| Step |
Hyp |
Ref |
Expression |
| 1 |
|
peano2re |
⊢ ( 𝑛 ∈ ℝ → ( 𝑛 + 1 ) ∈ ℝ ) |
| 2 |
|
ltp1 |
⊢ ( 𝑛 ∈ ℝ → 𝑛 < ( 𝑛 + 1 ) ) |
| 3 |
|
breq2 |
⊢ ( 𝑧 = ( 𝑛 + 1 ) → ( 𝑛 < 𝑧 ↔ 𝑛 < ( 𝑛 + 1 ) ) ) |
| 4 |
3
|
rspcev |
⊢ ( ( ( 𝑛 + 1 ) ∈ ℝ ∧ 𝑛 < ( 𝑛 + 1 ) ) → ∃ 𝑧 ∈ ℝ 𝑛 < 𝑧 ) |
| 5 |
1 2 4
|
syl2anc |
⊢ ( 𝑛 ∈ ℝ → ∃ 𝑧 ∈ ℝ 𝑛 < 𝑧 ) |
| 6 |
5
|
rgen |
⊢ ∀ 𝑛 ∈ ℝ ∃ 𝑧 ∈ ℝ 𝑛 < 𝑧 |
| 7 |
|
ltnle |
⊢ ( ( 𝑛 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( 𝑛 < 𝑧 ↔ ¬ 𝑧 ≤ 𝑛 ) ) |
| 8 |
7
|
rexbidva |
⊢ ( 𝑛 ∈ ℝ → ( ∃ 𝑧 ∈ ℝ 𝑛 < 𝑧 ↔ ∃ 𝑧 ∈ ℝ ¬ 𝑧 ≤ 𝑛 ) ) |
| 9 |
|
rexnal |
⊢ ( ∃ 𝑧 ∈ ℝ ¬ 𝑧 ≤ 𝑛 ↔ ¬ ∀ 𝑧 ∈ ℝ 𝑧 ≤ 𝑛 ) |
| 10 |
8 9
|
bitrdi |
⊢ ( 𝑛 ∈ ℝ → ( ∃ 𝑧 ∈ ℝ 𝑛 < 𝑧 ↔ ¬ ∀ 𝑧 ∈ ℝ 𝑧 ≤ 𝑛 ) ) |
| 11 |
10
|
ralbiia |
⊢ ( ∀ 𝑛 ∈ ℝ ∃ 𝑧 ∈ ℝ 𝑛 < 𝑧 ↔ ∀ 𝑛 ∈ ℝ ¬ ∀ 𝑧 ∈ ℝ 𝑧 ≤ 𝑛 ) |
| 12 |
|
ralnex |
⊢ ( ∀ 𝑛 ∈ ℝ ¬ ∀ 𝑧 ∈ ℝ 𝑧 ≤ 𝑛 ↔ ¬ ∃ 𝑛 ∈ ℝ ∀ 𝑧 ∈ ℝ 𝑧 ≤ 𝑛 ) |
| 13 |
11 12
|
bitri |
⊢ ( ∀ 𝑛 ∈ ℝ ∃ 𝑧 ∈ ℝ 𝑛 < 𝑧 ↔ ¬ ∃ 𝑛 ∈ ℝ ∀ 𝑧 ∈ ℝ 𝑧 ≤ 𝑛 ) |
| 14 |
6 13
|
mpbi |
⊢ ¬ ∃ 𝑛 ∈ ℝ ∀ 𝑧 ∈ ℝ 𝑧 ≤ 𝑛 |
| 15 |
|
raleq |
⊢ ( 𝐴 = ℝ → ( ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑛 ↔ ∀ 𝑧 ∈ ℝ 𝑧 ≤ 𝑛 ) ) |
| 16 |
15
|
rexbidv |
⊢ ( 𝐴 = ℝ → ( ∃ 𝑛 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑛 ↔ ∃ 𝑛 ∈ ℝ ∀ 𝑧 ∈ ℝ 𝑧 ≤ 𝑛 ) ) |
| 17 |
14 16
|
mtbiri |
⊢ ( 𝐴 = ℝ → ¬ ∃ 𝑛 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑛 ) |
| 18 |
|
ssrab2 |
⊢ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ⊆ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } |
| 19 |
|
ssrab2 |
⊢ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ⊆ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) |
| 20 |
|
zre |
⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℝ ) |
| 21 |
|
2re |
⊢ 2 ∈ ℝ |
| 22 |
|
reexpcl |
⊢ ( ( 2 ∈ ℝ ∧ 𝑦 ∈ ℕ0 ) → ( 2 ↑ 𝑦 ) ∈ ℝ ) |
| 23 |
21 22
|
mpan |
⊢ ( 𝑦 ∈ ℕ0 → ( 2 ↑ 𝑦 ) ∈ ℝ ) |
| 24 |
|
nn0z |
⊢ ( 𝑦 ∈ ℕ0 → 𝑦 ∈ ℤ ) |
| 25 |
|
2cn |
⊢ 2 ∈ ℂ |
| 26 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 27 |
|
expne0i |
⊢ ( ( 2 ∈ ℂ ∧ 2 ≠ 0 ∧ 𝑦 ∈ ℤ ) → ( 2 ↑ 𝑦 ) ≠ 0 ) |
| 28 |
25 26 27
|
mp3an12 |
⊢ ( 𝑦 ∈ ℤ → ( 2 ↑ 𝑦 ) ≠ 0 ) |
| 29 |
24 28
|
syl |
⊢ ( 𝑦 ∈ ℕ0 → ( 2 ↑ 𝑦 ) ≠ 0 ) |
| 30 |
23 29
|
jca |
⊢ ( 𝑦 ∈ ℕ0 → ( ( 2 ↑ 𝑦 ) ∈ ℝ ∧ ( 2 ↑ 𝑦 ) ≠ 0 ) ) |
| 31 |
|
redivcl |
⊢ ( ( 𝑥 ∈ ℝ ∧ ( 2 ↑ 𝑦 ) ∈ ℝ ∧ ( 2 ↑ 𝑦 ) ≠ 0 ) → ( 𝑥 / ( 2 ↑ 𝑦 ) ) ∈ ℝ ) |
| 32 |
|
peano2re |
⊢ ( 𝑥 ∈ ℝ → ( 𝑥 + 1 ) ∈ ℝ ) |
| 33 |
|
redivcl |
⊢ ( ( ( 𝑥 + 1 ) ∈ ℝ ∧ ( 2 ↑ 𝑦 ) ∈ ℝ ∧ ( 2 ↑ 𝑦 ) ≠ 0 ) → ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ∈ ℝ ) |
| 34 |
32 33
|
syl3an1 |
⊢ ( ( 𝑥 ∈ ℝ ∧ ( 2 ↑ 𝑦 ) ∈ ℝ ∧ ( 2 ↑ 𝑦 ) ≠ 0 ) → ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ∈ ℝ ) |
| 35 |
|
opelxpi |
⊢ ( ( ( 𝑥 / ( 2 ↑ 𝑦 ) ) ∈ ℝ ∧ ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ∈ ℝ ) → 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ∈ ( ℝ × ℝ ) ) |
| 36 |
31 34 35
|
syl2anc |
⊢ ( ( 𝑥 ∈ ℝ ∧ ( 2 ↑ 𝑦 ) ∈ ℝ ∧ ( 2 ↑ 𝑦 ) ≠ 0 ) → 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ∈ ( ℝ × ℝ ) ) |
| 37 |
36
|
3expb |
⊢ ( ( 𝑥 ∈ ℝ ∧ ( ( 2 ↑ 𝑦 ) ∈ ℝ ∧ ( 2 ↑ 𝑦 ) ≠ 0 ) ) → 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ∈ ( ℝ × ℝ ) ) |
| 38 |
20 30 37
|
syl2an |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0 ) → 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ∈ ( ℝ × ℝ ) ) |
| 39 |
38
|
rgen2 |
⊢ ∀ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ℕ0 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ∈ ( ℝ × ℝ ) |
| 40 |
|
eqid |
⊢ ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) = ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) |
| 41 |
40
|
fmpo |
⊢ ( ∀ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ℕ0 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ∈ ( ℝ × ℝ ) ↔ ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) : ( ℤ × ℕ0 ) ⟶ ( ℝ × ℝ ) ) |
| 42 |
39 41
|
mpbi |
⊢ ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) : ( ℤ × ℕ0 ) ⟶ ( ℝ × ℝ ) |
| 43 |
|
frn |
⊢ ( ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) : ( ℤ × ℕ0 ) ⟶ ( ℝ × ℝ ) → ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ⊆ ( ℝ × ℝ ) ) |
| 44 |
42 43
|
ax-mp |
⊢ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ⊆ ( ℝ × ℝ ) |
| 45 |
19 44
|
sstri |
⊢ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ⊆ ( ℝ × ℝ ) |
| 46 |
18 45
|
sstri |
⊢ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ⊆ ( ℝ × ℝ ) |
| 47 |
|
rnss |
⊢ ( { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ⊆ ( ℝ × ℝ ) → ran { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ⊆ ran ( ℝ × ℝ ) ) |
| 48 |
|
rnxpid |
⊢ ran ( ℝ × ℝ ) = ℝ |
| 49 |
47 48
|
sseqtrdi |
⊢ ( { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ⊆ ( ℝ × ℝ ) → ran { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ⊆ ℝ ) |
| 50 |
46 49
|
ax-mp |
⊢ ran { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ⊆ ℝ |
| 51 |
|
rnfi |
⊢ ( { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∈ Fin → ran { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∈ Fin ) |
| 52 |
|
fimaxre2 |
⊢ ( ( ran { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ⊆ ℝ ∧ ran { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∈ Fin ) → ∃ 𝑛 ∈ ℝ ∀ 𝑢 ∈ ran { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } 𝑢 ≤ 𝑛 ) |
| 53 |
50 51 52
|
sylancr |
⊢ ( { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∈ Fin → ∃ 𝑛 ∈ ℝ ∀ 𝑢 ∈ ran { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } 𝑢 ≤ 𝑛 ) |
| 54 |
53
|
adantl |
⊢ ( ( ∪ ( [,] “ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) = 𝐴 ∧ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∈ Fin ) → ∃ 𝑛 ∈ ℝ ∀ 𝑢 ∈ ran { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } 𝑢 ≤ 𝑛 ) |
| 55 |
|
eluni2 |
⊢ ( 𝑧 ∈ ∪ ( [,] “ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) ↔ ∃ 𝑢 ∈ ( [,] “ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) 𝑧 ∈ 𝑢 ) |
| 56 |
|
iccf |
⊢ [,] : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* |
| 57 |
|
ffn |
⊢ ( [,] : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* → [,] Fn ( ℝ* × ℝ* ) ) |
| 58 |
56 57
|
ax-mp |
⊢ [,] Fn ( ℝ* × ℝ* ) |
| 59 |
|
rexpssxrxp |
⊢ ( ℝ × ℝ ) ⊆ ( ℝ* × ℝ* ) |
| 60 |
46 59
|
sstri |
⊢ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ⊆ ( ℝ* × ℝ* ) |
| 61 |
|
eleq2 |
⊢ ( 𝑢 = ( [,] ‘ 𝑣 ) → ( 𝑧 ∈ 𝑢 ↔ 𝑧 ∈ ( [,] ‘ 𝑣 ) ) ) |
| 62 |
61
|
rexima |
⊢ ( ( [,] Fn ( ℝ* × ℝ* ) ∧ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ⊆ ( ℝ* × ℝ* ) ) → ( ∃ 𝑢 ∈ ( [,] “ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) 𝑧 ∈ 𝑢 ↔ ∃ 𝑣 ∈ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } 𝑧 ∈ ( [,] ‘ 𝑣 ) ) ) |
| 63 |
58 60 62
|
mp2an |
⊢ ( ∃ 𝑢 ∈ ( [,] “ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) 𝑧 ∈ 𝑢 ↔ ∃ 𝑣 ∈ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } 𝑧 ∈ ( [,] ‘ 𝑣 ) ) |
| 64 |
55 63
|
bitri |
⊢ ( 𝑧 ∈ ∪ ( [,] “ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) ↔ ∃ 𝑣 ∈ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } 𝑧 ∈ ( [,] ‘ 𝑣 ) ) |
| 65 |
46
|
sseli |
⊢ ( 𝑣 ∈ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } → 𝑣 ∈ ( ℝ × ℝ ) ) |
| 66 |
|
1st2nd2 |
⊢ ( 𝑣 ∈ ( ℝ × ℝ ) → 𝑣 = 〈 ( 1st ‘ 𝑣 ) , ( 2nd ‘ 𝑣 ) 〉 ) |
| 67 |
66
|
fveq2d |
⊢ ( 𝑣 ∈ ( ℝ × ℝ ) → ( [,] ‘ 𝑣 ) = ( [,] ‘ 〈 ( 1st ‘ 𝑣 ) , ( 2nd ‘ 𝑣 ) 〉 ) ) |
| 68 |
|
df-ov |
⊢ ( ( 1st ‘ 𝑣 ) [,] ( 2nd ‘ 𝑣 ) ) = ( [,] ‘ 〈 ( 1st ‘ 𝑣 ) , ( 2nd ‘ 𝑣 ) 〉 ) |
| 69 |
67 68
|
eqtr4di |
⊢ ( 𝑣 ∈ ( ℝ × ℝ ) → ( [,] ‘ 𝑣 ) = ( ( 1st ‘ 𝑣 ) [,] ( 2nd ‘ 𝑣 ) ) ) |
| 70 |
69
|
eleq2d |
⊢ ( 𝑣 ∈ ( ℝ × ℝ ) → ( 𝑧 ∈ ( [,] ‘ 𝑣 ) ↔ 𝑧 ∈ ( ( 1st ‘ 𝑣 ) [,] ( 2nd ‘ 𝑣 ) ) ) ) |
| 71 |
65 70
|
syl |
⊢ ( 𝑣 ∈ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } → ( 𝑧 ∈ ( [,] ‘ 𝑣 ) ↔ 𝑧 ∈ ( ( 1st ‘ 𝑣 ) [,] ( 2nd ‘ 𝑣 ) ) ) ) |
| 72 |
71
|
biimpd |
⊢ ( 𝑣 ∈ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } → ( 𝑧 ∈ ( [,] ‘ 𝑣 ) → 𝑧 ∈ ( ( 1st ‘ 𝑣 ) [,] ( 2nd ‘ 𝑣 ) ) ) ) |
| 73 |
72
|
imdistani |
⊢ ( ( 𝑣 ∈ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑧 ∈ ( [,] ‘ 𝑣 ) ) → ( 𝑣 ∈ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑧 ∈ ( ( 1st ‘ 𝑣 ) [,] ( 2nd ‘ 𝑣 ) ) ) ) |
| 74 |
|
eliccxr |
⊢ ( 𝑧 ∈ ( ( 1st ‘ 𝑣 ) [,] ( 2nd ‘ 𝑣 ) ) → 𝑧 ∈ ℝ* ) |
| 75 |
74
|
ad2antll |
⊢ ( ( ( ( ∪ ( [,] “ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) = 𝐴 ∧ 𝑛 ∈ ℝ ) ∧ ∀ 𝑢 ∈ ran { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } 𝑢 ≤ 𝑛 ) ∧ ( 𝑣 ∈ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑧 ∈ ( ( 1st ‘ 𝑣 ) [,] ( 2nd ‘ 𝑣 ) ) ) ) → 𝑧 ∈ ℝ* ) |
| 76 |
|
xp2nd |
⊢ ( 𝑣 ∈ ( ℝ × ℝ ) → ( 2nd ‘ 𝑣 ) ∈ ℝ ) |
| 77 |
76
|
rexrd |
⊢ ( 𝑣 ∈ ( ℝ × ℝ ) → ( 2nd ‘ 𝑣 ) ∈ ℝ* ) |
| 78 |
65 77
|
syl |
⊢ ( 𝑣 ∈ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } → ( 2nd ‘ 𝑣 ) ∈ ℝ* ) |
| 79 |
78
|
ad2antrl |
⊢ ( ( ( ( ∪ ( [,] “ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) = 𝐴 ∧ 𝑛 ∈ ℝ ) ∧ ∀ 𝑢 ∈ ran { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } 𝑢 ≤ 𝑛 ) ∧ ( 𝑣 ∈ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑧 ∈ ( ( 1st ‘ 𝑣 ) [,] ( 2nd ‘ 𝑣 ) ) ) ) → ( 2nd ‘ 𝑣 ) ∈ ℝ* ) |
| 80 |
|
simpllr |
⊢ ( ( ( ( ∪ ( [,] “ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) = 𝐴 ∧ 𝑛 ∈ ℝ ) ∧ ∀ 𝑢 ∈ ran { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } 𝑢 ≤ 𝑛 ) ∧ ( 𝑣 ∈ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑧 ∈ ( ( 1st ‘ 𝑣 ) [,] ( 2nd ‘ 𝑣 ) ) ) ) → 𝑛 ∈ ℝ ) |
| 81 |
80
|
rexrd |
⊢ ( ( ( ( ∪ ( [,] “ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) = 𝐴 ∧ 𝑛 ∈ ℝ ) ∧ ∀ 𝑢 ∈ ran { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } 𝑢 ≤ 𝑛 ) ∧ ( 𝑣 ∈ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑧 ∈ ( ( 1st ‘ 𝑣 ) [,] ( 2nd ‘ 𝑣 ) ) ) ) → 𝑛 ∈ ℝ* ) |
| 82 |
|
xp1st |
⊢ ( 𝑣 ∈ ( ℝ × ℝ ) → ( 1st ‘ 𝑣 ) ∈ ℝ ) |
| 83 |
82
|
rexrd |
⊢ ( 𝑣 ∈ ( ℝ × ℝ ) → ( 1st ‘ 𝑣 ) ∈ ℝ* ) |
| 84 |
83 77
|
jca |
⊢ ( 𝑣 ∈ ( ℝ × ℝ ) → ( ( 1st ‘ 𝑣 ) ∈ ℝ* ∧ ( 2nd ‘ 𝑣 ) ∈ ℝ* ) ) |
| 85 |
65 84
|
syl |
⊢ ( 𝑣 ∈ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } → ( ( 1st ‘ 𝑣 ) ∈ ℝ* ∧ ( 2nd ‘ 𝑣 ) ∈ ℝ* ) ) |
| 86 |
|
iccleub |
⊢ ( ( ( 1st ‘ 𝑣 ) ∈ ℝ* ∧ ( 2nd ‘ 𝑣 ) ∈ ℝ* ∧ 𝑧 ∈ ( ( 1st ‘ 𝑣 ) [,] ( 2nd ‘ 𝑣 ) ) ) → 𝑧 ≤ ( 2nd ‘ 𝑣 ) ) |
| 87 |
86
|
3expa |
⊢ ( ( ( ( 1st ‘ 𝑣 ) ∈ ℝ* ∧ ( 2nd ‘ 𝑣 ) ∈ ℝ* ) ∧ 𝑧 ∈ ( ( 1st ‘ 𝑣 ) [,] ( 2nd ‘ 𝑣 ) ) ) → 𝑧 ≤ ( 2nd ‘ 𝑣 ) ) |
| 88 |
85 87
|
sylan |
⊢ ( ( 𝑣 ∈ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑧 ∈ ( ( 1st ‘ 𝑣 ) [,] ( 2nd ‘ 𝑣 ) ) ) → 𝑧 ≤ ( 2nd ‘ 𝑣 ) ) |
| 89 |
88
|
adantl |
⊢ ( ( ( ( ∪ ( [,] “ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) = 𝐴 ∧ 𝑛 ∈ ℝ ) ∧ ∀ 𝑢 ∈ ran { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } 𝑢 ≤ 𝑛 ) ∧ ( 𝑣 ∈ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑧 ∈ ( ( 1st ‘ 𝑣 ) [,] ( 2nd ‘ 𝑣 ) ) ) ) → 𝑧 ≤ ( 2nd ‘ 𝑣 ) ) |
| 90 |
|
xpss |
⊢ ( ℝ × ℝ ) ⊆ ( V × V ) |
| 91 |
46 90
|
sstri |
⊢ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ⊆ ( V × V ) |
| 92 |
|
df-rel |
⊢ ( Rel { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ↔ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ⊆ ( V × V ) ) |
| 93 |
91 92
|
mpbir |
⊢ Rel { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } |
| 94 |
|
2ndrn |
⊢ ( ( Rel { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑣 ∈ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) → ( 2nd ‘ 𝑣 ) ∈ ran { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) |
| 95 |
93 94
|
mpan |
⊢ ( 𝑣 ∈ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } → ( 2nd ‘ 𝑣 ) ∈ ran { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) |
| 96 |
|
breq1 |
⊢ ( 𝑢 = ( 2nd ‘ 𝑣 ) → ( 𝑢 ≤ 𝑛 ↔ ( 2nd ‘ 𝑣 ) ≤ 𝑛 ) ) |
| 97 |
96
|
rspccva |
⊢ ( ( ∀ 𝑢 ∈ ran { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } 𝑢 ≤ 𝑛 ∧ ( 2nd ‘ 𝑣 ) ∈ ran { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) → ( 2nd ‘ 𝑣 ) ≤ 𝑛 ) |
| 98 |
95 97
|
sylan2 |
⊢ ( ( ∀ 𝑢 ∈ ran { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } 𝑢 ≤ 𝑛 ∧ 𝑣 ∈ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) → ( 2nd ‘ 𝑣 ) ≤ 𝑛 ) |
| 99 |
98
|
ad2ant2lr |
⊢ ( ( ( ( ∪ ( [,] “ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) = 𝐴 ∧ 𝑛 ∈ ℝ ) ∧ ∀ 𝑢 ∈ ran { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } 𝑢 ≤ 𝑛 ) ∧ ( 𝑣 ∈ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑧 ∈ ( ( 1st ‘ 𝑣 ) [,] ( 2nd ‘ 𝑣 ) ) ) ) → ( 2nd ‘ 𝑣 ) ≤ 𝑛 ) |
| 100 |
75 79 81 89 99
|
xrletrd |
⊢ ( ( ( ( ∪ ( [,] “ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) = 𝐴 ∧ 𝑛 ∈ ℝ ) ∧ ∀ 𝑢 ∈ ran { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } 𝑢 ≤ 𝑛 ) ∧ ( 𝑣 ∈ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑧 ∈ ( ( 1st ‘ 𝑣 ) [,] ( 2nd ‘ 𝑣 ) ) ) ) → 𝑧 ≤ 𝑛 ) |
| 101 |
73 100
|
sylan2 |
⊢ ( ( ( ( ∪ ( [,] “ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) = 𝐴 ∧ 𝑛 ∈ ℝ ) ∧ ∀ 𝑢 ∈ ran { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } 𝑢 ≤ 𝑛 ) ∧ ( 𝑣 ∈ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∧ 𝑧 ∈ ( [,] ‘ 𝑣 ) ) ) → 𝑧 ≤ 𝑛 ) |
| 102 |
101
|
rexlimdvaa |
⊢ ( ( ( ∪ ( [,] “ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) = 𝐴 ∧ 𝑛 ∈ ℝ ) ∧ ∀ 𝑢 ∈ ran { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } 𝑢 ≤ 𝑛 ) → ( ∃ 𝑣 ∈ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } 𝑧 ∈ ( [,] ‘ 𝑣 ) → 𝑧 ≤ 𝑛 ) ) |
| 103 |
64 102
|
biimtrid |
⊢ ( ( ( ∪ ( [,] “ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) = 𝐴 ∧ 𝑛 ∈ ℝ ) ∧ ∀ 𝑢 ∈ ran { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } 𝑢 ≤ 𝑛 ) → ( 𝑧 ∈ ∪ ( [,] “ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) → 𝑧 ≤ 𝑛 ) ) |
| 104 |
103
|
ralrimiv |
⊢ ( ( ( ∪ ( [,] “ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) = 𝐴 ∧ 𝑛 ∈ ℝ ) ∧ ∀ 𝑢 ∈ ran { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } 𝑢 ≤ 𝑛 ) → ∀ 𝑧 ∈ ∪ ( [,] “ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) 𝑧 ≤ 𝑛 ) |
| 105 |
|
raleq |
⊢ ( ∪ ( [,] “ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) = 𝐴 → ( ∀ 𝑧 ∈ ∪ ( [,] “ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) 𝑧 ≤ 𝑛 ↔ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑛 ) ) |
| 106 |
105
|
ad2antrr |
⊢ ( ( ( ∪ ( [,] “ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) = 𝐴 ∧ 𝑛 ∈ ℝ ) ∧ ∀ 𝑢 ∈ ran { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } 𝑢 ≤ 𝑛 ) → ( ∀ 𝑧 ∈ ∪ ( [,] “ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) 𝑧 ≤ 𝑛 ↔ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑛 ) ) |
| 107 |
104 106
|
mpbid |
⊢ ( ( ( ∪ ( [,] “ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) = 𝐴 ∧ 𝑛 ∈ ℝ ) ∧ ∀ 𝑢 ∈ ran { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } 𝑢 ≤ 𝑛 ) → ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑛 ) |
| 108 |
107
|
ex |
⊢ ( ( ∪ ( [,] “ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) = 𝐴 ∧ 𝑛 ∈ ℝ ) → ( ∀ 𝑢 ∈ ran { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } 𝑢 ≤ 𝑛 → ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑛 ) ) |
| 109 |
108
|
reximdva |
⊢ ( ∪ ( [,] “ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) = 𝐴 → ( ∃ 𝑛 ∈ ℝ ∀ 𝑢 ∈ ran { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } 𝑢 ≤ 𝑛 → ∃ 𝑛 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑛 ) ) |
| 110 |
109
|
adantr |
⊢ ( ( ∪ ( [,] “ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) = 𝐴 ∧ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∈ Fin ) → ( ∃ 𝑛 ∈ ℝ ∀ 𝑢 ∈ ran { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } 𝑢 ≤ 𝑛 → ∃ 𝑛 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑛 ) ) |
| 111 |
54 110
|
mpd |
⊢ ( ( ∪ ( [,] “ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) = 𝐴 ∧ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∈ Fin ) → ∃ 𝑛 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑛 ) |
| 112 |
17 111
|
nsyl |
⊢ ( 𝐴 = ℝ → ¬ ( ∪ ( [,] “ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) = 𝐴 ∧ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∈ Fin ) ) |
| 113 |
112
|
adantl |
⊢ ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝐴 ≠ ∅ ) ∧ 𝐴 = ℝ ) → ¬ ( ∪ ( [,] “ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) = 𝐴 ∧ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∈ Fin ) ) |
| 114 |
|
uniretop |
⊢ ℝ = ∪ ( topGen ‘ ran (,) ) |
| 115 |
|
retopconn |
⊢ ( topGen ‘ ran (,) ) ∈ Conn |
| 116 |
115
|
a1i |
⊢ ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝐴 ≠ ∅ ) ∧ ( ∪ ( [,] “ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) = 𝐴 ∧ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∈ Fin ) ) → ( topGen ‘ ran (,) ) ∈ Conn ) |
| 117 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝐴 ≠ ∅ ) ∧ ( ∪ ( [,] “ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) = 𝐴 ∧ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∈ Fin ) ) → 𝐴 ∈ ( topGen ‘ ran (,) ) ) |
| 118 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝐴 ≠ ∅ ) ∧ ( ∪ ( [,] “ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) = 𝐴 ∧ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∈ Fin ) ) → 𝐴 ≠ ∅ ) |
| 119 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝐴 ≠ ∅ ) ∧ ( ∪ ( [,] “ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) = 𝐴 ∧ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∈ Fin ) ) → ∪ ( [,] “ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) = 𝐴 ) |
| 120 |
|
ffun |
⊢ ( [,] : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* → Fun [,] ) |
| 121 |
|
funiunfv |
⊢ ( Fun [,] → ∪ 𝑧 ∈ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ( [,] ‘ 𝑧 ) = ∪ ( [,] “ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) ) |
| 122 |
56 120 121
|
mp2b |
⊢ ∪ 𝑧 ∈ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ( [,] ‘ 𝑧 ) = ∪ ( [,] “ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) |
| 123 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
| 124 |
46
|
sseli |
⊢ ( 𝑧 ∈ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } → 𝑧 ∈ ( ℝ × ℝ ) ) |
| 125 |
|
1st2nd2 |
⊢ ( 𝑧 ∈ ( ℝ × ℝ ) → 𝑧 = 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) |
| 126 |
125
|
fveq2d |
⊢ ( 𝑧 ∈ ( ℝ × ℝ ) → ( [,] ‘ 𝑧 ) = ( [,] ‘ 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) ) |
| 127 |
|
df-ov |
⊢ ( ( 1st ‘ 𝑧 ) [,] ( 2nd ‘ 𝑧 ) ) = ( [,] ‘ 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) |
| 128 |
126 127
|
eqtr4di |
⊢ ( 𝑧 ∈ ( ℝ × ℝ ) → ( [,] ‘ 𝑧 ) = ( ( 1st ‘ 𝑧 ) [,] ( 2nd ‘ 𝑧 ) ) ) |
| 129 |
|
xp1st |
⊢ ( 𝑧 ∈ ( ℝ × ℝ ) → ( 1st ‘ 𝑧 ) ∈ ℝ ) |
| 130 |
|
xp2nd |
⊢ ( 𝑧 ∈ ( ℝ × ℝ ) → ( 2nd ‘ 𝑧 ) ∈ ℝ ) |
| 131 |
|
icccld |
⊢ ( ( ( 1st ‘ 𝑧 ) ∈ ℝ ∧ ( 2nd ‘ 𝑧 ) ∈ ℝ ) → ( ( 1st ‘ 𝑧 ) [,] ( 2nd ‘ 𝑧 ) ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
| 132 |
129 130 131
|
syl2anc |
⊢ ( 𝑧 ∈ ( ℝ × ℝ ) → ( ( 1st ‘ 𝑧 ) [,] ( 2nd ‘ 𝑧 ) ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
| 133 |
128 132
|
eqeltrd |
⊢ ( 𝑧 ∈ ( ℝ × ℝ ) → ( [,] ‘ 𝑧 ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
| 134 |
124 133
|
syl |
⊢ ( 𝑧 ∈ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } → ( [,] ‘ 𝑧 ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
| 135 |
134
|
rgen |
⊢ ∀ 𝑧 ∈ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ( [,] ‘ 𝑧 ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) |
| 136 |
114
|
iuncld |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∈ Fin ∧ ∀ 𝑧 ∈ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ( [,] ‘ 𝑧 ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) → ∪ 𝑧 ∈ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ( [,] ‘ 𝑧 ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
| 137 |
123 135 136
|
mp3an13 |
⊢ ( { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∈ Fin → ∪ 𝑧 ∈ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ( [,] ‘ 𝑧 ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
| 138 |
122 137
|
eqeltrrid |
⊢ ( { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∈ Fin → ∪ ( [,] “ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
| 139 |
138
|
ad2antll |
⊢ ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝐴 ≠ ∅ ) ∧ ( ∪ ( [,] “ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) = 𝐴 ∧ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∈ Fin ) ) → ∪ ( [,] “ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
| 140 |
119 139
|
eqeltrrd |
⊢ ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝐴 ≠ ∅ ) ∧ ( ∪ ( [,] “ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) = 𝐴 ∧ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∈ Fin ) ) → 𝐴 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
| 141 |
114 116 117 118 140
|
connclo |
⊢ ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝐴 ≠ ∅ ) ∧ ( ∪ ( [,] “ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) = 𝐴 ∧ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∈ Fin ) ) → 𝐴 = ℝ ) |
| 142 |
141
|
ex |
⊢ ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝐴 ≠ ∅ ) → ( ( ∪ ( [,] “ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) = 𝐴 ∧ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∈ Fin ) → 𝐴 = ℝ ) ) |
| 143 |
142
|
necon3ad |
⊢ ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝐴 ≠ ∅ ) → ( 𝐴 ≠ ℝ → ¬ ( ∪ ( [,] “ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) = 𝐴 ∧ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∈ Fin ) ) ) |
| 144 |
143
|
imp |
⊢ ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝐴 ≠ ∅ ) ∧ 𝐴 ≠ ℝ ) → ¬ ( ∪ ( [,] “ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) = 𝐴 ∧ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∈ Fin ) ) |
| 145 |
113 144
|
pm2.61dane |
⊢ ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝐴 ≠ ∅ ) → ¬ ( ∪ ( [,] “ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) = 𝐴 ∧ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∈ Fin ) ) |
| 146 |
|
oveq1 |
⊢ ( 𝑥 = 𝑢 → ( 𝑥 / ( 2 ↑ 𝑦 ) ) = ( 𝑢 / ( 2 ↑ 𝑦 ) ) ) |
| 147 |
|
oveq1 |
⊢ ( 𝑥 = 𝑢 → ( 𝑥 + 1 ) = ( 𝑢 + 1 ) ) |
| 148 |
147
|
oveq1d |
⊢ ( 𝑥 = 𝑢 → ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) = ( ( 𝑢 + 1 ) / ( 2 ↑ 𝑦 ) ) ) |
| 149 |
146 148
|
opeq12d |
⊢ ( 𝑥 = 𝑢 → 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 = 〈 ( 𝑢 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑢 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) |
| 150 |
|
oveq2 |
⊢ ( 𝑦 = 𝑣 → ( 2 ↑ 𝑦 ) = ( 2 ↑ 𝑣 ) ) |
| 151 |
150
|
oveq2d |
⊢ ( 𝑦 = 𝑣 → ( 𝑢 / ( 2 ↑ 𝑦 ) ) = ( 𝑢 / ( 2 ↑ 𝑣 ) ) ) |
| 152 |
150
|
oveq2d |
⊢ ( 𝑦 = 𝑣 → ( ( 𝑢 + 1 ) / ( 2 ↑ 𝑦 ) ) = ( ( 𝑢 + 1 ) / ( 2 ↑ 𝑣 ) ) ) |
| 153 |
151 152
|
opeq12d |
⊢ ( 𝑦 = 𝑣 → 〈 ( 𝑢 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑢 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 = 〈 ( 𝑢 / ( 2 ↑ 𝑣 ) ) , ( ( 𝑢 + 1 ) / ( 2 ↑ 𝑣 ) ) 〉 ) |
| 154 |
149 153
|
cbvmpov |
⊢ ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) = ( 𝑢 ∈ ℤ , 𝑣 ∈ ℕ0 ↦ 〈 ( 𝑢 / ( 2 ↑ 𝑣 ) ) , ( ( 𝑢 + 1 ) / ( 2 ↑ 𝑣 ) ) 〉 ) |
| 155 |
|
fveq2 |
⊢ ( 𝑎 = 𝑧 → ( [,] ‘ 𝑎 ) = ( [,] ‘ 𝑧 ) ) |
| 156 |
155
|
sseq1d |
⊢ ( 𝑎 = 𝑧 → ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) ↔ ( [,] ‘ 𝑧 ) ⊆ ( [,] ‘ 𝑐 ) ) ) |
| 157 |
|
equequ1 |
⊢ ( 𝑎 = 𝑧 → ( 𝑎 = 𝑐 ↔ 𝑧 = 𝑐 ) ) |
| 158 |
156 157
|
imbi12d |
⊢ ( 𝑎 = 𝑧 → ( ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) ↔ ( ( [,] ‘ 𝑧 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑧 = 𝑐 ) ) ) |
| 159 |
158
|
ralbidv |
⊢ ( 𝑎 = 𝑧 → ( ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) ↔ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑧 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑧 = 𝑐 ) ) ) |
| 160 |
159
|
cbvrabv |
⊢ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } = { 𝑧 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑧 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑧 = 𝑐 ) } |
| 161 |
19
|
a1i |
⊢ ( 𝐴 ∈ ( topGen ‘ ran (,) ) → { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ⊆ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ) |
| 162 |
154 160 161
|
dyadmbllem |
⊢ ( 𝐴 ∈ ( topGen ‘ ran (,) ) → ∪ ( [,] “ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ) = ∪ ( [,] “ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) ) |
| 163 |
|
opnmbllem0 |
⊢ ( 𝐴 ∈ ( topGen ‘ ran (,) ) → ∪ ( [,] “ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ) = 𝐴 ) |
| 164 |
162 163
|
eqtr3d |
⊢ ( 𝐴 ∈ ( topGen ‘ ran (,) ) → ∪ ( [,] “ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) = 𝐴 ) |
| 165 |
164
|
adantr |
⊢ ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝐴 ≠ ∅ ) → ∪ ( [,] “ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) = 𝐴 ) |
| 166 |
|
nnenom |
⊢ ℕ ≈ ω |
| 167 |
|
sdomentr |
⊢ ( ( { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ≺ ℕ ∧ ℕ ≈ ω ) → { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ≺ ω ) |
| 168 |
166 167
|
mpan2 |
⊢ ( { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ≺ ℕ → { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ≺ ω ) |
| 169 |
|
isfinite |
⊢ ( { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∈ Fin ↔ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ≺ ω ) |
| 170 |
168 169
|
sylibr |
⊢ ( { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ≺ ℕ → { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∈ Fin ) |
| 171 |
165 170
|
anim12i |
⊢ ( ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝐴 ≠ ∅ ) ∧ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ≺ ℕ ) → ( ∪ ( [,] “ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) = 𝐴 ∧ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ∈ Fin ) ) |
| 172 |
145 171
|
mtand |
⊢ ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝐴 ≠ ∅ ) → ¬ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ≺ ℕ ) |
| 173 |
|
qex |
⊢ ℚ ∈ V |
| 174 |
173 173
|
xpex |
⊢ ( ℚ × ℚ ) ∈ V |
| 175 |
|
zq |
⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℚ ) |
| 176 |
|
2nn |
⊢ 2 ∈ ℕ |
| 177 |
|
nnq |
⊢ ( 2 ∈ ℕ → 2 ∈ ℚ ) |
| 178 |
176 177
|
ax-mp |
⊢ 2 ∈ ℚ |
| 179 |
|
qexpcl |
⊢ ( ( 2 ∈ ℚ ∧ 𝑦 ∈ ℕ0 ) → ( 2 ↑ 𝑦 ) ∈ ℚ ) |
| 180 |
178 179
|
mpan |
⊢ ( 𝑦 ∈ ℕ0 → ( 2 ↑ 𝑦 ) ∈ ℚ ) |
| 181 |
180 29
|
jca |
⊢ ( 𝑦 ∈ ℕ0 → ( ( 2 ↑ 𝑦 ) ∈ ℚ ∧ ( 2 ↑ 𝑦 ) ≠ 0 ) ) |
| 182 |
|
qdivcl |
⊢ ( ( 𝑥 ∈ ℚ ∧ ( 2 ↑ 𝑦 ) ∈ ℚ ∧ ( 2 ↑ 𝑦 ) ≠ 0 ) → ( 𝑥 / ( 2 ↑ 𝑦 ) ) ∈ ℚ ) |
| 183 |
|
1z |
⊢ 1 ∈ ℤ |
| 184 |
|
zq |
⊢ ( 1 ∈ ℤ → 1 ∈ ℚ ) |
| 185 |
183 184
|
ax-mp |
⊢ 1 ∈ ℚ |
| 186 |
|
qaddcl |
⊢ ( ( 𝑥 ∈ ℚ ∧ 1 ∈ ℚ ) → ( 𝑥 + 1 ) ∈ ℚ ) |
| 187 |
185 186
|
mpan2 |
⊢ ( 𝑥 ∈ ℚ → ( 𝑥 + 1 ) ∈ ℚ ) |
| 188 |
|
qdivcl |
⊢ ( ( ( 𝑥 + 1 ) ∈ ℚ ∧ ( 2 ↑ 𝑦 ) ∈ ℚ ∧ ( 2 ↑ 𝑦 ) ≠ 0 ) → ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ∈ ℚ ) |
| 189 |
187 188
|
syl3an1 |
⊢ ( ( 𝑥 ∈ ℚ ∧ ( 2 ↑ 𝑦 ) ∈ ℚ ∧ ( 2 ↑ 𝑦 ) ≠ 0 ) → ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ∈ ℚ ) |
| 190 |
|
opelxpi |
⊢ ( ( ( 𝑥 / ( 2 ↑ 𝑦 ) ) ∈ ℚ ∧ ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) ∈ ℚ ) → 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ∈ ( ℚ × ℚ ) ) |
| 191 |
182 189 190
|
syl2anc |
⊢ ( ( 𝑥 ∈ ℚ ∧ ( 2 ↑ 𝑦 ) ∈ ℚ ∧ ( 2 ↑ 𝑦 ) ≠ 0 ) → 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ∈ ( ℚ × ℚ ) ) |
| 192 |
191
|
3expb |
⊢ ( ( 𝑥 ∈ ℚ ∧ ( ( 2 ↑ 𝑦 ) ∈ ℚ ∧ ( 2 ↑ 𝑦 ) ≠ 0 ) ) → 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ∈ ( ℚ × ℚ ) ) |
| 193 |
175 181 192
|
syl2an |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0 ) → 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ∈ ( ℚ × ℚ ) ) |
| 194 |
193
|
rgen2 |
⊢ ∀ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ℕ0 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ∈ ( ℚ × ℚ ) |
| 195 |
40
|
fmpo |
⊢ ( ∀ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ℕ0 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ∈ ( ℚ × ℚ ) ↔ ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) : ( ℤ × ℕ0 ) ⟶ ( ℚ × ℚ ) ) |
| 196 |
194 195
|
mpbi |
⊢ ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) : ( ℤ × ℕ0 ) ⟶ ( ℚ × ℚ ) |
| 197 |
|
frn |
⊢ ( ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) : ( ℤ × ℕ0 ) ⟶ ( ℚ × ℚ ) → ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ⊆ ( ℚ × ℚ ) ) |
| 198 |
196 197
|
ax-mp |
⊢ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ⊆ ( ℚ × ℚ ) |
| 199 |
19 198
|
sstri |
⊢ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ⊆ ( ℚ × ℚ ) |
| 200 |
18 199
|
sstri |
⊢ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ⊆ ( ℚ × ℚ ) |
| 201 |
|
ssdomg |
⊢ ( ( ℚ × ℚ ) ∈ V → ( { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ⊆ ( ℚ × ℚ ) → { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ≼ ( ℚ × ℚ ) ) ) |
| 202 |
174 200 201
|
mp2 |
⊢ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ≼ ( ℚ × ℚ ) |
| 203 |
|
qnnen |
⊢ ℚ ≈ ℕ |
| 204 |
|
xpen |
⊢ ( ( ℚ ≈ ℕ ∧ ℚ ≈ ℕ ) → ( ℚ × ℚ ) ≈ ( ℕ × ℕ ) ) |
| 205 |
203 203 204
|
mp2an |
⊢ ( ℚ × ℚ ) ≈ ( ℕ × ℕ ) |
| 206 |
|
xpnnen |
⊢ ( ℕ × ℕ ) ≈ ℕ |
| 207 |
205 206
|
entri |
⊢ ( ℚ × ℚ ) ≈ ℕ |
| 208 |
|
domentr |
⊢ ( ( { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ≼ ( ℚ × ℚ ) ∧ ( ℚ × ℚ ) ≈ ℕ ) → { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ≼ ℕ ) |
| 209 |
202 207 208
|
mp2an |
⊢ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ≼ ℕ |
| 210 |
172 209
|
jctil |
⊢ ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝐴 ≠ ∅ ) → ( { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ≼ ℕ ∧ ¬ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ≺ ℕ ) ) |
| 211 |
|
bren2 |
⊢ ( { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ≈ ℕ ↔ ( { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ≼ ℕ ∧ ¬ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ≺ ℕ ) ) |
| 212 |
210 211
|
sylibr |
⊢ ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝐴 ≠ ∅ ) → { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ≈ ℕ ) |
| 213 |
212
|
ensymd |
⊢ ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝐴 ≠ ∅ ) → ℕ ≈ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) |
| 214 |
|
bren |
⊢ ( ℕ ≈ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ↔ ∃ 𝑓 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) |
| 215 |
213 214
|
sylib |
⊢ ( ( 𝐴 ∈ ( topGen ‘ ran (,) ) ∧ 𝐴 ≠ ∅ ) → ∃ 𝑓 𝑓 : ℕ –1-1-onto→ { 𝑎 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ∣ ∀ 𝑐 ∈ { 𝑏 ∈ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) ∣ ( [,] ‘ 𝑏 ) ⊆ 𝐴 } ( ( [,] ‘ 𝑎 ) ⊆ ( [,] ‘ 𝑐 ) → 𝑎 = 𝑐 ) } ) |