𝑛 ) = ( 1 ..^ ( 𝑛 + 1 ) ) ) |
| 280 |
278 279
|
syl |
⊢ ( 𝑛 ∈ ℕ → ( 1 ... 𝑛 ) = ( 1 ..^ ( 𝑛 + 1 ) ) ) |
| 281 |
280
|
uneq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( 1 ... 𝑛 ) ∪ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) = ( ( 1 ..^ ( 𝑛 + 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) ) |
| 282 |
277 281
|
eqtr4d |
⊢ ( 𝑛 ∈ ℕ → ℕ = ( ( 1 ... 𝑛 ) ∪ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) ) |
| 283 |
|
fvif |
⊢ ( [,] ‘ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) = if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) , ( [,] ‘ 〈 0 , 0 〉 ) ) |
| 284 |
283
|
a1i |
⊢ ( 𝑛 ∈ ℕ → ( [,] ‘ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) = if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) , ( [,] ‘ 〈 0 , 0 〉 ) ) ) |
| 285 |
282 284
|
iuneq12d |
⊢ ( 𝑛 ∈ ℕ → ∪ 𝑧 ∈ ℕ ( [,] ‘ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) = ∪ 𝑧 ∈ ( ( 1 ... 𝑛 ) ∪ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) , ( [,] ‘ 〈 0 , 0 〉 ) ) ) |
| 286 |
|
fvex |
⊢ ( [,] ‘ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ∈ V |
| 287 |
286
|
dfiun3 |
⊢ ∪ 𝑧 ∈ ℕ ( [,] ‘ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) = ∪ ran ( 𝑧 ∈ ℕ ↦ ( [,] ‘ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) |
| 288 |
|
iunxun |
⊢ ∪ 𝑧 ∈ ( ( 1 ... 𝑛 ) ∪ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) , ( [,] ‘ 〈 0 , 0 〉 ) ) = ( ∪ 𝑧 ∈ ( 1 ... 𝑛 ) if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) , ( [,] ‘ 〈 0 , 0 〉 ) ) ∪ ∪ 𝑧 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) , ( [,] ‘ 〈 0 , 0 〉 ) ) ) |
| 289 |
285 287 288
|
3eqtr3g |
⊢ ( 𝑛 ∈ ℕ → ∪ ran ( 𝑧 ∈ ℕ ↦ ( [,] ‘ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) = ( ∪ 𝑧 ∈ ( 1 ... 𝑛 ) if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) , ( [,] ‘ 〈 0 , 0 〉 ) ) ∪ ∪ 𝑧 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) , ( [,] ‘ 〈 0 , 0 〉 ) ) ) ) |
| 290 |
|
iftrue |
⊢ ( 𝑧 ∈ ( 1 ... 𝑛 ) → if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) , ( [,] ‘ 〈 0 , 0 〉 ) ) = ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ) |
| 291 |
290
|
iuneq2i |
⊢ ∪ 𝑧 ∈ ( 1 ... 𝑛 ) if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) , ( [,] ‘ 〈 0 , 0 〉 ) ) = ∪ 𝑧 ∈ ( 1 ... 𝑛 ) ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) |
| 292 |
291
|
a1i |
⊢ ( 𝑛 ∈ ℕ → ∪ 𝑧 ∈ ( 1 ... 𝑛 ) if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) , ( [,] ‘ 〈 0 , 0 〉 ) ) = ∪ 𝑧 ∈ ( 1 ... 𝑛 ) ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ) |
| 293 |
|
uznfz |
⊢ ( 𝑧 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) → ¬ 𝑧 ∈ ( 1 ... ( ( 𝑛 + 1 ) − 1 ) ) ) |
| 294 |
293
|
adantl |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑧 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → ¬ 𝑧 ∈ ( 1 ... ( ( 𝑛 + 1 ) − 1 ) ) ) |
| 295 |
|
nncn |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℂ ) |
| 296 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 297 |
|
pncan |
⊢ ( ( 𝑛 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑛 + 1 ) − 1 ) = 𝑛 ) |
| 298 |
295 296 297
|
sylancl |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 + 1 ) − 1 ) = 𝑛 ) |
| 299 |
298
|
oveq2d |
⊢ ( 𝑛 ∈ ℕ → ( 1 ... ( ( 𝑛 + 1 ) − 1 ) ) = ( 1 ... 𝑛 ) ) |
| 300 |
299
|
eleq2d |
⊢ ( 𝑛 ∈ ℕ → ( 𝑧 ∈ ( 1 ... ( ( 𝑛 + 1 ) − 1 ) ) ↔ 𝑧 ∈ ( 1 ... 𝑛 ) ) ) |
| 301 |
300
|
notbid |
⊢ ( 𝑛 ∈ ℕ → ( ¬ 𝑧 ∈ ( 1 ... ( ( 𝑛 + 1 ) − 1 ) ) ↔ ¬ 𝑧 ∈ ( 1 ... 𝑛 ) ) ) |
| 302 |
301
|
adantr |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑧 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → ( ¬ 𝑧 ∈ ( 1 ... ( ( 𝑛 + 1 ) − 1 ) ) ↔ ¬ 𝑧 ∈ ( 1 ... 𝑛 ) ) ) |
| 303 |
294 302
|
mpbid |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑧 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → ¬ 𝑧 ∈ ( 1 ... 𝑛 ) ) |
| 304 |
303
|
iffalsed |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑧 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) , ( [,] ‘ 〈 0 , 0 〉 ) ) = ( [,] ‘ 〈 0 , 0 〉 ) ) |
| 305 |
304
|
iuneq2dv |
⊢ ( 𝑛 ∈ ℕ → ∪ 𝑧 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) , ( [,] ‘ 〈 0 , 0 〉 ) ) = ∪ 𝑧 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( [,] ‘ 〈 0 , 0 〉 ) ) |
| 306 |
292 305
|
uneq12d |
⊢ ( 𝑛 ∈ ℕ → ( ∪ 𝑧 ∈ ( 1 ... 𝑛 ) if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) , ( [,] ‘ 〈 0 , 0 〉 ) ) ∪ ∪ 𝑧 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) , ( [,] ‘ 〈 0 , 0 〉 ) ) ) = ( ∪ 𝑧 ∈ ( 1 ... 𝑛 ) ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ∪ ∪ 𝑧 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( [,] ‘ 〈 0 , 0 〉 ) ) ) |
| 307 |
289 306
|
eqtrd |
⊢ ( 𝑛 ∈ ℕ → ∪ ran ( 𝑧 ∈ ℕ ↦ ( [,] ‘ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) = ( ∪ 𝑧 ∈ ( 1 ... 𝑛 ) ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ∪ ∪ 𝑧 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( [,] ‘ 〈 0 , 0 〉 ) ) ) |
| 308 |
272 307
|
sylan9eq |
⊢ ( ( 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) → ∪ ran ( [,] ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) = ( ∪ 𝑧 ∈ ( 1 ... 𝑛 ) ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ∪ ∪ 𝑧 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( [,] ‘ 〈 0 , 0 〉 ) ) ) |
| 309 |
308
|
fveq2d |
⊢ ( ( 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) → ( vol* ‘ ∪ ran ( [,] ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ) = ( vol* ‘ ( ∪ 𝑧 ∈ ( 1 ... 𝑛 ) ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ∪ ∪ 𝑧 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( [,] ‘ 〈 0 , 0 〉 ) ) ) ) |
| 310 |
|
xrltso |
⊢ < Or ℝ* |
| 311 |
310
|
a1i |
⊢ ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) → < Or ℝ* ) |
| 312 |
|
elnnuz |
⊢ ( 𝑛 ∈ ℕ ↔ 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) |
| 313 |
312
|
biimpi |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) |
| 314 |
313
|
adantl |
⊢ ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) |
| 315 |
|
elfznn |
⊢ ( 𝑢 ∈ ( 1 ... 𝑛 ) → 𝑢 ∈ ℕ ) |
| 316 |
172
|
ffvelcdmda |
⊢ ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑢 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝑓 ) ‘ 𝑢 ) ∈ ℝ ) |
| 317 |
315 316
|
sylan2 |
⊢ ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑢 ∈ ( 1 ... 𝑛 ) ) → ( ( ( abs ∘ − ) ∘ 𝑓 ) ‘ 𝑢 ) ∈ ℝ ) |
| 318 |
317
|
adantlr |
⊢ ( ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) ∧ 𝑢 ∈ ( 1 ... 𝑛 ) ) → ( ( ( abs ∘ − ) ∘ 𝑓 ) ‘ 𝑢 ) ∈ ℝ ) |
| 319 |
|
readdcl |
⊢ ( ( 𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ ) → ( 𝑢 + 𝑣 ) ∈ ℝ ) |
| 320 |
319
|
adantl |
⊢ ( ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ ) ) → ( 𝑢 + 𝑣 ) ∈ ℝ ) |
| 321 |
314 318 320
|
seqcl |
⊢ ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 𝑛 ) ∈ ℝ ) |
| 322 |
321
|
rexrd |
⊢ ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 𝑛 ) ∈ ℝ* ) |
| 323 |
|
eqidd |
⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) = ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) |
| 324 |
|
iftrue |
⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → if ( 𝑚 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑚 ) , 〈 0 , 0 〉 ) = ( 𝑓 ‘ 𝑚 ) ) |
| 325 |
238 324
|
sylan9eqr |
⊢ ( ( 𝑚 ∈ ( 1 ... 𝑛 ) ∧ 𝑧 = 𝑚 ) → if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) = ( 𝑓 ‘ 𝑚 ) ) |
| 326 |
|
elfznn |
⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → 𝑚 ∈ ℕ ) |
| 327 |
240
|
a1i |
⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( 𝑓 ‘ 𝑚 ) ∈ V ) |
| 328 |
323 325 326 327
|
fvmptd |
⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ‘ 𝑚 ) = ( 𝑓 ‘ 𝑚 ) ) |
| 329 |
328
|
adantl |
⊢ ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → ( ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ‘ 𝑚 ) = ( 𝑓 ‘ 𝑚 ) ) |
| 330 |
329
|
fveq2d |
⊢ ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → ( ( abs ∘ − ) ‘ ( ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ‘ 𝑚 ) ) = ( ( abs ∘ − ) ‘ ( 𝑓 ‘ 𝑚 ) ) ) |
| 331 |
|
fvex |
⊢ ( 𝑓 ‘ 𝑧 ) ∈ V |
| 332 |
331 241
|
ifex |
⊢ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ∈ V |
| 333 |
332 239
|
fnmpti |
⊢ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) Fn ℕ |
| 334 |
|
fvco2 |
⊢ ( ( ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) Fn ℕ ∧ 𝑚 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ‘ 𝑚 ) = ( ( abs ∘ − ) ‘ ( ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ‘ 𝑚 ) ) ) |
| 335 |
333 326 334
|
sylancr |
⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ‘ 𝑚 ) = ( ( abs ∘ − ) ‘ ( ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ‘ 𝑚 ) ) ) |
| 336 |
335
|
adantl |
⊢ ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → ( ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ‘ 𝑚 ) = ( ( abs ∘ − ) ‘ ( ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ‘ 𝑚 ) ) ) |
| 337 |
|
ffn |
⊢ ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } → 𝑓 Fn ℕ ) |
| 338 |
|
fvco2 |
⊢ ( ( 𝑓 Fn ℕ ∧ 𝑚 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝑓 ) ‘ 𝑚 ) = ( ( abs ∘ − ) ‘ ( 𝑓 ‘ 𝑚 ) ) ) |
| 339 |
337 326 338
|
syl2an |
⊢ ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → ( ( ( abs ∘ − ) ∘ 𝑓 ) ‘ 𝑚 ) = ( ( abs ∘ − ) ‘ ( 𝑓 ‘ 𝑚 ) ) ) |
| 340 |
330 336 339
|
3eqtr4d |
⊢ ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → ( ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ‘ 𝑚 ) = ( ( ( abs ∘ − ) ∘ 𝑓 ) ‘ 𝑚 ) ) |
| 341 |
340
|
adantlr |
⊢ ( ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → ( ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ‘ 𝑚 ) = ( ( ( abs ∘ − ) ∘ 𝑓 ) ‘ 𝑚 ) ) |
| 342 |
314 341
|
seqfveq |
⊢ ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ) ‘ 𝑛 ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 𝑛 ) ) |
| 343 |
174
|
a1i |
⊢ ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } → 1 ∈ ℤ ) |
| 344 |
168 65
|
sselid |
⊢ ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑧 ∈ ℕ ) → ( 𝑓 ‘ 𝑧 ) ∈ ( ℂ × ℂ ) ) |
| 345 |
|
0cn |
⊢ 0 ∈ ℂ |
| 346 |
|
opelxpi |
⊢ ( ( 0 ∈ ℂ ∧ 0 ∈ ℂ ) → 〈 0 , 0 〉 ∈ ( ℂ × ℂ ) ) |
| 347 |
345 345 346
|
mp2an |
⊢ 〈 0 , 0 〉 ∈ ( ℂ × ℂ ) |
| 348 |
|
ifcl |
⊢ ( ( ( 𝑓 ‘ 𝑧 ) ∈ ( ℂ × ℂ ) ∧ 〈 0 , 0 〉 ∈ ( ℂ × ℂ ) ) → if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ∈ ( ℂ × ℂ ) ) |
| 349 |
344 347 348
|
sylancl |
⊢ ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑧 ∈ ℕ ) → if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ∈ ( ℂ × ℂ ) ) |
| 350 |
349
|
fmpttd |
⊢ ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } → ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) : ℕ ⟶ ( ℂ × ℂ ) ) |
| 351 |
|
fco |
⊢ ( ( ( abs ∘ − ) : ( ℂ × ℂ ) ⟶ ℝ ∧ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) : ℕ ⟶ ( ℂ × ℂ ) ) → ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) : ℕ ⟶ ℝ ) |
| 352 |
139 350 351
|
sylancr |
⊢ ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } → ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) : ℕ ⟶ ℝ ) |
| 353 |
352
|
ffvelcdmda |
⊢ ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑚 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ‘ 𝑚 ) ∈ ℝ ) |
| 354 |
173 343 353
|
serfre |
⊢ ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } → seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ) : ℕ ⟶ ℝ ) |
| 355 |
354
|
ffnd |
⊢ ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } → seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ) Fn ℕ ) |
| 356 |
|
fnfvelrn |
⊢ ( ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ) Fn ℕ ∧ 𝑛 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ) ‘ 𝑛 ) ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ) ) |
| 357 |
355 356
|
sylan |
⊢ ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ) ‘ 𝑛 ) ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ) ) |
| 358 |
342 357
|
eqeltrrd |
⊢ ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 𝑛 ) ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ) ) |
| 359 |
354
|
frnd |
⊢ ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } → ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ) ⊆ ℝ ) |
| 360 |
359
|
adantr |
⊢ ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) → ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ) ⊆ ℝ ) |
| 361 |
360
|
sselda |
⊢ ( ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ) ) → 𝑚 ∈ ℝ ) |
| 362 |
321
|
adantr |
⊢ ( ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ) ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 𝑛 ) ∈ ℝ ) |
| 363 |
|
readdcl |
⊢ ( ( 𝑚 ∈ ℝ ∧ 𝑢 ∈ ℝ ) → ( 𝑚 + 𝑢 ) ∈ ℝ ) |
| 364 |
363
|
adantl |
⊢ ( ( ( ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ℕ ) ∧ 𝑛 < 𝑡 ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑢 ∈ ℝ ) ) → ( 𝑚 + 𝑢 ) ∈ ℝ ) |
| 365 |
|
recn |
⊢ ( 𝑚 ∈ ℝ → 𝑚 ∈ ℂ ) |
| 366 |
|
recn |
⊢ ( 𝑢 ∈ ℝ → 𝑢 ∈ ℂ ) |
| 367 |
|
recn |
⊢ ( 𝑣 ∈ ℝ → 𝑣 ∈ ℂ ) |
| 368 |
|
addass |
⊢ ( ( 𝑚 ∈ ℂ ∧ 𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ ) → ( ( 𝑚 + 𝑢 ) + 𝑣 ) = ( 𝑚 + ( 𝑢 + 𝑣 ) ) ) |
| 369 |
365 366 367 368
|
syl3an |
⊢ ( ( 𝑚 ∈ ℝ ∧ 𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ ) → ( ( 𝑚 + 𝑢 ) + 𝑣 ) = ( 𝑚 + ( 𝑢 + 𝑣 ) ) ) |
| 370 |
369
|
adantl |
⊢ ( ( ( ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ℕ ) ∧ 𝑛 < 𝑡 ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ ) ) → ( ( 𝑚 + 𝑢 ) + 𝑣 ) = ( 𝑚 + ( 𝑢 + 𝑣 ) ) ) |
| 371 |
|
nnltp1le |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ ) → ( 𝑛 < 𝑡 ↔ ( 𝑛 + 1 ) ≤ 𝑡 ) ) |
| 372 |
371
|
biimpa |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ ) ∧ 𝑛 < 𝑡 ) → ( 𝑛 + 1 ) ≤ 𝑡 ) |
| 373 |
273
|
nnzd |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ∈ ℤ ) |
| 374 |
|
nnz |
⊢ ( 𝑡 ∈ ℕ → 𝑡 ∈ ℤ ) |
| 375 |
|
eluz |
⊢ ( ( ( 𝑛 + 1 ) ∈ ℤ ∧ 𝑡 ∈ ℤ ) → ( 𝑡 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ↔ ( 𝑛 + 1 ) ≤ 𝑡 ) ) |
| 376 |
373 374 375
|
syl2an |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ ) → ( 𝑡 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ↔ ( 𝑛 + 1 ) ≤ 𝑡 ) ) |
| 377 |
376
|
adantr |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ ) ∧ 𝑛 < 𝑡 ) → ( 𝑡 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ↔ ( 𝑛 + 1 ) ≤ 𝑡 ) ) |
| 378 |
372 377
|
mpbird |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ ) ∧ 𝑛 < 𝑡 ) → 𝑡 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) |
| 379 |
378
|
adantlll |
⊢ ( ( ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ℕ ) ∧ 𝑛 < 𝑡 ) → 𝑡 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) |
| 380 |
313
|
ad3antlr |
⊢ ( ( ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ℕ ) ∧ 𝑛 < 𝑡 ) → 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) |
| 381 |
|
simplll |
⊢ ( ( ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ℕ ) ∧ 𝑛 < 𝑡 ) → 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) |
| 382 |
|
elfznn |
⊢ ( 𝑚 ∈ ( 1 ... 𝑡 ) → 𝑚 ∈ ℕ ) |
| 383 |
381 382 353
|
syl2an |
⊢ ( ( ( ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ℕ ) ∧ 𝑛 < 𝑡 ) ∧ 𝑚 ∈ ( 1 ... 𝑡 ) ) → ( ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ‘ 𝑚 ) ∈ ℝ ) |
| 384 |
364 370 379 380 383
|
seqsplit |
⊢ ( ( ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ℕ ) ∧ 𝑛 < 𝑡 ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ) ‘ 𝑡 ) = ( ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ) ‘ 𝑛 ) + ( seq ( 𝑛 + 1 ) ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ) ‘ 𝑡 ) ) ) |
| 385 |
342
|
ad2antrr |
⊢ ( ( ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ℕ ) ∧ 𝑛 < 𝑡 ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ) ‘ 𝑛 ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 𝑛 ) ) |
| 386 |
|
elfzelz |
⊢ ( 𝑚 ∈ ( ( 𝑛 + 1 ) ... 𝑡 ) → 𝑚 ∈ ℤ ) |
| 387 |
386
|
adantl |
⊢ ( ( ( ( 𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ ) ∧ 𝑛 < 𝑡 ) ∧ 𝑚 ∈ ( ( 𝑛 + 1 ) ... 𝑡 ) ) → 𝑚 ∈ ℤ ) |
| 388 |
|
0red |
⊢ ( ( ( ( 𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ ) ∧ 𝑛 < 𝑡 ) ∧ 𝑚 ∈ ( ( 𝑛 + 1 ) ... 𝑡 ) ) → 0 ∈ ℝ ) |
| 389 |
273
|
nnred |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ∈ ℝ ) |
| 390 |
389
|
ad3antrrr |
⊢ ( ( ( ( 𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ ) ∧ 𝑛 < 𝑡 ) ∧ 𝑚 ∈ ( ( 𝑛 + 1 ) ... 𝑡 ) ) → ( 𝑛 + 1 ) ∈ ℝ ) |
| 391 |
386
|
zred |
⊢ ( 𝑚 ∈ ( ( 𝑛 + 1 ) ... 𝑡 ) → 𝑚 ∈ ℝ ) |
| 392 |
391
|
adantl |
⊢ ( ( ( ( 𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ ) ∧ 𝑛 < 𝑡 ) ∧ 𝑚 ∈ ( ( 𝑛 + 1 ) ... 𝑡 ) ) → 𝑚 ∈ ℝ ) |
| 393 |
273
|
nngt0d |
⊢ ( 𝑛 ∈ ℕ → 0 < ( 𝑛 + 1 ) ) |
| 394 |
393
|
ad3antrrr |
⊢ ( ( ( ( 𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ ) ∧ 𝑛 < 𝑡 ) ∧ 𝑚 ∈ ( ( 𝑛 + 1 ) ... 𝑡 ) ) → 0 < ( 𝑛 + 1 ) ) |
| 395 |
|
elfzle1 |
⊢ ( 𝑚 ∈ ( ( 𝑛 + 1 ) ... 𝑡 ) → ( 𝑛 + 1 ) ≤ 𝑚 ) |
| 396 |
395
|
adantl |
⊢ ( ( ( ( 𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ ) ∧ 𝑛 < 𝑡 ) ∧ 𝑚 ∈ ( ( 𝑛 + 1 ) ... 𝑡 ) ) → ( 𝑛 + 1 ) ≤ 𝑚 ) |
| 397 |
388 390 392 394 396
|
ltletrd |
⊢ ( ( ( ( 𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ ) ∧ 𝑛 < 𝑡 ) ∧ 𝑚 ∈ ( ( 𝑛 + 1 ) ... 𝑡 ) ) → 0 < 𝑚 ) |
| 398 |
|
elnnz |
⊢ ( 𝑚 ∈ ℕ ↔ ( 𝑚 ∈ ℤ ∧ 0 < 𝑚 ) ) |
| 399 |
387 397 398
|
sylanbrc |
⊢ ( ( ( ( 𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ ) ∧ 𝑛 < 𝑡 ) ∧ 𝑚 ∈ ( ( 𝑛 + 1 ) ... 𝑡 ) ) → 𝑚 ∈ ℕ ) |
| 400 |
333 399 334
|
sylancr |
⊢ ( ( ( ( 𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ ) ∧ 𝑛 < 𝑡 ) ∧ 𝑚 ∈ ( ( 𝑛 + 1 ) ... 𝑡 ) ) → ( ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ‘ 𝑚 ) = ( ( abs ∘ − ) ‘ ( ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ‘ 𝑚 ) ) ) |
| 401 |
|
eqidd |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( ( 𝑛 + 1 ) ... 𝑡 ) ) → ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) = ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) |
| 402 |
|
nnre |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ ) |
| 403 |
402
|
adantr |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( ( 𝑛 + 1 ) ... 𝑡 ) ) → 𝑛 ∈ ℝ ) |
| 404 |
389
|
adantr |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( ( 𝑛 + 1 ) ... 𝑡 ) ) → ( 𝑛 + 1 ) ∈ ℝ ) |
| 405 |
391
|
adantl |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( ( 𝑛 + 1 ) ... 𝑡 ) ) → 𝑚 ∈ ℝ ) |
| 406 |
402
|
ltp1d |
⊢ ( 𝑛 ∈ ℕ → 𝑛 < ( 𝑛 + 1 ) ) |
| 407 |
406
|
adantr |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( ( 𝑛 + 1 ) ... 𝑡 ) ) → 𝑛 < ( 𝑛 + 1 ) ) |
| 408 |
395
|
adantl |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( ( 𝑛 + 1 ) ... 𝑡 ) ) → ( 𝑛 + 1 ) ≤ 𝑚 ) |
| 409 |
403 404 405 407 408
|
ltletrd |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( ( 𝑛 + 1 ) ... 𝑡 ) ) → 𝑛 < 𝑚 ) |
| 410 |
409
|
adantr |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( ( 𝑛 + 1 ) ... 𝑡 ) ) ∧ 𝑧 = 𝑚 ) → 𝑛 < 𝑚 ) |
| 411 |
403 405
|
ltnled |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( ( 𝑛 + 1 ) ... 𝑡 ) ) → ( 𝑛 < 𝑚 ↔ ¬ 𝑚 ≤ 𝑛 ) ) |
| 412 |
|
breq1 |
⊢ ( 𝑚 = 𝑧 → ( 𝑚 ≤ 𝑛 ↔ 𝑧 ≤ 𝑛 ) ) |
| 413 |
412
|
equcoms |
⊢ ( 𝑧 = 𝑚 → ( 𝑚 ≤ 𝑛 ↔ 𝑧 ≤ 𝑛 ) ) |
| 414 |
413
|
notbid |
⊢ ( 𝑧 = 𝑚 → ( ¬ 𝑚 ≤ 𝑛 ↔ ¬ 𝑧 ≤ 𝑛 ) ) |
| 415 |
411 414
|
sylan9bb |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( ( 𝑛 + 1 ) ... 𝑡 ) ) ∧ 𝑧 = 𝑚 ) → ( 𝑛 < 𝑚 ↔ ¬ 𝑧 ≤ 𝑛 ) ) |
| 416 |
410 415
|
mpbid |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( ( 𝑛 + 1 ) ... 𝑡 ) ) ∧ 𝑧 = 𝑚 ) → ¬ 𝑧 ≤ 𝑛 ) |
| 417 |
|
elfzle2 |
⊢ ( 𝑧 ∈ ( 1 ... 𝑛 ) → 𝑧 ≤ 𝑛 ) |
| 418 |
416 417
|
nsyl |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( ( 𝑛 + 1 ) ... 𝑡 ) ) ∧ 𝑧 = 𝑚 ) → ¬ 𝑧 ∈ ( 1 ... 𝑛 ) ) |
| 419 |
418
|
iffalsed |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( ( 𝑛 + 1 ) ... 𝑡 ) ) ∧ 𝑧 = 𝑚 ) → if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) = 〈 0 , 0 〉 ) |
| 420 |
386
|
adantl |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( ( 𝑛 + 1 ) ... 𝑡 ) ) → 𝑚 ∈ ℤ ) |
| 421 |
|
0red |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( ( 𝑛 + 1 ) ... 𝑡 ) ) → 0 ∈ ℝ ) |
| 422 |
393
|
adantr |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( ( 𝑛 + 1 ) ... 𝑡 ) ) → 0 < ( 𝑛 + 1 ) ) |
| 423 |
421 404 405 422 408
|
ltletrd |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( ( 𝑛 + 1 ) ... 𝑡 ) ) → 0 < 𝑚 ) |
| 424 |
420 423 398
|
sylanbrc |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( ( 𝑛 + 1 ) ... 𝑡 ) ) → 𝑚 ∈ ℕ ) |
| 425 |
241
|
a1i |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( ( 𝑛 + 1 ) ... 𝑡 ) ) → 〈 0 , 0 〉 ∈ V ) |
| 426 |
401 419 424 425
|
fvmptd |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( ( 𝑛 + 1 ) ... 𝑡 ) ) → ( ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ‘ 𝑚 ) = 〈 0 , 0 〉 ) |
| 427 |
426
|
ad4ant14 |
⊢ ( ( ( ( 𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ ) ∧ 𝑛 < 𝑡 ) ∧ 𝑚 ∈ ( ( 𝑛 + 1 ) ... 𝑡 ) ) → ( ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ‘ 𝑚 ) = 〈 0 , 0 〉 ) |
| 428 |
427
|
fveq2d |
⊢ ( ( ( ( 𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ ) ∧ 𝑛 < 𝑡 ) ∧ 𝑚 ∈ ( ( 𝑛 + 1 ) ... 𝑡 ) ) → ( ( abs ∘ − ) ‘ ( ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ‘ 𝑚 ) ) = ( ( abs ∘ − ) ‘ 〈 0 , 0 〉 ) ) |
| 429 |
400 428
|
eqtrd |
⊢ ( ( ( ( 𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ ) ∧ 𝑛 < 𝑡 ) ∧ 𝑚 ∈ ( ( 𝑛 + 1 ) ... 𝑡 ) ) → ( ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ‘ 𝑚 ) = ( ( abs ∘ − ) ‘ 〈 0 , 0 〉 ) ) |
| 430 |
|
fvco3 |
⊢ ( ( − : ( ℂ × ℂ ) ⟶ ℂ ∧ 〈 0 , 0 〉 ∈ ( ℂ × ℂ ) ) → ( ( abs ∘ − ) ‘ 〈 0 , 0 〉 ) = ( abs ‘ ( − ‘ 〈 0 , 0 〉 ) ) ) |
| 431 |
137 347 430
|
mp2an |
⊢ ( ( abs ∘ − ) ‘ 〈 0 , 0 〉 ) = ( abs ‘ ( − ‘ 〈 0 , 0 〉 ) ) |
| 432 |
|
df-ov |
⊢ ( 0 − 0 ) = ( − ‘ 〈 0 , 0 〉 ) |
| 433 |
|
0m0e0 |
⊢ ( 0 − 0 ) = 0 |
| 434 |
432 433
|
eqtr3i |
⊢ ( − ‘ 〈 0 , 0 〉 ) = 0 |
| 435 |
434
|
fveq2i |
⊢ ( abs ‘ ( − ‘ 〈 0 , 0 〉 ) ) = ( abs ‘ 0 ) |
| 436 |
|
abs0 |
⊢ ( abs ‘ 0 ) = 0 |
| 437 |
435 436
|
eqtri |
⊢ ( abs ‘ ( − ‘ 〈 0 , 0 〉 ) ) = 0 |
| 438 |
431 437
|
eqtri |
⊢ ( ( abs ∘ − ) ‘ 〈 0 , 0 〉 ) = 0 |
| 439 |
429 438
|
eqtrdi |
⊢ ( ( ( ( 𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ ) ∧ 𝑛 < 𝑡 ) ∧ 𝑚 ∈ ( ( 𝑛 + 1 ) ... 𝑡 ) ) → ( ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ‘ 𝑚 ) = 0 ) |
| 440 |
|
elfzuz |
⊢ ( 𝑚 ∈ ( ( 𝑛 + 1 ) ... 𝑡 ) → 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) |
| 441 |
|
c0ex |
⊢ 0 ∈ V |
| 442 |
441
|
fvconst2 |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) → ( ( ( ℤ≥ ‘ ( 𝑛 + 1 ) ) × { 0 } ) ‘ 𝑚 ) = 0 ) |
| 443 |
440 442
|
syl |
⊢ ( 𝑚 ∈ ( ( 𝑛 + 1 ) ... 𝑡 ) → ( ( ( ℤ≥ ‘ ( 𝑛 + 1 ) ) × { 0 } ) ‘ 𝑚 ) = 0 ) |
| 444 |
443
|
adantl |
⊢ ( ( ( ( 𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ ) ∧ 𝑛 < 𝑡 ) ∧ 𝑚 ∈ ( ( 𝑛 + 1 ) ... 𝑡 ) ) → ( ( ( ℤ≥ ‘ ( 𝑛 + 1 ) ) × { 0 } ) ‘ 𝑚 ) = 0 ) |
| 445 |
439 444
|
eqtr4d |
⊢ ( ( ( ( 𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ ) ∧ 𝑛 < 𝑡 ) ∧ 𝑚 ∈ ( ( 𝑛 + 1 ) ... 𝑡 ) ) → ( ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ‘ 𝑚 ) = ( ( ( ℤ≥ ‘ ( 𝑛 + 1 ) ) × { 0 } ) ‘ 𝑚 ) ) |
| 446 |
378 445
|
seqfveq |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ ) ∧ 𝑛 < 𝑡 ) → ( seq ( 𝑛 + 1 ) ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ) ‘ 𝑡 ) = ( seq ( 𝑛 + 1 ) ( + , ( ( ℤ≥ ‘ ( 𝑛 + 1 ) ) × { 0 } ) ) ‘ 𝑡 ) ) |
| 447 |
|
eqid |
⊢ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) = ( ℤ≥ ‘ ( 𝑛 + 1 ) ) |
| 448 |
447
|
ser0 |
⊢ ( 𝑡 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) → ( seq ( 𝑛 + 1 ) ( + , ( ( ℤ≥ ‘ ( 𝑛 + 1 ) ) × { 0 } ) ) ‘ 𝑡 ) = 0 ) |
| 449 |
378 448
|
syl |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ ) ∧ 𝑛 < 𝑡 ) → ( seq ( 𝑛 + 1 ) ( + , ( ( ℤ≥ ‘ ( 𝑛 + 1 ) ) × { 0 } ) ) ‘ 𝑡 ) = 0 ) |
| 450 |
446 449
|
eqtrd |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ ) ∧ 𝑛 < 𝑡 ) → ( seq ( 𝑛 + 1 ) ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ) ‘ 𝑡 ) = 0 ) |
| 451 |
450
|
adantlll |
⊢ ( ( ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ℕ ) ∧ 𝑛 < 𝑡 ) → ( seq ( 𝑛 + 1 ) ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ) ‘ 𝑡 ) = 0 ) |
| 452 |
385 451
|
oveq12d |
⊢ ( ( ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ℕ ) ∧ 𝑛 < 𝑡 ) → ( ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ) ‘ 𝑛 ) + ( seq ( 𝑛 + 1 ) ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ) ‘ 𝑡 ) ) = ( ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 𝑛 ) + 0 ) ) |
| 453 |
172
|
ffvelcdmda |
⊢ ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑚 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝑓 ) ‘ 𝑚 ) ∈ ℝ ) |
| 454 |
326 453
|
sylan2 |
⊢ ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → ( ( ( abs ∘ − ) ∘ 𝑓 ) ‘ 𝑚 ) ∈ ℝ ) |
| 455 |
454
|
adantlr |
⊢ ( ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → ( ( ( abs ∘ − ) ∘ 𝑓 ) ‘ 𝑚 ) ∈ ℝ ) |
| 456 |
|
readdcl |
⊢ ( ( 𝑚 ∈ ℝ ∧ 𝑣 ∈ ℝ ) → ( 𝑚 + 𝑣 ) ∈ ℝ ) |
| 457 |
456
|
adantl |
⊢ ( ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑣 ∈ ℝ ) ) → ( 𝑚 + 𝑣 ) ∈ ℝ ) |
| 458 |
314 455 457
|
seqcl |
⊢ ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 𝑛 ) ∈ ℝ ) |
| 459 |
458
|
ad2antrr |
⊢ ( ( ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ℕ ) ∧ 𝑛 < 𝑡 ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 𝑛 ) ∈ ℝ ) |
| 460 |
459
|
recnd |
⊢ ( ( ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ℕ ) ∧ 𝑛 < 𝑡 ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 𝑛 ) ∈ ℂ ) |
| 461 |
460
|
addridd |
⊢ ( ( ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ℕ ) ∧ 𝑛 < 𝑡 ) → ( ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 𝑛 ) + 0 ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 𝑛 ) ) |
| 462 |
452 461
|
eqtrd |
⊢ ( ( ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ℕ ) ∧ 𝑛 < 𝑡 ) → ( ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ) ‘ 𝑛 ) + ( seq ( 𝑛 + 1 ) ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ) ‘ 𝑡 ) ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 𝑛 ) ) |
| 463 |
384 462
|
eqtrd |
⊢ ( ( ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ℕ ) ∧ 𝑛 < 𝑡 ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ) ‘ 𝑡 ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 𝑛 ) ) |
| 464 |
453
|
ad5ant15 |
⊢ ( ( ( ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ℕ ) ∧ 𝑛 < 𝑡 ) ∧ 𝑚 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝑓 ) ‘ 𝑚 ) ∈ ℝ ) |
| 465 |
326 464
|
sylan2 |
⊢ ( ( ( ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ℕ ) ∧ 𝑛 < 𝑡 ) ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → ( ( ( abs ∘ − ) ∘ 𝑓 ) ‘ 𝑚 ) ∈ ℝ ) |
| 466 |
380 465 364
|
seqcl |
⊢ ( ( ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ℕ ) ∧ 𝑛 < 𝑡 ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 𝑛 ) ∈ ℝ ) |
| 467 |
466
|
leidd |
⊢ ( ( ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ℕ ) ∧ 𝑛 < 𝑡 ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 𝑛 ) ≤ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 𝑛 ) ) |
| 468 |
463 467
|
eqbrtrd |
⊢ ( ( ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ℕ ) ∧ 𝑛 < 𝑡 ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ) ‘ 𝑡 ) ≤ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 𝑛 ) ) |
| 469 |
|
elnnuz |
⊢ ( 𝑡 ∈ ℕ ↔ 𝑡 ∈ ( ℤ≥ ‘ 1 ) ) |
| 470 |
469
|
biimpi |
⊢ ( 𝑡 ∈ ℕ → 𝑡 ∈ ( ℤ≥ ‘ 1 ) ) |
| 471 |
470
|
ad2antlr |
⊢ ( ( ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ℕ ) ∧ 𝑡 ≤ 𝑛 ) → 𝑡 ∈ ( ℤ≥ ‘ 1 ) ) |
| 472 |
|
eqidd |
⊢ ( ( ( ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ℕ ) ∧ 𝑡 ≤ 𝑛 ) ∧ 𝑚 ∈ ( 1 ... 𝑡 ) ) → ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) = ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) |
| 473 |
|
simpr |
⊢ ( ( ( ( ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ℕ ) ∧ 𝑡 ≤ 𝑛 ) ∧ 𝑚 ∈ ( 1 ... 𝑡 ) ) ∧ 𝑧 = 𝑚 ) → 𝑧 = 𝑚 ) |
| 474 |
|
elfzle1 |
⊢ ( 𝑚 ∈ ( 1 ... 𝑡 ) → 1 ≤ 𝑚 ) |
| 475 |
474
|
adantl |
⊢ ( ( ( ( 𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ ) ∧ 𝑡 ≤ 𝑛 ) ∧ 𝑚 ∈ ( 1 ... 𝑡 ) ) → 1 ≤ 𝑚 ) |
| 476 |
382
|
nnred |
⊢ ( 𝑚 ∈ ( 1 ... 𝑡 ) → 𝑚 ∈ ℝ ) |
| 477 |
476
|
adantl |
⊢ ( ( ( ( 𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ ) ∧ 𝑡 ≤ 𝑛 ) ∧ 𝑚 ∈ ( 1 ... 𝑡 ) ) → 𝑚 ∈ ℝ ) |
| 478 |
|
nnre |
⊢ ( 𝑡 ∈ ℕ → 𝑡 ∈ ℝ ) |
| 479 |
478
|
ad3antlr |
⊢ ( ( ( ( 𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ ) ∧ 𝑡 ≤ 𝑛 ) ∧ 𝑚 ∈ ( 1 ... 𝑡 ) ) → 𝑡 ∈ ℝ ) |
| 480 |
402
|
ad3antrrr |
⊢ ( ( ( ( 𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ ) ∧ 𝑡 ≤ 𝑛 ) ∧ 𝑚 ∈ ( 1 ... 𝑡 ) ) → 𝑛 ∈ ℝ ) |
| 481 |
|
elfzle2 |
⊢ ( 𝑚 ∈ ( 1 ... 𝑡 ) → 𝑚 ≤ 𝑡 ) |
| 482 |
481
|
adantl |
⊢ ( ( ( ( 𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ ) ∧ 𝑡 ≤ 𝑛 ) ∧ 𝑚 ∈ ( 1 ... 𝑡 ) ) → 𝑚 ≤ 𝑡 ) |
| 483 |
|
simplr |
⊢ ( ( ( ( 𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ ) ∧ 𝑡 ≤ 𝑛 ) ∧ 𝑚 ∈ ( 1 ... 𝑡 ) ) → 𝑡 ≤ 𝑛 ) |
| 484 |
477 479 480 482 483
|
letrd |
⊢ ( ( ( ( 𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ ) ∧ 𝑡 ≤ 𝑛 ) ∧ 𝑚 ∈ ( 1 ... 𝑡 ) ) → 𝑚 ≤ 𝑛 ) |
| 485 |
|
elfzelz |
⊢ ( 𝑚 ∈ ( 1 ... 𝑡 ) → 𝑚 ∈ ℤ ) |
| 486 |
278
|
ad2antrr |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ ) ∧ 𝑡 ≤ 𝑛 ) → 𝑛 ∈ ℤ ) |
| 487 |
|
elfz |
⊢ ( ( 𝑚 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( 𝑚 ∈ ( 1 ... 𝑛 ) ↔ ( 1 ≤ 𝑚 ∧ 𝑚 ≤ 𝑛 ) ) ) |
| 488 |
174 487
|
mp3an2 |
⊢ ( ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( 𝑚 ∈ ( 1 ... 𝑛 ) ↔ ( 1 ≤ 𝑚 ∧ 𝑚 ≤ 𝑛 ) ) ) |
| 489 |
485 486 488
|
syl2anr |
⊢ ( ( ( ( 𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ ) ∧ 𝑡 ≤ 𝑛 ) ∧ 𝑚 ∈ ( 1 ... 𝑡 ) ) → ( 𝑚 ∈ ( 1 ... 𝑛 ) ↔ ( 1 ≤ 𝑚 ∧ 𝑚 ≤ 𝑛 ) ) ) |
| 490 |
475 484 489
|
mpbir2and |
⊢ ( ( ( ( 𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ ) ∧ 𝑡 ≤ 𝑛 ) ∧ 𝑚 ∈ ( 1 ... 𝑡 ) ) → 𝑚 ∈ ( 1 ... 𝑛 ) ) |
| 491 |
490
|
ad5ant2345 |
⊢ ( ( ( ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ℕ ) ∧ 𝑡 ≤ 𝑛 ) ∧ 𝑚 ∈ ( 1 ... 𝑡 ) ) → 𝑚 ∈ ( 1 ... 𝑛 ) ) |
| 492 |
491
|
adantr |
⊢ ( ( ( ( ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ℕ ) ∧ 𝑡 ≤ 𝑛 ) ∧ 𝑚 ∈ ( 1 ... 𝑡 ) ) ∧ 𝑧 = 𝑚 ) → 𝑚 ∈ ( 1 ... 𝑛 ) ) |
| 493 |
473 492
|
eqeltrd |
⊢ ( ( ( ( ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ℕ ) ∧ 𝑡 ≤ 𝑛 ) ∧ 𝑚 ∈ ( 1 ... 𝑡 ) ) ∧ 𝑧 = 𝑚 ) → 𝑧 ∈ ( 1 ... 𝑛 ) ) |
| 494 |
|
iftrue |
⊢ ( 𝑧 ∈ ( 1 ... 𝑛 ) → if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) = ( 𝑓 ‘ 𝑧 ) ) |
| 495 |
493 494
|
syl |
⊢ ( ( ( ( ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ℕ ) ∧ 𝑡 ≤ 𝑛 ) ∧ 𝑚 ∈ ( 1 ... 𝑡 ) ) ∧ 𝑧 = 𝑚 ) → if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) = ( 𝑓 ‘ 𝑧 ) ) |
| 496 |
237
|
adantl |
⊢ ( ( ( ( ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ℕ ) ∧ 𝑡 ≤ 𝑛 ) ∧ 𝑚 ∈ ( 1 ... 𝑡 ) ) ∧ 𝑧 = 𝑚 ) → ( 𝑓 ‘ 𝑧 ) = ( 𝑓 ‘ 𝑚 ) ) |
| 497 |
495 496
|
eqtrd |
⊢ ( ( ( ( ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ℕ ) ∧ 𝑡 ≤ 𝑛 ) ∧ 𝑚 ∈ ( 1 ... 𝑡 ) ) ∧ 𝑧 = 𝑚 ) → if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) = ( 𝑓 ‘ 𝑚 ) ) |
| 498 |
382
|
adantl |
⊢ ( ( ( ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ℕ ) ∧ 𝑡 ≤ 𝑛 ) ∧ 𝑚 ∈ ( 1 ... 𝑡 ) ) → 𝑚 ∈ ℕ ) |
| 499 |
240
|
a1i |
⊢ ( ( ( ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ℕ ) ∧ 𝑡 ≤ 𝑛 ) ∧ 𝑚 ∈ ( 1 ... 𝑡 ) ) → ( 𝑓 ‘ 𝑚 ) ∈ V ) |
| 500 |
472 497 498 499
|
fvmptd |
⊢ ( ( ( ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ℕ ) ∧ 𝑡 ≤ 𝑛 ) ∧ 𝑚 ∈ ( 1 ... 𝑡 ) ) → ( ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ‘ 𝑚 ) = ( 𝑓 ‘ 𝑚 ) ) |
| 501 |
500
|
fveq2d |
⊢ ( ( ( ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ℕ ) ∧ 𝑡 ≤ 𝑛 ) ∧ 𝑚 ∈ ( 1 ... 𝑡 ) ) → ( ( abs ∘ − ) ‘ ( ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ‘ 𝑚 ) ) = ( ( abs ∘ − ) ‘ ( 𝑓 ‘ 𝑚 ) ) ) |
| 502 |
333 382 334
|
sylancr |
⊢ ( 𝑚 ∈ ( 1 ... 𝑡 ) → ( ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ‘ 𝑚 ) = ( ( abs ∘ − ) ‘ ( ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ‘ 𝑚 ) ) ) |
| 503 |
502
|
adantl |
⊢ ( ( ( ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ℕ ) ∧ 𝑡 ≤ 𝑛 ) ∧ 𝑚 ∈ ( 1 ... 𝑡 ) ) → ( ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ‘ 𝑚 ) = ( ( abs ∘ − ) ‘ ( ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ‘ 𝑚 ) ) ) |
| 504 |
|
simplll |
⊢ ( ( ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ℕ ) ∧ 𝑡 ≤ 𝑛 ) → 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) |
| 505 |
|
fvco3 |
⊢ ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑚 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝑓 ) ‘ 𝑚 ) = ( ( abs ∘ − ) ‘ ( 𝑓 ‘ 𝑚 ) ) ) |
| 506 |
504 382 505
|
syl2an |
⊢ ( ( ( ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ℕ ) ∧ 𝑡 ≤ 𝑛 ) ∧ 𝑚 ∈ ( 1 ... 𝑡 ) ) → ( ( ( abs ∘ − ) ∘ 𝑓 ) ‘ 𝑚 ) = ( ( abs ∘ − ) ‘ ( 𝑓 ‘ 𝑚 ) ) ) |
| 507 |
501 503 506
|
3eqtr4d |
⊢ ( ( ( ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ℕ ) ∧ 𝑡 ≤ 𝑛 ) ∧ 𝑚 ∈ ( 1 ... 𝑡 ) ) → ( ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ‘ 𝑚 ) = ( ( ( abs ∘ − ) ∘ 𝑓 ) ‘ 𝑚 ) ) |
| 508 |
471 507
|
seqfveq |
⊢ ( ( ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ℕ ) ∧ 𝑡 ≤ 𝑛 ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ) ‘ 𝑡 ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 𝑡 ) ) |
| 509 |
|
eluz |
⊢ ( ( 𝑡 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( 𝑛 ∈ ( ℤ≥ ‘ 𝑡 ) ↔ 𝑡 ≤ 𝑛 ) ) |
| 510 |
374 278 509
|
syl2anr |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ ) → ( 𝑛 ∈ ( ℤ≥ ‘ 𝑡 ) ↔ 𝑡 ≤ 𝑛 ) ) |
| 511 |
510
|
biimpar |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ ) ∧ 𝑡 ≤ 𝑛 ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑡 ) ) |
| 512 |
511
|
adantlll |
⊢ ( ( ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ℕ ) ∧ 𝑡 ≤ 𝑛 ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑡 ) ) |
| 513 |
504 326 453
|
syl2an |
⊢ ( ( ( ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ℕ ) ∧ 𝑡 ≤ 𝑛 ) ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → ( ( ( abs ∘ − ) ∘ 𝑓 ) ‘ 𝑚 ) ∈ ℝ ) |
| 514 |
|
elfzelz |
⊢ ( 𝑚 ∈ ( ( 𝑡 + 1 ) ... 𝑛 ) → 𝑚 ∈ ℤ ) |
| 515 |
514
|
adantl |
⊢ ( ( 𝑡 ∈ ℕ ∧ 𝑚 ∈ ( ( 𝑡 + 1 ) ... 𝑛 ) ) → 𝑚 ∈ ℤ ) |
| 516 |
|
0red |
⊢ ( ( 𝑡 ∈ ℕ ∧ 𝑚 ∈ ( ( 𝑡 + 1 ) ... 𝑛 ) ) → 0 ∈ ℝ ) |
| 517 |
|
peano2nn |
⊢ ( 𝑡 ∈ ℕ → ( 𝑡 + 1 ) ∈ ℕ ) |
| 518 |
517
|
nnred |
⊢ ( 𝑡 ∈ ℕ → ( 𝑡 + 1 ) ∈ ℝ ) |
| 519 |
518
|
adantr |
⊢ ( ( 𝑡 ∈ ℕ ∧ 𝑚 ∈ ( ( 𝑡 + 1 ) ... 𝑛 ) ) → ( 𝑡 + 1 ) ∈ ℝ ) |
| 520 |
514
|
zred |
⊢ ( 𝑚 ∈ ( ( 𝑡 + 1 ) ... 𝑛 ) → 𝑚 ∈ ℝ ) |
| 521 |
520
|
adantl |
⊢ ( ( 𝑡 ∈ ℕ ∧ 𝑚 ∈ ( ( 𝑡 + 1 ) ... 𝑛 ) ) → 𝑚 ∈ ℝ ) |
| 522 |
517
|
nngt0d |
⊢ ( 𝑡 ∈ ℕ → 0 < ( 𝑡 + 1 ) ) |
| 523 |
522
|
adantr |
⊢ ( ( 𝑡 ∈ ℕ ∧ 𝑚 ∈ ( ( 𝑡 + 1 ) ... 𝑛 ) ) → 0 < ( 𝑡 + 1 ) ) |
| 524 |
|
elfzle1 |
⊢ ( 𝑚 ∈ ( ( 𝑡 + 1 ) ... 𝑛 ) → ( 𝑡 + 1 ) ≤ 𝑚 ) |
| 525 |
524
|
adantl |
⊢ ( ( 𝑡 ∈ ℕ ∧ 𝑚 ∈ ( ( 𝑡 + 1 ) ... 𝑛 ) ) → ( 𝑡 + 1 ) ≤ 𝑚 ) |
| 526 |
516 519 521 523 525
|
ltletrd |
⊢ ( ( 𝑡 ∈ ℕ ∧ 𝑚 ∈ ( ( 𝑡 + 1 ) ... 𝑛 ) ) → 0 < 𝑚 ) |
| 527 |
515 526 398
|
sylanbrc |
⊢ ( ( 𝑡 ∈ ℕ ∧ 𝑚 ∈ ( ( 𝑡 + 1 ) ... 𝑛 ) ) → 𝑚 ∈ ℕ ) |
| 528 |
527
|
adantlr |
⊢ ( ( ( 𝑡 ∈ ℕ ∧ 𝑡 ≤ 𝑛 ) ∧ 𝑚 ∈ ( ( 𝑡 + 1 ) ... 𝑛 ) ) → 𝑚 ∈ ℕ ) |
| 529 |
528
|
adantlll |
⊢ ( ( ( ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ℕ ) ∧ 𝑡 ≤ 𝑛 ) ∧ 𝑚 ∈ ( ( 𝑡 + 1 ) ... 𝑛 ) ) → 𝑚 ∈ ℕ ) |
| 530 |
170
|
ffvelcdmda |
⊢ ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑚 ∈ ℕ ) → ( 𝑓 ‘ 𝑚 ) ∈ ( ℂ × ℂ ) ) |
| 531 |
|
ffvelcdm |
⊢ ( ( − : ( ℂ × ℂ ) ⟶ ℂ ∧ ( 𝑓 ‘ 𝑚 ) ∈ ( ℂ × ℂ ) ) → ( − ‘ ( 𝑓 ‘ 𝑚 ) ) ∈ ℂ ) |
| 532 |
137 530 531
|
sylancr |
⊢ ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑚 ∈ ℕ ) → ( − ‘ ( 𝑓 ‘ 𝑚 ) ) ∈ ℂ ) |
| 533 |
532
|
absge0d |
⊢ ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑚 ∈ ℕ ) → 0 ≤ ( abs ‘ ( − ‘ ( 𝑓 ‘ 𝑚 ) ) ) ) |
| 534 |
|
fvco3 |
⊢ ( ( − : ( ℂ × ℂ ) ⟶ ℂ ∧ ( 𝑓 ‘ 𝑚 ) ∈ ( ℂ × ℂ ) ) → ( ( abs ∘ − ) ‘ ( 𝑓 ‘ 𝑚 ) ) = ( abs ‘ ( − ‘ ( 𝑓 ‘ 𝑚 ) ) ) ) |
| 535 |
137 530 534
|
sylancr |
⊢ ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑚 ∈ ℕ ) → ( ( abs ∘ − ) ‘ ( 𝑓 ‘ 𝑚 ) ) = ( abs ‘ ( − ‘ ( 𝑓 ‘ 𝑚 ) ) ) ) |
| 536 |
505 535
|
eqtrd |
⊢ ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑚 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝑓 ) ‘ 𝑚 ) = ( abs ‘ ( − ‘ ( 𝑓 ‘ 𝑚 ) ) ) ) |
| 537 |
533 536
|
breqtrrd |
⊢ ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑚 ∈ ℕ ) → 0 ≤ ( ( ( abs ∘ − ) ∘ 𝑓 ) ‘ 𝑚 ) ) |
| 538 |
537
|
ad5ant15 |
⊢ ( ( ( ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ℕ ) ∧ 𝑡 ≤ 𝑛 ) ∧ 𝑚 ∈ ℕ ) → 0 ≤ ( ( ( abs ∘ − ) ∘ 𝑓 ) ‘ 𝑚 ) ) |
| 539 |
529 538
|
syldan |
⊢ ( ( ( ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ℕ ) ∧ 𝑡 ≤ 𝑛 ) ∧ 𝑚 ∈ ( ( 𝑡 + 1 ) ... 𝑛 ) ) → 0 ≤ ( ( ( abs ∘ − ) ∘ 𝑓 ) ‘ 𝑚 ) ) |
| 540 |
471 512 513 539
|
sermono |
⊢ ( ( ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ℕ ) ∧ 𝑡 ≤ 𝑛 ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 𝑡 ) ≤ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 𝑛 ) ) |
| 541 |
508 540
|
eqbrtrd |
⊢ ( ( ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ℕ ) ∧ 𝑡 ≤ 𝑛 ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ) ‘ 𝑡 ) ≤ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 𝑛 ) ) |
| 542 |
402
|
ad2antlr |
⊢ ( ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ℕ ) → 𝑛 ∈ ℝ ) |
| 543 |
478
|
adantl |
⊢ ( ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ℕ ) → 𝑡 ∈ ℝ ) |
| 544 |
468 541 542 543
|
ltlecasei |
⊢ ( ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) ∧ 𝑡 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ) ‘ 𝑡 ) ≤ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 𝑛 ) ) |
| 545 |
544
|
ralrimiva |
⊢ ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) → ∀ 𝑡 ∈ ℕ ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ) ‘ 𝑡 ) ≤ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 𝑛 ) ) |
| 546 |
|
breq1 |
⊢ ( 𝑚 = ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ) ‘ 𝑡 ) → ( 𝑚 ≤ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 𝑛 ) ↔ ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ) ‘ 𝑡 ) ≤ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 𝑛 ) ) ) |
| 547 |
546
|
ralrn |
⊢ ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ) Fn ℕ → ( ∀ 𝑚 ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ) 𝑚 ≤ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 𝑛 ) ↔ ∀ 𝑡 ∈ ℕ ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ) ‘ 𝑡 ) ≤ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 𝑛 ) ) ) |
| 548 |
355 547
|
syl |
⊢ ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } → ( ∀ 𝑚 ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ) 𝑚 ≤ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 𝑛 ) ↔ ∀ 𝑡 ∈ ℕ ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ) ‘ 𝑡 ) ≤ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 𝑛 ) ) ) |
| 549 |
548
|
adantr |
⊢ ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) → ( ∀ 𝑚 ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ) 𝑚 ≤ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 𝑛 ) ↔ ∀ 𝑡 ∈ ℕ ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ) ‘ 𝑡 ) ≤ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 𝑛 ) ) ) |
| 550 |
545 549
|
mpbird |
⊢ ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) → ∀ 𝑚 ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ) 𝑚 ≤ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 𝑛 ) ) |
| 551 |
550
|
r19.21bi |
⊢ ( ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ) ) → 𝑚 ≤ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 𝑛 ) ) |
| 552 |
361 362 551
|
lensymd |
⊢ ( ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ) ) → ¬ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 𝑛 ) < 𝑚 ) |
| 553 |
311 322 358 552
|
supmax |
⊢ ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ) , ℝ* , < ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 𝑛 ) ) |
| 554 |
52 553
|
sylan |
⊢ ( ( 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ if ( 𝑧 ∈ ( 1 ... 𝑛 ) , ( 𝑓 ‘ 𝑧 ) , 〈 0 , 0 〉 ) ) ) ) , ℝ* , < ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 𝑛 ) ) |
| 555 |
255 309 554
|
3eqtr3rd |
⊢ ( ( 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 𝑛 ) = ( vol* ‘ ( ∪ 𝑧 ∈ ( 1 ... 𝑛 ) ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ∪ ∪ 𝑧 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( [,] ‘ 〈 0 , 0 〉 ) ) ) ) |
| 556 |
|
elfznn |
⊢ ( 𝑧 ∈ ( 1 ... 𝑛 ) → 𝑧 ∈ ℕ ) |
| 557 |
164 65
|
sselid |
⊢ ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑧 ∈ ℕ ) → ( 𝑓 ‘ 𝑧 ) ∈ ( ℝ × ℝ ) ) |
| 558 |
|
1st2nd2 |
⊢ ( ( 𝑓 ‘ 𝑧 ) ∈ ( ℝ × ℝ ) → ( 𝑓 ‘ 𝑧 ) = 〈 ( 1st ‘ ( 𝑓 ‘ 𝑧 ) ) , ( 2nd ‘ ( 𝑓 ‘ 𝑧 ) ) 〉 ) |
| 559 |
558
|
fveq2d |
⊢ ( ( 𝑓 ‘ 𝑧 ) ∈ ( ℝ × ℝ ) → ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) = ( [,] ‘ 〈 ( 1st ‘ ( 𝑓 ‘ 𝑧 ) ) , ( 2nd ‘ ( 𝑓 ‘ 𝑧 ) ) 〉 ) ) |
| 560 |
|
df-ov |
⊢ ( ( 1st ‘ ( 𝑓 ‘ 𝑧 ) ) [,] ( 2nd ‘ ( 𝑓 ‘ 𝑧 ) ) ) = ( [,] ‘ 〈 ( 1st ‘ ( 𝑓 ‘ 𝑧 ) ) , ( 2nd ‘ ( 𝑓 ‘ 𝑧 ) ) 〉 ) |
| 561 |
559 560
|
eqtr4di |
⊢ ( ( 𝑓 ‘ 𝑧 ) ∈ ( ℝ × ℝ ) → ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) = ( ( 1st ‘ ( 𝑓 ‘ 𝑧 ) ) [,] ( 2nd ‘ ( 𝑓 ‘ 𝑧 ) ) ) ) |
| 562 |
|
xp1st |
⊢ ( ( 𝑓 ‘ 𝑧 ) ∈ ( ℝ × ℝ ) → ( 1st ‘ ( 𝑓 ‘ 𝑧 ) ) ∈ ℝ ) |
| 563 |
|
xp2nd |
⊢ ( ( 𝑓 ‘ 𝑧 ) ∈ ( ℝ × ℝ ) → ( 2nd ‘ ( 𝑓 ‘ 𝑧 ) ) ∈ ℝ ) |
| 564 |
|
iccssre |
⊢ ( ( ( 1st ‘ ( 𝑓 ‘ 𝑧 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝑓 ‘ 𝑧 ) ) ∈ ℝ ) → ( ( 1st ‘ ( 𝑓 ‘ 𝑧 ) ) [,] ( 2nd ‘ ( 𝑓 ‘ 𝑧 ) ) ) ⊆ ℝ ) |
| 565 |
562 563 564
|
syl2anc |
⊢ ( ( 𝑓 ‘ 𝑧 ) ∈ ( ℝ × ℝ ) → ( ( 1st ‘ ( 𝑓 ‘ 𝑧 ) ) [,] ( 2nd ‘ ( 𝑓 ‘ 𝑧 ) ) ) ⊆ ℝ ) |
| 566 |
561 565
|
eqsstrd |
⊢ ( ( 𝑓 ‘ 𝑧 ) ∈ ( ℝ × ℝ ) → ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ⊆ ℝ ) |
| 567 |
557 566
|
syl |
⊢ ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑧 ∈ ℕ ) → ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ⊆ ℝ ) |
| 568 |
52 556 567
|
syl2an |
⊢ ( ( 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑧 ∈ ( 1 ... 𝑛 ) ) → ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ⊆ ℝ ) |
| 569 |
568
|
ralrimiva |
⊢ ( 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } → ∀ 𝑧 ∈ ( 1 ... 𝑛 ) ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ⊆ ℝ ) |
| 570 |
|
iunss |
⊢ ( ∪ 𝑧 ∈ ( 1 ... 𝑛 ) ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ⊆ ℝ ↔ ∀ 𝑧 ∈ ( 1 ... 𝑛 ) ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ⊆ ℝ ) |
| 571 |
569 570
|
sylibr |
⊢ ( 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } → ∪ 𝑧 ∈ ( 1 ... 𝑛 ) ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ⊆ ℝ ) |
| 572 |
571
|
adantr |
⊢ ( ( 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) → ∪ 𝑧 ∈ ( 1 ... 𝑛 ) ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ⊆ ℝ ) |
| 573 |
|
uzid |
⊢ ( ( 𝑛 + 1 ) ∈ ℤ → ( 𝑛 + 1 ) ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) |
| 574 |
|
ne0i |
⊢ ( ( 𝑛 + 1 ) ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) → ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ≠ ∅ ) |
| 575 |
|
iunconst |
⊢ ( ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ≠ ∅ → ∪ 𝑧 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( [,] ‘ 〈 0 , 0 〉 ) = ( [,] ‘ 〈 0 , 0 〉 ) ) |
| 576 |
373 573 574 575
|
4syl |
⊢ ( 𝑛 ∈ ℕ → ∪ 𝑧 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( [,] ‘ 〈 0 , 0 〉 ) = ( [,] ‘ 〈 0 , 0 〉 ) ) |
| 577 |
|
iccid |
⊢ ( 0 ∈ ℝ* → ( 0 [,] 0 ) = { 0 } ) |
| 578 |
259 577
|
ax-mp |
⊢ ( 0 [,] 0 ) = { 0 } |
| 579 |
|
df-ov |
⊢ ( 0 [,] 0 ) = ( [,] ‘ 〈 0 , 0 〉 ) |
| 580 |
578 579
|
eqtr3i |
⊢ { 0 } = ( [,] ‘ 〈 0 , 0 〉 ) |
| 581 |
576 580
|
eqtr4di |
⊢ ( 𝑛 ∈ ℕ → ∪ 𝑧 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( [,] ‘ 〈 0 , 0 〉 ) = { 0 } ) |
| 582 |
|
snssi |
⊢ ( 0 ∈ ℝ → { 0 } ⊆ ℝ ) |
| 583 |
199 582
|
ax-mp |
⊢ { 0 } ⊆ ℝ |
| 584 |
581 583
|
eqsstrdi |
⊢ ( 𝑛 ∈ ℕ → ∪ 𝑧 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( [,] ‘ 〈 0 , 0 〉 ) ⊆ ℝ ) |
| 585 |
584
|
adantl |
⊢ ( ( 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) → ∪ 𝑧 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( [,] ‘ 〈 0 , 0 〉 ) ⊆ ℝ ) |
| 586 |
581
|
fveq2d |
⊢ ( 𝑛 ∈ ℕ → ( vol* ‘ ∪ 𝑧 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( [,] ‘ 〈 0 , 0 〉 ) ) = ( vol* ‘ { 0 } ) ) |
| 587 |
586
|
adantl |
⊢ ( ( 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) → ( vol* ‘ ∪ 𝑧 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( [,] ‘ 〈 0 , 0 〉 ) ) = ( vol* ‘ { 0 } ) ) |
| 588 |
|
ovolsn |
⊢ ( 0 ∈ ℝ → ( vol* ‘ { 0 } ) = 0 ) |
| 589 |
199 588
|
ax-mp |
⊢ ( vol* ‘ { 0 } ) = 0 |
| 590 |
587 589
|
eqtrdi |
⊢ ( ( 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) → ( vol* ‘ ∪ 𝑧 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( [,] ‘ 〈 0 , 0 〉 ) ) = 0 ) |
| 591 |
|
ovolunnul |
⊢ ( ( ∪ 𝑧 ∈ ( 1 ... 𝑛 ) ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ⊆ ℝ ∧ ∪ 𝑧 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( [,] ‘ 〈 0 , 0 〉 ) ⊆ ℝ ∧ ( vol* ‘ ∪ 𝑧 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( [,] ‘ 〈 0 , 0 〉 ) ) = 0 ) → ( vol* ‘ ( ∪ 𝑧 ∈ ( 1 ... 𝑛 ) ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ∪ ∪ 𝑧 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( [,] ‘ 〈 0 , 0 〉 ) ) ) = ( vol* ‘ ∪ 𝑧 ∈ ( 1 ... 𝑛 ) ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ) ) |
| 592 |
572 585 590 591
|
syl3anc |
⊢ ( ( 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) → ( vol* ‘ ( ∪ 𝑧 ∈ ( 1 ... 𝑛 ) ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ∪ ∪ 𝑧 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( [,] ‘ 〈 0 , 0 〉 ) ) ) = ( vol* ‘ ∪ 𝑧 ∈ ( 1 ... 𝑛 ) ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ) ) |
| 593 |
555 592
|
eqtrd |
⊢ ( ( 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 𝑛 ) = ( vol* ‘ ∪ 𝑧 ∈ ( 1 ... 𝑛 ) ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ) ) |
| 594 |
593
|
breq2d |
⊢ ( ( 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) → ( 𝑀 < ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 𝑛 ) ↔ 𝑀 < ( vol* ‘ ∪ 𝑧 ∈ ( 1 ... 𝑛 ) ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ) ) ) |
| 595 |
594
|
biimpd |
⊢ ( ( 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑛 ∈ ℕ ) → ( 𝑀 < ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 𝑛 ) → 𝑀 < ( vol* ‘ ∪ 𝑧 ∈ ( 1 ... 𝑛 ) ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ) ) ) |
| 596 |
595
|
reximdva |
⊢ ( 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } → ( ∃ 𝑛 ∈ ℕ 𝑀 < ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 𝑛 ) → ∃ 𝑛 ∈ ℕ 𝑀 < ( vol* ‘ ∪ 𝑧 ∈ ( 1 ... 𝑛 ) ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ) ) ) |
| 597 |
596
|
adantl |
⊢ ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < ( vol* ‘ 𝐴 ) ) ∧ 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) → ( ∃ 𝑛 ∈ ℕ 𝑀 < ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 𝑛 ) → ∃ 𝑛 ∈ ℕ 𝑀 < ( vol* ‘ ∪ 𝑧 ∈ ( 1 ... 𝑛 ) ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ) ) ) |
| 598 |
194 597
|
mpd |
⊢ ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < ( vol* ‘ 𝐴 ) ) ∧ 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) → ∃ 𝑛 ∈ ℕ 𝑀 < ( vol* ‘ ∪ 𝑧 ∈ ( 1 ... 𝑛 ) ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ) ) |
| 599 |
|
fzfi |
⊢ ( 1 ... 𝑛 ) ∈ Fin |
| 600 |
|
icccld |
⊢ ( ( ( 1st ‘ ( 𝑓 ‘ 𝑧 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝑓 ‘ 𝑧 ) ) ∈ ℝ ) → ( ( 1st ‘ ( 𝑓 ‘ 𝑧 ) ) [,] ( 2nd ‘ ( 𝑓 ‘ 𝑧 ) ) ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
| 601 |
562 563 600
|
syl2anc |
⊢ ( ( 𝑓 ‘ 𝑧 ) ∈ ( ℝ × ℝ ) → ( ( 1st ‘ ( 𝑓 ‘ 𝑧 ) ) [,] ( 2nd ‘ ( 𝑓 ‘ 𝑧 ) ) ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
| 602 |
561 601
|
eqeltrd |
⊢ ( ( 𝑓 ‘ 𝑧 ) ∈ ( ℝ × ℝ ) → ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
| 603 |
557 602
|
syl |
⊢ ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑧 ∈ ℕ ) → ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
| 604 |
556 603
|
sylan2 |
⊢ ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑧 ∈ ( 1 ... 𝑛 ) ) → ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
| 605 |
604
|
ralrimiva |
⊢ ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } → ∀ 𝑧 ∈ ( 1 ... 𝑛 ) ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
| 606 |
|
uniretop |
⊢ ℝ = ∪ ( topGen ‘ ran (,) ) |
| 607 |
606
|
iuncld |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( 1 ... 𝑛 ) ∈ Fin ∧ ∀ 𝑧 ∈ ( 1 ... 𝑛 ) ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) → ∪ 𝑧 ∈ ( 1 ... 𝑛 ) ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
| 608 |
1 599 605 607
|
mp3an12i |
⊢ ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } → ∪ 𝑧 ∈ ( 1 ... 𝑛 ) ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
| 609 |
608
|
adantr |
⊢ ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ ( 𝑛 ∈ ℕ ∧ 𝑀 < ( vol* ‘ ∪ 𝑧 ∈ ( 1 ... 𝑛 ) ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ) ) ) → ∪ 𝑧 ∈ ( 1 ... 𝑛 ) ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
| 610 |
|
fveq2 |
⊢ ( 𝑏 = ( 𝑓 ‘ 𝑧 ) → ( [,] ‘ 𝑏 ) = ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ) |
| 611 |
610
|
sseq1d |
⊢ ( 𝑏 = ( 𝑓 ‘ 𝑧 ) → ( ( [,] ‘ 𝑏 ) ⊆ 𝐴 ↔ ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ⊆ 𝐴 ) ) |
| 612 |
611
|
elrab |
⊢ ( ( 𝑓 ‘ 𝑧 ) ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ↔ ( ( 𝑓 ‘ 𝑧 ) ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∧ ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ⊆ 𝐴 ) ) |
| 613 |
612
|
simprbi |
⊢ ( ( 𝑓 ‘ 𝑧 ) ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } → ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ⊆ 𝐴 ) |
| 614 |
65 73 613
|
3syl |
⊢ ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑧 ∈ ℕ ) → ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ⊆ 𝐴 ) |
| 615 |
556 614
|
sylan2 |
⊢ ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑧 ∈ ( 1 ... 𝑛 ) ) → ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ⊆ 𝐴 ) |
| 616 |
615
|
ralrimiva |
⊢ ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } → ∀ 𝑧 ∈ ( 1 ... 𝑛 ) ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ⊆ 𝐴 ) |
| 617 |
|
iunss |
⊢ ( ∪ 𝑧 ∈ ( 1 ... 𝑛 ) ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ⊆ 𝐴 ↔ ∀ 𝑧 ∈ ( 1 ... 𝑛 ) ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ⊆ 𝐴 ) |
| 618 |
616 617
|
sylibr |
⊢ ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } → ∪ 𝑧 ∈ ( 1 ... 𝑛 ) ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ⊆ 𝐴 ) |
| 619 |
618
|
adantr |
⊢ ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ ( 𝑛 ∈ ℕ ∧ 𝑀 < ( vol* ‘ ∪ 𝑧 ∈ ( 1 ... 𝑛 ) ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ) ) ) → ∪ 𝑧 ∈ ( 1 ... 𝑛 ) ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ⊆ 𝐴 ) |
| 620 |
|
simprr |
⊢ ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ ( 𝑛 ∈ ℕ ∧ 𝑀 < ( vol* ‘ ∪ 𝑧 ∈ ( 1 ... 𝑛 ) ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ) ) ) → 𝑀 < ( vol* ‘ ∪ 𝑧 ∈ ( 1 ... 𝑛 ) ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ) ) |
| 621 |
|
sseq1 |
⊢ ( 𝑠 = ∪ 𝑧 ∈ ( 1 ... 𝑛 ) ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) → ( 𝑠 ⊆ 𝐴 ↔ ∪ 𝑧 ∈ ( 1 ... 𝑛 ) ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ⊆ 𝐴 ) ) |
| 622 |
|
fveq2 |
⊢ ( 𝑠 = ∪ 𝑧 ∈ ( 1 ... 𝑛 ) ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) → ( vol* ‘ 𝑠 ) = ( vol* ‘ ∪ 𝑧 ∈ ( 1 ... 𝑛 ) ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ) ) |
| 623 |
622
|
breq2d |
⊢ ( 𝑠 = ∪ 𝑧 ∈ ( 1 ... 𝑛 ) ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) → ( 𝑀 < ( vol* ‘ 𝑠 ) ↔ 𝑀 < ( vol* ‘ ∪ 𝑧 ∈ ( 1 ... 𝑛 ) ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ) ) ) |
| 624 |
621 623
|
anbi12d |
⊢ ( 𝑠 = ∪ 𝑧 ∈ ( 1 ... 𝑛 ) ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) → ( ( 𝑠 ⊆ 𝐴 ∧ 𝑀 < ( vol* ‘ 𝑠 ) ) ↔ ( ∪ 𝑧 ∈ ( 1 ... 𝑛 ) ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ⊆ 𝐴 ∧ 𝑀 < ( vol* ‘ ∪ 𝑧 ∈ ( 1 ... 𝑛 ) ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ) ) ) ) |
| 625 |
624
|
rspcev |
⊢ ( ( ∪ 𝑧 ∈ ( 1 ... 𝑛 ) ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( ∪ 𝑧 ∈ ( 1 ... 𝑛 ) ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ⊆ 𝐴 ∧ 𝑀 < ( vol* ‘ ∪ 𝑧 ∈ ( 1 ... 𝑛 ) ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ) ) ) → ∃ 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑠 ⊆ 𝐴 ∧ 𝑀 < ( vol* ‘ 𝑠 ) ) ) |
| 626 |
609 619 620 625
|
syl12anc |
⊢ ( ( 𝑓 : ℕ ⟶ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ ( 𝑛 ∈ ℕ ∧ 𝑀 < ( vol* ‘ ∪ 𝑧 ∈ ( 1 ... 𝑛 ) ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ) ) ) → ∃ 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑠 ⊆ 𝐴 ∧ 𝑀 < ( vol* ‘ 𝑠 ) ) ) |
| 627 |
52 626
|
sylan |
⊢ ( ( 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ ( 𝑛 ∈ ℕ ∧ 𝑀 < ( vol* ‘ ∪ 𝑧 ∈ ( 1 ... 𝑛 ) ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ) ) ) → ∃ 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑠 ⊆ 𝐴 ∧ 𝑀 < ( vol* ‘ 𝑠 ) ) ) |
| 628 |
627
|
adantll |
⊢ ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < ( vol* ‘ 𝐴 ) ) ∧ 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑀 < ( vol* ‘ ∪ 𝑧 ∈ ( 1 ... 𝑛 ) ( [,] ‘ ( 𝑓 ‘ 𝑧 ) ) ) ) ) → ∃ 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑠 ⊆ 𝐴 ∧ 𝑀 < ( vol* ‘ 𝑠 ) ) ) |
| 629 |
598 628
|
rexlimddv |
⊢ ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < ( vol* ‘ 𝐴 ) ) ∧ 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) → ∃ 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑠 ⊆ 𝐴 ∧ 𝑀 < ( vol* ‘ 𝑠 ) ) ) |
| 630 |
629
|
adantlr |
⊢ ( ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < ( vol* ‘ 𝐴 ) ) ∧ 𝐴 ≠ ∅ ) ∧ 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) → ∃ 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑠 ⊆ 𝐴 ∧ 𝑀 < ( vol* ‘ 𝑠 ) ) ) |
| 631 |
17 630
|
exlimddv |
⊢ ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < ( vol* ‘ 𝐴 ) ) ∧ 𝐴 ≠ ∅ ) → ∃ 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑠 ⊆ 𝐴 ∧ 𝑀 < ( vol* ‘ 𝑠 ) ) ) |
| 632 |
15 631
|
pm2.61dane |
⊢ ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < ( vol* ‘ 𝐴 ) ) → ∃ 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑠 ⊆ 𝐴 ∧ 𝑀 < ( vol* ‘ 𝑠 ) ) ) |