Metamath Proof Explorer


Theorem mblfinlem2

Description: Lemma for ismblfin , effectively one direction of the same fact for open sets, made necessary by Viaclovsky's slightly different definition of outer measure. Note that unlike the main theorem, this holds for sets of infinite measure. (Contributed by Brendan Leahy, 21-Feb-2018) (Revised by Brendan Leahy, 13-Jul-2018)

Ref Expression
Assertion mblfinlem2 AtopGenran.MM<vol*AsClsdtopGenran.sAM<vol*s

Proof

Step Hyp Ref Expression
1 retop topGenran.Top
2 0cld topGenran.TopClsdtopGenran.
3 1 2 ax-mp ClsdtopGenran.
4 simpl3 AtopGenran.MM<vol*AA=M<vol*A
5 fveq2 A=vol*A=vol*
6 5 adantl AtopGenran.MM<vol*AA=vol*A=vol*
7 4 6 breqtrd AtopGenran.MM<vol*AA=M<vol*
8 0ss A
9 7 8 jctil AtopGenran.MM<vol*AA=AM<vol*
10 sseq1 s=sAA
11 fveq2 s=vol*s=vol*
12 11 breq2d s=M<vol*sM<vol*
13 10 12 anbi12d s=sAM<vol*sAM<vol*
14 13 rspcev ClsdtopGenran.AM<vol*sClsdtopGenran.sAM<vol*s
15 3 9 14 sylancr AtopGenran.MM<vol*AA=sClsdtopGenran.sAM<vol*s
16 mblfinlem1 AtopGenran.Aff:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c
17 16 3ad2antl1 AtopGenran.MM<vol*AAff:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c
18 simpl3 AtopGenran.MM<vol*Af:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cM<vol*A
19 f1ofo f:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cf:ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c
20 rnco2 ran.f=.ranf
21 forn f:ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cranf=abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c
22 21 imaeq2d f:ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c.ranf=.abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c
23 20 22 eqtrid f:ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cran.f=.abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c
24 23 unieqd f:ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cran.f=.abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c
25 19 24 syl f:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cran.f=.abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c
26 25 adantl AtopGenran.MM<vol*Af:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cran.f=.abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c
27 oveq1 x=ux2y=u2y
28 oveq1 x=ux+1=u+1
29 28 oveq1d x=ux+12y=u+12y
30 27 29 opeq12d x=ux2yx+12y=u2yu+12y
31 oveq2 y=v2y=2v
32 31 oveq2d y=vu2y=u2v
33 31 oveq2d y=vu+12y=u+12v
34 32 33 opeq12d y=vu2yu+12y=u2vu+12v
35 30 34 cbvmpov x,y0x2yx+12y=u,v0u2vu+12v
36 fveq2 a=z.a=.z
37 36 sseq1d a=z.a.c.z.c
38 eqeq1 a=za=cz=c
39 37 38 imbi12d a=z.a.ca=c.z.cz=c
40 39 ralbidv a=zcbranx,y0x2yx+12y|.bA.a.ca=ccbranx,y0x2yx+12y|.bA.z.cz=c
41 40 cbvrabv abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c=zbranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.z.cz=c
42 ssrab2 branx,y0x2yx+12y|.bAranx,y0x2yx+12y
43 42 a1i AtopGenran.MM<vol*Abranx,y0x2yx+12y|.bAranx,y0x2yx+12y
44 35 41 43 dyadmbllem AtopGenran.MM<vol*A.branx,y0x2yx+12y|.bA=.abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c
45 44 adantr AtopGenran.MM<vol*Af:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c.branx,y0x2yx+12y|.bA=.abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c
46 26 45 eqtr4d AtopGenran.MM<vol*Af:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cran.f=.branx,y0x2yx+12y|.bA
47 opnmbllem0 AtopGenran..branx,y0x2yx+12y|.bA=A
48 47 3ad2ant1 AtopGenran.MM<vol*A.branx,y0x2yx+12y|.bA=A
49 48 adantr AtopGenran.MM<vol*Af:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c.branx,y0x2yx+12y|.bA=A
50 46 49 eqtrd AtopGenran.MM<vol*Af:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cran.f=A
51 50 fveq2d AtopGenran.MM<vol*Af:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cvol*ran.f=vol*A
52 f1of f:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cf:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c
53 ssrab2 abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cbranx,y0x2yx+12y|.bA
54 35 dyadf x,y0x2yx+12y:×02
55 frn x,y0x2yx+12y:×02ranx,y0x2yx+12y2
56 54 55 ax-mp ranx,y0x2yx+12y2
57 42 56 sstri branx,y0x2yx+12y|.bA2
58 53 57 sstri abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c2
59 fss f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c2f:2
60 52 58 59 sylancl f:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cf:2
61 53 42 sstri abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cranx,y0x2yx+12y
62 ffvelcdm f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cmfmabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c
63 61 62 sselid f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cmfmranx,y0x2yx+12y
64 63 adantrr f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cmzfmranx,y0x2yx+12y
65 ffvelcdm f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=czfzabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c
66 61 65 sselid f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=czfzranx,y0x2yx+12y
67 66 adantrl f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cmzfzranx,y0x2yx+12y
68 35 dyaddisj fmranx,y0x2yx+12yfzranx,y0x2yx+12y.fm.fz.fz.fm.fm.fz=
69 64 67 68 syl2anc f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cmz.fm.fz.fz.fm.fm.fz=
70 52 69 sylan f:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cmz.fm.fz.fz.fm.fm.fz=
71 df-3or .fm.fz.fz.fm.fm.fz=.fm.fz.fz.fm.fm.fz=
72 70 71 sylib f:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cmz.fm.fz.fz.fm.fm.fz=
73 elrabi fzabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cfzbranx,y0x2yx+12y|.bA
74 fveq2 a=fm.a=.fm
75 74 sseq1d a=fm.a.c.fm.c
76 eqeq1 a=fma=cfm=c
77 75 76 imbi12d a=fm.a.ca=c.fm.cfm=c
78 77 ralbidv a=fmcbranx,y0x2yx+12y|.bA.a.ca=ccbranx,y0x2yx+12y|.bA.fm.cfm=c
79 78 elrab fmabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cfmbranx,y0x2yx+12y|.bAcbranx,y0x2yx+12y|.bA.fm.cfm=c
80 79 simprbi fmabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=ccbranx,y0x2yx+12y|.bA.fm.cfm=c
81 fveq2 c=fz.c=.fz
82 81 sseq2d c=fz.fm.c.fm.fz
83 eqeq2 c=fzfm=cfm=fz
84 82 83 imbi12d c=fz.fm.cfm=c.fm.fzfm=fz
85 84 rspcva fzbranx,y0x2yx+12y|.bAcbranx,y0x2yx+12y|.bA.fm.cfm=c.fm.fzfm=fz
86 73 80 85 syl2anr fmabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cfzabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c.fm.fzfm=fz
87 elrabi fmabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cfmbranx,y0x2yx+12y|.bA
88 fveq2 a=fz.a=.fz
89 88 sseq1d a=fz.a.c.fz.c
90 eqeq1 a=fza=cfz=c
91 89 90 imbi12d a=fz.a.ca=c.fz.cfz=c
92 91 ralbidv a=fzcbranx,y0x2yx+12y|.bA.a.ca=ccbranx,y0x2yx+12y|.bA.fz.cfz=c
93 92 elrab fzabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cfzbranx,y0x2yx+12y|.bAcbranx,y0x2yx+12y|.bA.fz.cfz=c
94 93 simprbi fzabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=ccbranx,y0x2yx+12y|.bA.fz.cfz=c
95 fveq2 c=fm.c=.fm
96 95 sseq2d c=fm.fz.c.fz.fm
97 eqeq2 c=fmfz=cfz=fm
98 96 97 imbi12d c=fm.fz.cfz=c.fz.fmfz=fm
99 98 rspcva fmbranx,y0x2yx+12y|.bAcbranx,y0x2yx+12y|.bA.fz.cfz=c.fz.fmfz=fm
100 87 94 99 syl2an fmabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cfzabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c.fz.fmfz=fm
101 eqcom fz=fmfm=fz
102 100 101 imbitrdi fmabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cfzabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c.fz.fmfm=fz
103 86 102 jaod fmabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cfzabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c.fm.fz.fz.fmfm=fz
104 62 65 103 syl2an f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cmf:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cz.fm.fz.fz.fmfm=fz
105 104 anandis f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cmz.fm.fz.fz.fmfm=fz
106 52 105 sylan f:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cmz.fm.fz.fz.fmfm=fz
107 f1of1 f:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cf:1-1abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c
108 f1veqaeq f:1-1abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cmzfm=fzm=z
109 107 108 sylan f:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cmzfm=fzm=z
110 106 109 syld f:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cmz.fm.fz.fz.fmm=z
111 110 orim1d f:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cmz.fm.fz.fz.fm.fm.fz=m=z.fm.fz=
112 72 111 mpd f:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cmzm=z.fm.fz=
113 112 ralrimivva f:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cmzm=z.fm.fz=
114 eqeq1 m=zm=pz=p
115 2fveq3 m=z.fm=.fz
116 115 ineq1d m=z.fm.fp=.fz.fp
117 116 eqeq1d m=z.fm.fp=.fz.fp=
118 114 117 orbi12d m=zm=p.fm.fp=z=p.fz.fp=
119 118 ralbidv m=zpm=p.fm.fp=pz=p.fz.fp=
120 119 cbvralvw mpm=p.fm.fp=zpz=p.fz.fp=
121 eqeq2 z=pm=zm=p
122 2fveq3 z=p.fz=.fp
123 122 ineq2d z=p.fm.fz=.fm.fp
124 123 eqeq1d z=p.fm.fz=.fm.fp=
125 121 124 orbi12d z=pm=z.fm.fz=m=p.fm.fp=
126 125 cbvralvw zm=z.fm.fz=pm=p.fm.fp=
127 126 ralbii mzm=z.fm.fz=mpm=p.fm.fp=
128 122 disjor Disjz.fzzpz=p.fz.fp=
129 120 127 128 3bitr4ri Disjz.fzmzm=z.fm.fz=
130 113 129 sylibr f:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cDisjz.fz
131 eqid seq1+absf=seq1+absf
132 60 130 131 uniiccvol f:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cvol*ran.f=supranseq1+absf*<
133 132 adantl AtopGenran.MM<vol*Af:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cvol*ran.f=supranseq1+absf*<
134 51 133 eqtr3d AtopGenran.MM<vol*Af:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cvol*A=supranseq1+absf*<
135 18 134 breqtrd AtopGenran.MM<vol*Af:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cM<supranseq1+absf*<
136 absf abs:
137 subf :×
138 fco abs::×abs:×
139 136 137 138 mp2an abs:×
140 zre xx
141 2re 2
142 reexpcl 2y02y
143 141 142 mpan y02y
144 2cn 2
145 2ne0 20
146 nn0z y0y
147 expne0i 220y2y0
148 144 145 146 147 mp3an12i y02y0
149 143 148 jca y02y2y0
150 redivcl x2y2y0x2y
151 peano2re xx+1
152 redivcl x+12y2y0x+12y
153 151 152 syl3an1 x2y2y0x+12y
154 150 153 opelxpd x2y2y0x2yx+12y2
155 154 3expb x2y2y0x2yx+12y2
156 140 149 155 syl2an xy0x2yx+12y2
157 156 rgen2 xy0x2yx+12y2
158 eqid x,y0x2yx+12y=x,y0x2yx+12y
159 158 fmpo xy0x2yx+12y2x,y0x2yx+12y:×02
160 157 159 mpbi x,y0x2yx+12y:×02
161 frn x,y0x2yx+12y:×02ranx,y0x2yx+12y2
162 160 161 ax-mp ranx,y0x2yx+12y2
163 42 162 sstri branx,y0x2yx+12y|.bA2
164 53 163 sstri abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c2
165 ax-resscn
166 xpss12 2×
167 165 165 166 mp2an 2×
168 164 167 sstri abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c×
169 fss f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c×f:×
170 168 169 mpan2 f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cf:×
171 fco abs:×f:×absf:
172 139 170 171 sylancr f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cabsf:
173 nnuz =1
174 1z 1
175 174 a1i absf:1
176 ffvelcdm absf:nabsfn
177 173 175 176 serfre absf:seq1+absf:
178 frn seq1+absf:ranseq1+absf
179 ressxr *
180 178 179 sstrdi seq1+absf:ranseq1+absf*
181 52 172 177 180 4syl f:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cranseq1+absf*
182 rexr MM*
183 182 3ad2ant2 AtopGenran.MM<vol*AM*
184 supxrlub ranseq1+absf*M*M<supranseq1+absf*<zranseq1+absfM<z
185 181 183 184 syl2anr AtopGenran.MM<vol*Af:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cM<supranseq1+absf*<zranseq1+absfM<z
186 135 185 mpbid AtopGenran.MM<vol*Af:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=czranseq1+absfM<z
187 seqfn 1seq1+absfFn1
188 174 187 ax-mp seq1+absfFn1
189 173 fneq2i seq1+absfFnseq1+absfFn1
190 188 189 mpbir seq1+absfFn
191 breq2 z=seq1+absfnM<zM<seq1+absfn
192 191 rexrn seq1+absfFnzranseq1+absfM<znM<seq1+absfn
193 190 192 ax-mp zranseq1+absfM<znM<seq1+absfn
194 186 193 sylib AtopGenran.MM<vol*Af:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnM<seq1+absfn
195 60 ffvelcdmda f:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=czfz2
196 0le0 00
197 df-br 0000
198 196 197 mpbi 00
199 0re 0
200 opelxpi 00002
201 199 199 200 mp2an 002
202 elin 00200002
203 198 201 202 mpbir2an 002
204 ifcl fz2002ifz1nfz002
205 195 203 204 sylancl f:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=czifz1nfz002
206 205 fmpttd f:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=czifz1nfz00:2
207 df-ov 00=.00
208 iooid 00=
209 207 208 eqtr3i .00=
210 209 ineq1i .00.fz=.fz
211 0in .fz=
212 210 211 eqtri .00.fz=
213 212 olci m=z.00.fz=
214 ineq1 .fm=ifm1n.fm.00.fm.fz=ifm1n.fm.00.fz
215 214 eqeq1d .fm=ifm1n.fm.00.fm.fz=ifm1n.fm.00.fz=
216 215 orbi2d .fm=ifm1n.fm.00m=z.fm.fz=m=zifm1n.fm.00.fz=
217 ineq1 .00=ifm1n.fm.00.00.fz=ifm1n.fm.00.fz
218 217 eqeq1d .00=ifm1n.fm.00.00.fz=ifm1n.fm.00.fz=
219 218 orbi2d .00=ifm1n.fm.00m=z.00.fz=m=zifm1n.fm.00.fz=
220 216 219 ifboth m=z.fm.fz=m=z.00.fz=m=zifm1n.fm.00.fz=
221 112 213 220 sylancl f:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cmzm=zifm1n.fm.00.fz=
222 209 ineq2i ifm1n.fm.00.00=ifm1n.fm.00
223 in0 ifm1n.fm.00=
224 222 223 eqtri ifm1n.fm.00.00=
225 224 olci m=zifm1n.fm.00.00=
226 ineq2 .fz=ifz1n.fz.00ifm1n.fm.00.fz=ifm1n.fm.00ifz1n.fz.00
227 226 eqeq1d .fz=ifz1n.fz.00ifm1n.fm.00.fz=ifm1n.fm.00ifz1n.fz.00=
228 227 orbi2d .fz=ifz1n.fz.00m=zifm1n.fm.00.fz=m=zifm1n.fm.00ifz1n.fz.00=
229 ineq2 .00=ifz1n.fz.00ifm1n.fm.00.00=ifm1n.fm.00ifz1n.fz.00
230 229 eqeq1d .00=ifz1n.fz.00ifm1n.fm.00.00=ifm1n.fm.00ifz1n.fz.00=
231 230 orbi2d .00=ifz1n.fz.00m=zifm1n.fm.00.00=m=zifm1n.fm.00ifz1n.fz.00=
232 228 231 ifboth m=zifm1n.fm.00.fz=m=zifm1n.fm.00.00=m=zifm1n.fm.00ifz1n.fz.00=
233 221 225 232 sylancl f:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cmzm=zifm1n.fm.00ifz1n.fz.00=
234 233 ralrimivva f:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cmzm=zifm1n.fm.00ifz1n.fz.00=
235 disjeq2 m.zifz1nfz00m=ifm1n.fm.00Disjm.zifz1nfz00mDisjmifm1n.fm.00
236 eleq1w z=mz1nm1n
237 fveq2 z=mfz=fm
238 236 237 ifbieq1d z=mifz1nfz00=ifm1nfm00
239 eqid zifz1nfz00=zifz1nfz00
240 fvex fmV
241 opex 00V
242 240 241 ifex ifm1nfm00V
243 238 239 242 fvmpt mzifz1nfz00m=ifm1nfm00
244 243 fveq2d m.zifz1nfz00m=.ifm1nfm00
245 fvif .ifm1nfm00=ifm1n.fm.00
246 244 245 eqtrdi m.zifz1nfz00m=ifm1n.fm.00
247 235 246 mprg Disjm.zifz1nfz00mDisjmifm1n.fm.00
248 eleq1w m=zm1nz1n
249 248 115 ifbieq1d m=zifm1n.fm.00=ifz1n.fz.00
250 249 disjor Disjmifm1n.fm.00mzm=zifm1n.fm.00ifz1n.fz.00=
251 247 250 bitri Disjm.zifz1nfz00mmzm=zifm1n.fm.00ifz1n.fz.00=
252 234 251 sylibr f:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cDisjm.zifz1nfz00m
253 eqid seq1+abszifz1nfz00=seq1+abszifz1nfz00
254 206 252 253 uniiccvol f:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cvol*ran.zifz1nfz00=supranseq1+abszifz1nfz00*<
255 254 adantr f:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnvol*ran.zifz1nfz00=supranseq1+abszifz1nfz00*<
256 rexpssxrxp 2*×*
257 164 256 sstri abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c*×*
258 257 65 sselid f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=czfz*×*
259 0xr 0*
260 opelxpi 0*0*00*×*
261 259 259 260 mp2an 00*×*
262 ifcl fz*×*00*×*ifz1nfz00*×*
263 258 261 262 sylancl f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=czifz1nfz00*×*
264 eqidd f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=czifz1nfz00=zifz1nfz00
265 iccf .:*×*𝒫*
266 265 a1i f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c.:*×*𝒫*
267 266 feqmptd f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c.=m*×*.m
268 fveq2 m=ifz1nfz00.m=.ifz1nfz00
269 263 264 267 268 fmptco f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c.zifz1nfz00=z.ifz1nfz00
270 52 269 syl f:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c.zifz1nfz00=z.ifz1nfz00
271 270 rneqd f:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cran.zifz1nfz00=ranz.ifz1nfz00
272 271 unieqd f:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cran.zifz1nfz00=ranz.ifz1nfz00
273 peano2nn nn+1
274 273 173 eleqtrdi nn+11
275 fzouzsplit n+111=1..^n+1n+1
276 274 275 syl n1=1..^n+1n+1
277 173 276 eqtrid n=1..^n+1n+1
278 nnz nn
279 fzval3 n1n=1..^n+1
280 278 279 syl n1n=1..^n+1
281 280 uneq1d n1nn+1=1..^n+1n+1
282 277 281 eqtr4d n=1nn+1
283 fvif .ifz1nfz00=ifz1n.fz.00
284 283 a1i n.ifz1nfz00=ifz1n.fz.00
285 282 284 iuneq12d nz.ifz1nfz00=z1nn+1ifz1n.fz.00
286 fvex .ifz1nfz00V
287 286 dfiun3 z.ifz1nfz00=ranz.ifz1nfz00
288 iunxun z1nn+1ifz1n.fz.00=z=1nifz1n.fz.00zn+1ifz1n.fz.00
289 285 287 288 3eqtr3g nranz.ifz1nfz00=z=1nifz1n.fz.00zn+1ifz1n.fz.00
290 iftrue z1nifz1n.fz.00=.fz
291 290 iuneq2i z=1nifz1n.fz.00=z=1n.fz
292 291 a1i nz=1nifz1n.fz.00=z=1n.fz
293 uznfz zn+1¬z1n+1-1
294 293 adantl nzn+1¬z1n+1-1
295 nncn nn
296 ax-1cn 1
297 pncan n1n+1-1=n
298 295 296 297 sylancl nn+1-1=n
299 298 oveq2d n1n+1-1=1n
300 299 eleq2d nz1n+1-1z1n
301 300 notbid n¬z1n+1-1¬z1n
302 301 adantr nzn+1¬z1n+1-1¬z1n
303 294 302 mpbid nzn+1¬z1n
304 303 iffalsed nzn+1ifz1n.fz.00=.00
305 304 iuneq2dv nzn+1ifz1n.fz.00=zn+1.00
306 292 305 uneq12d nz=1nifz1n.fz.00zn+1ifz1n.fz.00=z=1n.fzzn+1.00
307 289 306 eqtrd nranz.ifz1nfz00=z=1n.fzzn+1.00
308 272 307 sylan9eq f:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnran.zifz1nfz00=z=1n.fzzn+1.00
309 308 fveq2d f:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnvol*ran.zifz1nfz00=vol*z=1n.fzzn+1.00
310 xrltso <Or*
311 310 a1i f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cn<Or*
312 elnnuz nn1
313 312 biimpi nn1
314 313 adantl f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnn1
315 elfznn u1nu
316 172 ffvelcdmda f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cuabsfu
317 315 316 sylan2 f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cu1nabsfu
318 317 adantlr f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnu1nabsfu
319 readdcl uvu+v
320 319 adantl f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnuvu+v
321 314 318 320 seqcl f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnseq1+absfn
322 321 rexrd f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnseq1+absfn*
323 eqidd m1nzifz1nfz00=zifz1nfz00
324 iftrue m1nifm1nfm00=fm
325 238 324 sylan9eqr m1nz=mifz1nfz00=fm
326 elfznn m1nm
327 240 a1i m1nfmV
328 323 325 326 327 fvmptd m1nzifz1nfz00m=fm
329 328 adantl f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cm1nzifz1nfz00m=fm
330 329 fveq2d f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cm1nabszifz1nfz00m=absfm
331 fvex fzV
332 331 241 ifex ifz1nfz00V
333 332 239 fnmpti zifz1nfz00Fn
334 fvco2 zifz1nfz00Fnmabszifz1nfz00m=abszifz1nfz00m
335 333 326 334 sylancr m1nabszifz1nfz00m=abszifz1nfz00m
336 335 adantl f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cm1nabszifz1nfz00m=abszifz1nfz00m
337 ffn f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cfFn
338 fvco2 fFnmabsfm=absfm
339 337 326 338 syl2an f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cm1nabsfm=absfm
340 330 336 339 3eqtr4d f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cm1nabszifz1nfz00m=absfm
341 340 adantlr f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnm1nabszifz1nfz00m=absfm
342 314 341 seqfveq f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnseq1+abszifz1nfz00n=seq1+absfn
343 174 a1i f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c1
344 168 65 sselid f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=czfz×
345 0cn 0
346 opelxpi 0000×
347 345 345 346 mp2an 00×
348 ifcl fz×00×ifz1nfz00×
349 344 347 348 sylancl f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=czifz1nfz00×
350 349 fmpttd f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=czifz1nfz00:×
351 fco abs:×zifz1nfz00:×abszifz1nfz00:
352 139 350 351 sylancr f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cabszifz1nfz00:
353 352 ffvelcdmda f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cmabszifz1nfz00m
354 173 343 353 serfre f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cseq1+abszifz1nfz00:
355 354 ffnd f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cseq1+abszifz1nfz00Fn
356 fnfvelrn seq1+abszifz1nfz00Fnnseq1+abszifz1nfz00nranseq1+abszifz1nfz00
357 355 356 sylan f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnseq1+abszifz1nfz00nranseq1+abszifz1nfz00
358 342 357 eqeltrrd f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnseq1+absfnranseq1+abszifz1nfz00
359 354 frnd f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cranseq1+abszifz1nfz00
360 359 adantr f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnranseq1+abszifz1nfz00
361 360 sselda f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnmranseq1+abszifz1nfz00m
362 321 adantr f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnmranseq1+abszifz1nfz00seq1+absfn
363 readdcl mum+u
364 363 adantl f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cntn<tmum+u
365 recn mm
366 recn uu
367 recn vv
368 addass muvm+u+v=m+u+v
369 365 366 367 368 syl3an muvm+u+v=m+u+v
370 369 adantl f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cntn<tmuvm+u+v=m+u+v
371 nnltp1le ntn<tn+1t
372 371 biimpa ntn<tn+1t
373 273 nnzd nn+1
374 nnz tt
375 eluz n+1ttn+1n+1t
376 373 374 375 syl2an nttn+1n+1t
377 376 adantr ntn<ttn+1n+1t
378 372 377 mpbird ntn<ttn+1
379 378 adantlll f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cntn<ttn+1
380 313 ad3antlr f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cntn<tn1
381 simplll f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cntn<tf:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c
382 elfznn m1tm
383 381 382 353 syl2an f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cntn<tm1tabszifz1nfz00m
384 364 370 379 380 383 seqsplit f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cntn<tseq1+abszifz1nfz00t=seq1+abszifz1nfz00n+seqn+1+abszifz1nfz00t
385 342 ad2antrr f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cntn<tseq1+abszifz1nfz00n=seq1+absfn
386 elfzelz mn+1tm
387 386 adantl ntn<tmn+1tm
388 0red ntn<tmn+1t0
389 273 nnred nn+1
390 389 ad3antrrr ntn<tmn+1tn+1
391 386 zred mn+1tm
392 391 adantl ntn<tmn+1tm
393 273 nngt0d n0<n+1
394 393 ad3antrrr ntn<tmn+1t0<n+1
395 elfzle1 mn+1tn+1m
396 395 adantl ntn<tmn+1tn+1m
397 388 390 392 394 396 ltletrd ntn<tmn+1t0<m
398 elnnz mm0<m
399 387 397 398 sylanbrc ntn<tmn+1tm
400 333 399 334 sylancr ntn<tmn+1tabszifz1nfz00m=abszifz1nfz00m
401 eqidd nmn+1tzifz1nfz00=zifz1nfz00
402 nnre nn
403 402 adantr nmn+1tn
404 389 adantr nmn+1tn+1
405 391 adantl nmn+1tm
406 402 ltp1d nn<n+1
407 406 adantr nmn+1tn<n+1
408 395 adantl nmn+1tn+1m
409 403 404 405 407 408 ltletrd nmn+1tn<m
410 409 adantr nmn+1tz=mn<m
411 403 405 ltnled nmn+1tn<m¬mn
412 breq1 m=zmnzn
413 412 equcoms z=mmnzn
414 413 notbid z=m¬mn¬zn
415 411 414 sylan9bb nmn+1tz=mn<m¬zn
416 410 415 mpbid nmn+1tz=m¬zn
417 elfzle2 z1nzn
418 416 417 nsyl nmn+1tz=m¬z1n
419 418 iffalsed nmn+1tz=mifz1nfz00=00
420 386 adantl nmn+1tm
421 0red nmn+1t0
422 393 adantr nmn+1t0<n+1
423 421 404 405 422 408 ltletrd nmn+1t0<m
424 420 423 398 sylanbrc nmn+1tm
425 241 a1i nmn+1t00V
426 401 419 424 425 fvmptd nmn+1tzifz1nfz00m=00
427 426 ad4ant14 ntn<tmn+1tzifz1nfz00m=00
428 427 fveq2d ntn<tmn+1tabszifz1nfz00m=abs00
429 400 428 eqtrd ntn<tmn+1tabszifz1nfz00m=abs00
430 fvco3 :×00×abs00=00
431 137 347 430 mp2an abs00=00
432 df-ov 00=00
433 0m0e0 00=0
434 432 433 eqtr3i 00=0
435 434 fveq2i 00=0
436 abs0 0=0
437 435 436 eqtri 00=0
438 431 437 eqtri abs00=0
439 429 438 eqtrdi ntn<tmn+1tabszifz1nfz00m=0
440 elfzuz mn+1tmn+1
441 c0ex 0V
442 441 fvconst2 mn+1n+1×0m=0
443 440 442 syl mn+1tn+1×0m=0
444 443 adantl ntn<tmn+1tn+1×0m=0
445 439 444 eqtr4d ntn<tmn+1tabszifz1nfz00m=n+1×0m
446 378 445 seqfveq ntn<tseqn+1+abszifz1nfz00t=seqn+1+n+1×0t
447 eqid n+1=n+1
448 447 ser0 tn+1seqn+1+n+1×0t=0
449 378 448 syl ntn<tseqn+1+n+1×0t=0
450 446 449 eqtrd ntn<tseqn+1+abszifz1nfz00t=0
451 450 adantlll f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cntn<tseqn+1+abszifz1nfz00t=0
452 385 451 oveq12d f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cntn<tseq1+abszifz1nfz00n+seqn+1+abszifz1nfz00t=seq1+absfn+0
453 172 ffvelcdmda f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cmabsfm
454 326 453 sylan2 f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cm1nabsfm
455 454 adantlr f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnm1nabsfm
456 readdcl mvm+v
457 456 adantl f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnmvm+v
458 314 455 457 seqcl f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnseq1+absfn
459 458 ad2antrr f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cntn<tseq1+absfn
460 459 recnd f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cntn<tseq1+absfn
461 460 addridd f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cntn<tseq1+absfn+0=seq1+absfn
462 452 461 eqtrd f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cntn<tseq1+abszifz1nfz00n+seqn+1+abszifz1nfz00t=seq1+absfn
463 384 462 eqtrd f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cntn<tseq1+abszifz1nfz00t=seq1+absfn
464 453 ad5ant15 f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cntn<tmabsfm
465 326 464 sylan2 f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cntn<tm1nabsfm
466 380 465 364 seqcl f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cntn<tseq1+absfn
467 466 leidd f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cntn<tseq1+absfnseq1+absfn
468 463 467 eqbrtrd f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cntn<tseq1+abszifz1nfz00tseq1+absfn
469 elnnuz tt1
470 469 biimpi tt1
471 470 ad2antlr f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnttnt1
472 eqidd f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnttnm1tzifz1nfz00=zifz1nfz00
473 simpr f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnttnm1tz=mz=m
474 elfzle1 m1t1m
475 474 adantl nttnm1t1m
476 382 nnred m1tm
477 476 adantl nttnm1tm
478 nnre tt
479 478 ad3antlr nttnm1tt
480 402 ad3antrrr nttnm1tn
481 elfzle2 m1tmt
482 481 adantl nttnm1tmt
483 simplr nttnm1ttn
484 477 479 480 482 483 letrd nttnm1tmn
485 elfzelz m1tm
486 278 ad2antrr nttnn
487 elfz m1nm1n1mmn
488 174 487 mp3an2 mnm1n1mmn
489 485 486 488 syl2anr nttnm1tm1n1mmn
490 475 484 489 mpbir2and nttnm1tm1n
491 490 ad5ant2345 f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnttnm1tm1n
492 491 adantr f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnttnm1tz=mm1n
493 473 492 eqeltrd f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnttnm1tz=mz1n
494 iftrue z1nifz1nfz00=fz
495 493 494 syl f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnttnm1tz=mifz1nfz00=fz
496 237 adantl f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnttnm1tz=mfz=fm
497 495 496 eqtrd f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnttnm1tz=mifz1nfz00=fm
498 382 adantl f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnttnm1tm
499 240 a1i f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnttnm1tfmV
500 472 497 498 499 fvmptd f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnttnm1tzifz1nfz00m=fm
501 500 fveq2d f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnttnm1tabszifz1nfz00m=absfm
502 333 382 334 sylancr m1tabszifz1nfz00m=abszifz1nfz00m
503 502 adantl f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnttnm1tabszifz1nfz00m=abszifz1nfz00m
504 simplll f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnttnf:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=c
505 fvco3 f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cmabsfm=absfm
506 504 382 505 syl2an f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnttnm1tabsfm=absfm
507 501 503 506 3eqtr4d f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnttnm1tabszifz1nfz00m=absfm
508 471 507 seqfveq f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnttnseq1+abszifz1nfz00t=seq1+absft
509 eluz tnnttn
510 374 278 509 syl2anr ntnttn
511 510 biimpar nttnnt
512 511 adantlll f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnttnnt
513 504 326 453 syl2an f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnttnm1nabsfm
514 elfzelz mt+1nm
515 514 adantl tmt+1nm
516 0red tmt+1n0
517 peano2nn tt+1
518 517 nnred tt+1
519 518 adantr tmt+1nt+1
520 514 zred mt+1nm
521 520 adantl tmt+1nm
522 517 nngt0d t0<t+1
523 522 adantr tmt+1n0<t+1
524 elfzle1 mt+1nt+1m
525 524 adantl tmt+1nt+1m
526 516 519 521 523 525 ltletrd tmt+1n0<m
527 515 526 398 sylanbrc tmt+1nm
528 527 adantlr ttnmt+1nm
529 528 adantlll f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnttnmt+1nm
530 170 ffvelcdmda f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cmfm×
531 ffvelcdm :×fm×fm
532 137 530 531 sylancr f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cmfm
533 532 absge0d f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cm0fm
534 fvco3 :×fm×absfm=fm
535 137 530 534 sylancr f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cmabsfm=fm
536 505 535 eqtrd f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cmabsfm=fm
537 533 536 breqtrrd f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cm0absfm
538 537 ad5ant15 f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnttnm0absfm
539 529 538 syldan f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnttnmt+1n0absfm
540 471 512 513 539 sermono f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnttnseq1+absftseq1+absfn
541 508 540 eqbrtrd f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnttnseq1+abszifz1nfz00tseq1+absfn
542 402 ad2antlr f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cntn
543 478 adantl f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cntt
544 468 541 542 543 ltlecasei f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cntseq1+abszifz1nfz00tseq1+absfn
545 544 ralrimiva f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cntseq1+abszifz1nfz00tseq1+absfn
546 breq1 m=seq1+abszifz1nfz00tmseq1+absfnseq1+abszifz1nfz00tseq1+absfn
547 546 ralrn seq1+abszifz1nfz00Fnmranseq1+abszifz1nfz00mseq1+absfntseq1+abszifz1nfz00tseq1+absfn
548 355 547 syl f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cmranseq1+abszifz1nfz00mseq1+absfntseq1+abszifz1nfz00tseq1+absfn
549 548 adantr f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnmranseq1+abszifz1nfz00mseq1+absfntseq1+abszifz1nfz00tseq1+absfn
550 545 549 mpbird f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnmranseq1+abszifz1nfz00mseq1+absfn
551 550 r19.21bi f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnmranseq1+abszifz1nfz00mseq1+absfn
552 361 362 551 lensymd f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnmranseq1+abszifz1nfz00¬seq1+absfn<m
553 311 322 358 552 supmax f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnsupranseq1+abszifz1nfz00*<=seq1+absfn
554 52 553 sylan f:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnsupranseq1+abszifz1nfz00*<=seq1+absfn
555 255 309 554 3eqtr3rd f:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnseq1+absfn=vol*z=1n.fzzn+1.00
556 elfznn z1nz
557 164 65 sselid f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=czfz2
558 1st2nd2 fz2fz=1stfz2ndfz
559 558 fveq2d fz2.fz=.1stfz2ndfz
560 df-ov 1stfz2ndfz=.1stfz2ndfz
561 559 560 eqtr4di fz2.fz=1stfz2ndfz
562 xp1st fz21stfz
563 xp2nd fz22ndfz
564 iccssre 1stfz2ndfz1stfz2ndfz
565 562 563 564 syl2anc fz21stfz2ndfz
566 561 565 eqsstrd fz2.fz
567 557 566 syl f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cz.fz
568 52 556 567 syl2an f:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cz1n.fz
569 568 ralrimiva f:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cz1n.fz
570 iunss z=1n.fzz1n.fz
571 569 570 sylibr f:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cz=1n.fz
572 571 adantr f:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnz=1n.fz
573 uzid n+1n+1n+1
574 ne0i n+1n+1n+1
575 iunconst n+1zn+1.00=.00
576 373 573 574 575 4syl nzn+1.00=.00
577 iccid 0*00=0
578 259 577 ax-mp 00=0
579 df-ov 00=.00
580 578 579 eqtr3i 0=.00
581 576 580 eqtr4di nzn+1.00=0
582 snssi 00
583 199 582 ax-mp 0
584 581 583 eqsstrdi nzn+1.00
585 584 adantl f:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnzn+1.00
586 581 fveq2d nvol*zn+1.00=vol*0
587 586 adantl f:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnvol*zn+1.00=vol*0
588 ovolsn 0vol*0=0
589 199 588 ax-mp vol*0=0
590 587 589 eqtrdi f:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnvol*zn+1.00=0
591 ovolunnul z=1n.fzzn+1.00vol*zn+1.00=0vol*z=1n.fzzn+1.00=vol*z=1n.fz
592 572 585 590 591 syl3anc f:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnvol*z=1n.fzzn+1.00=vol*z=1n.fz
593 555 592 eqtrd f:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnseq1+absfn=vol*z=1n.fz
594 593 breq2d f:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnM<seq1+absfnM<vol*z=1n.fz
595 594 biimpd f:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnM<seq1+absfnM<vol*z=1n.fz
596 595 reximdva f:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnM<seq1+absfnnM<vol*z=1n.fz
597 596 adantl AtopGenran.MM<vol*Af:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnM<seq1+absfnnM<vol*z=1n.fz
598 194 597 mpd AtopGenran.MM<vol*Af:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnM<vol*z=1n.fz
599 fzfi 1nFin
600 icccld 1stfz2ndfz1stfz2ndfzClsdtopGenran.
601 562 563 600 syl2anc fz21stfz2ndfzClsdtopGenran.
602 561 601 eqeltrd fz2.fzClsdtopGenran.
603 557 602 syl f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cz.fzClsdtopGenran.
604 556 603 sylan2 f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cz1n.fzClsdtopGenran.
605 604 ralrimiva f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cz1n.fzClsdtopGenran.
606 uniretop =topGenran.
607 606 iuncld topGenran.Top1nFinz1n.fzClsdtopGenran.z=1n.fzClsdtopGenran.
608 1 599 605 607 mp3an12i f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cz=1n.fzClsdtopGenran.
609 608 adantr f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnM<vol*z=1n.fzz=1n.fzClsdtopGenran.
610 fveq2 b=fz.b=.fz
611 610 sseq1d b=fz.bA.fzA
612 611 elrab fzbranx,y0x2yx+12y|.bAfzranx,y0x2yx+12y.fzA
613 612 simprbi fzbranx,y0x2yx+12y|.bA.fzA
614 65 73 613 3syl f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cz.fzA
615 556 614 sylan2 f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cz1n.fzA
616 615 ralrimiva f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cz1n.fzA
617 iunss z=1n.fzAz1n.fzA
618 616 617 sylibr f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cz=1n.fzA
619 618 adantr f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnM<vol*z=1n.fzz=1n.fzA
620 simprr f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnM<vol*z=1n.fzM<vol*z=1n.fz
621 sseq1 s=z=1n.fzsAz=1n.fzA
622 fveq2 s=z=1n.fzvol*s=vol*z=1n.fz
623 622 breq2d s=z=1n.fzM<vol*sM<vol*z=1n.fz
624 621 623 anbi12d s=z=1n.fzsAM<vol*sz=1n.fzAM<vol*z=1n.fz
625 624 rspcev z=1n.fzClsdtopGenran.z=1n.fzAM<vol*z=1n.fzsClsdtopGenran.sAM<vol*s
626 609 619 620 625 syl12anc f:abranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnM<vol*z=1n.fzsClsdtopGenran.sAM<vol*s
627 52 626 sylan f:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnM<vol*z=1n.fzsClsdtopGenran.sAM<vol*s
628 627 adantll AtopGenran.MM<vol*Af:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=cnM<vol*z=1n.fzsClsdtopGenran.sAM<vol*s
629 598 628 rexlimddv AtopGenran.MM<vol*Af:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=csClsdtopGenran.sAM<vol*s
630 629 adantlr AtopGenran.MM<vol*AAf:1-1 ontoabranx,y0x2yx+12y|.bA|cbranx,y0x2yx+12y|.bA.a.ca=csClsdtopGenran.sAM<vol*s
631 17 630 exlimddv AtopGenran.MM<vol*AAsClsdtopGenran.sAM<vol*s
632 15 631 pm2.61dane AtopGenran.MM<vol*AsClsdtopGenran.sAM<vol*s