| Step |
Hyp |
Ref |
Expression |
| 1 |
|
peano2re |
|
| 2 |
|
ltp1 |
|
| 3 |
|
breq2 |
|
| 4 |
3
|
rspcev |
|
| 5 |
1 2 4
|
syl2anc |
|
| 6 |
5
|
rgen |
|
| 7 |
|
ltnle |
|
| 8 |
7
|
rexbidva |
|
| 9 |
|
rexnal |
|
| 10 |
8 9
|
bitrdi |
|
| 11 |
10
|
ralbiia |
|
| 12 |
|
ralnex |
|
| 13 |
11 12
|
bitri |
|
| 14 |
6 13
|
mpbi |
|
| 15 |
|
raleq |
|
| 16 |
15
|
rexbidv |
|
| 17 |
14 16
|
mtbiri |
|
| 18 |
|
ssrab2 |
|
| 19 |
|
ssrab2 |
|
| 20 |
|
zre |
|
| 21 |
|
2re |
|
| 22 |
|
reexpcl |
|
| 23 |
21 22
|
mpan |
|
| 24 |
|
nn0z |
|
| 25 |
|
2cn |
|
| 26 |
|
2ne0 |
|
| 27 |
|
expne0i |
|
| 28 |
25 26 27
|
mp3an12 |
|
| 29 |
24 28
|
syl |
|
| 30 |
23 29
|
jca |
|
| 31 |
|
redivcl |
|
| 32 |
|
peano2re |
|
| 33 |
|
redivcl |
|
| 34 |
32 33
|
syl3an1 |
|
| 35 |
|
opelxpi |
|
| 36 |
31 34 35
|
syl2anc |
|
| 37 |
36
|
3expb |
|
| 38 |
20 30 37
|
syl2an |
|
| 39 |
38
|
rgen2 |
|
| 40 |
|
eqid |
|
| 41 |
40
|
fmpo |
|
| 42 |
39 41
|
mpbi |
|
| 43 |
|
frn |
|
| 44 |
42 43
|
ax-mp |
|
| 45 |
19 44
|
sstri |
|
| 46 |
18 45
|
sstri |
|
| 47 |
|
rnss |
|
| 48 |
|
rnxpid |
|
| 49 |
47 48
|
sseqtrdi |
|
| 50 |
46 49
|
ax-mp |
|
| 51 |
|
rnfi |
|
| 52 |
|
fimaxre2 |
|
| 53 |
50 51 52
|
sylancr |
|
| 54 |
53
|
adantl |
|
| 55 |
|
eluni2 |
|
| 56 |
|
iccf |
|
| 57 |
|
ffn |
|
| 58 |
56 57
|
ax-mp |
|
| 59 |
|
rexpssxrxp |
|
| 60 |
46 59
|
sstri |
|
| 61 |
|
eleq2 |
|
| 62 |
61
|
rexima |
|
| 63 |
58 60 62
|
mp2an |
|
| 64 |
55 63
|
bitri |
|
| 65 |
46
|
sseli |
|
| 66 |
|
1st2nd2 |
|
| 67 |
66
|
fveq2d |
|
| 68 |
|
df-ov |
|
| 69 |
67 68
|
eqtr4di |
|
| 70 |
69
|
eleq2d |
|
| 71 |
65 70
|
syl |
|
| 72 |
71
|
biimpd |
|
| 73 |
72
|
imdistani |
|
| 74 |
|
eliccxr |
|
| 75 |
74
|
ad2antll |
|
| 76 |
|
xp2nd |
|
| 77 |
76
|
rexrd |
|
| 78 |
65 77
|
syl |
|
| 79 |
78
|
ad2antrl |
|
| 80 |
|
simpllr |
|
| 81 |
80
|
rexrd |
|
| 82 |
|
xp1st |
|
| 83 |
82
|
rexrd |
|
| 84 |
83 77
|
jca |
|
| 85 |
65 84
|
syl |
|
| 86 |
|
iccleub |
|
| 87 |
86
|
3expa |
|
| 88 |
85 87
|
sylan |
|
| 89 |
88
|
adantl |
|
| 90 |
|
xpss |
|
| 91 |
46 90
|
sstri |
|
| 92 |
|
df-rel |
|
| 93 |
91 92
|
mpbir |
|
| 94 |
|
2ndrn |
|
| 95 |
93 94
|
mpan |
|
| 96 |
|
breq1 |
|
| 97 |
96
|
rspccva |
|
| 98 |
95 97
|
sylan2 |
|
| 99 |
98
|
ad2ant2lr |
|
| 100 |
75 79 81 89 99
|
xrletrd |
|
| 101 |
73 100
|
sylan2 |
|
| 102 |
101
|
rexlimdvaa |
|
| 103 |
64 102
|
biimtrid |
|
| 104 |
103
|
ralrimiv |
|
| 105 |
|
raleq |
|
| 106 |
105
|
ad2antrr |
|
| 107 |
104 106
|
mpbid |
|
| 108 |
107
|
ex |
|
| 109 |
108
|
reximdva |
|
| 110 |
109
|
adantr |
|
| 111 |
54 110
|
mpd |
|
| 112 |
17 111
|
nsyl |
|
| 113 |
112
|
adantl |
|
| 114 |
|
uniretop |
|
| 115 |
|
retopconn |
|
| 116 |
115
|
a1i |
|
| 117 |
|
simpll |
|
| 118 |
|
simplr |
|
| 119 |
|
simprl |
|
| 120 |
|
ffun |
|
| 121 |
|
funiunfv |
|
| 122 |
56 120 121
|
mp2b |
|
| 123 |
|
retop |
|
| 124 |
46
|
sseli |
|
| 125 |
|
1st2nd2 |
|
| 126 |
125
|
fveq2d |
|
| 127 |
|
df-ov |
|
| 128 |
126 127
|
eqtr4di |
|
| 129 |
|
xp1st |
|
| 130 |
|
xp2nd |
|
| 131 |
|
icccld |
|
| 132 |
129 130 131
|
syl2anc |
|
| 133 |
128 132
|
eqeltrd |
|
| 134 |
124 133
|
syl |
|
| 135 |
134
|
rgen |
|
| 136 |
114
|
iuncld |
|
| 137 |
123 135 136
|
mp3an13 |
|
| 138 |
122 137
|
eqeltrrid |
|
| 139 |
138
|
ad2antll |
|
| 140 |
119 139
|
eqeltrrd |
|
| 141 |
114 116 117 118 140
|
connclo |
|
| 142 |
141
|
ex |
|
| 143 |
142
|
necon3ad |
|
| 144 |
143
|
imp |
|
| 145 |
113 144
|
pm2.61dane |
|
| 146 |
|
oveq1 |
|
| 147 |
|
oveq1 |
|
| 148 |
147
|
oveq1d |
|
| 149 |
146 148
|
opeq12d |
|
| 150 |
|
oveq2 |
|
| 151 |
150
|
oveq2d |
|
| 152 |
150
|
oveq2d |
|
| 153 |
151 152
|
opeq12d |
|
| 154 |
149 153
|
cbvmpov |
|
| 155 |
|
fveq2 |
|
| 156 |
155
|
sseq1d |
|
| 157 |
|
equequ1 |
|
| 158 |
156 157
|
imbi12d |
|
| 159 |
158
|
ralbidv |
|
| 160 |
159
|
cbvrabv |
|
| 161 |
19
|
a1i |
|
| 162 |
154 160 161
|
dyadmbllem |
|
| 163 |
|
opnmbllem0 |
|
| 164 |
162 163
|
eqtr3d |
|
| 165 |
164
|
adantr |
|
| 166 |
|
nnenom |
|
| 167 |
|
sdomentr |
|
| 168 |
166 167
|
mpan2 |
|
| 169 |
|
isfinite |
|
| 170 |
168 169
|
sylibr |
|
| 171 |
165 170
|
anim12i |
|
| 172 |
145 171
|
mtand |
|
| 173 |
|
qex |
|
| 174 |
173 173
|
xpex |
|
| 175 |
|
zq |
|
| 176 |
|
2nn |
|
| 177 |
|
nnq |
|
| 178 |
176 177
|
ax-mp |
|
| 179 |
|
qexpcl |
|
| 180 |
178 179
|
mpan |
|
| 181 |
180 29
|
jca |
|
| 182 |
|
qdivcl |
|
| 183 |
|
1z |
|
| 184 |
|
zq |
|
| 185 |
183 184
|
ax-mp |
|
| 186 |
|
qaddcl |
|
| 187 |
185 186
|
mpan2 |
|
| 188 |
|
qdivcl |
|
| 189 |
187 188
|
syl3an1 |
|
| 190 |
|
opelxpi |
|
| 191 |
182 189 190
|
syl2anc |
|
| 192 |
191
|
3expb |
|
| 193 |
175 181 192
|
syl2an |
|
| 194 |
193
|
rgen2 |
|
| 195 |
40
|
fmpo |
|
| 196 |
194 195
|
mpbi |
|
| 197 |
|
frn |
|
| 198 |
196 197
|
ax-mp |
|
| 199 |
19 198
|
sstri |
|
| 200 |
18 199
|
sstri |
|
| 201 |
|
ssdomg |
|
| 202 |
174 200 201
|
mp2 |
|
| 203 |
|
qnnen |
|
| 204 |
|
xpen |
|
| 205 |
203 203 204
|
mp2an |
|
| 206 |
|
xpnnen |
|
| 207 |
205 206
|
entri |
|
| 208 |
|
domentr |
|
| 209 |
202 207 208
|
mp2an |
|
| 210 |
172 209
|
jctil |
|
| 211 |
|
bren2 |
|
| 212 |
210 211
|
sylibr |
|
| 213 |
212
|
ensymd |
|
| 214 |
|
bren |
|
| 215 |
213 214
|
sylib |
|