Step |
Hyp |
Ref |
Expression |
1 |
|
ltso |
⊢ < Or ℝ |
2 |
1
|
a1i |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ∧ ( vol* ‘ 𝐵 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐵 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) ) → < Or ℝ ) |
3 |
|
difss |
⊢ ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 |
4 |
|
ovolsscl |
⊢ ( ( ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℝ ) |
5 |
3 4
|
mp3an1 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℝ ) |
6 |
5
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ∧ ( vol* ‘ 𝐵 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐵 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) ) → ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℝ ) |
7 |
|
vex |
⊢ 𝑢 ∈ V |
8 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑢 → ( 𝑦 = ( vol ‘ 𝑏 ) ↔ 𝑢 = ( vol ‘ 𝑏 ) ) ) |
9 |
8
|
anbi2d |
⊢ ( 𝑦 = 𝑢 → ( ( 𝑏 ⊆ ( 𝐴 ∖ 𝐵 ) ∧ 𝑦 = ( vol ‘ 𝑏 ) ) ↔ ( 𝑏 ⊆ ( 𝐴 ∖ 𝐵 ) ∧ 𝑢 = ( vol ‘ 𝑏 ) ) ) ) |
10 |
9
|
rexbidv |
⊢ ( 𝑦 = 𝑢 → ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ ( 𝐴 ∖ 𝐵 ) ∧ 𝑦 = ( vol ‘ 𝑏 ) ) ↔ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ ( 𝐴 ∖ 𝐵 ) ∧ 𝑢 = ( vol ‘ 𝑏 ) ) ) ) |
11 |
7 10
|
elab |
⊢ ( 𝑢 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ ( 𝐴 ∖ 𝐵 ) ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ↔ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ ( 𝐴 ∖ 𝐵 ) ∧ 𝑢 = ( vol ‘ 𝑏 ) ) ) |
12 |
|
simprl |
⊢ ( ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑏 ⊆ ( 𝐴 ∖ 𝐵 ) ∧ 𝑢 = ( vol ‘ 𝑏 ) ) ) → 𝑏 ⊆ ( 𝐴 ∖ 𝐵 ) ) |
13 |
|
ssdifss |
⊢ ( 𝐴 ⊆ ℝ → ( 𝐴 ∖ 𝐵 ) ⊆ ℝ ) |
14 |
|
ovolss |
⊢ ( ( 𝑏 ⊆ ( 𝐴 ∖ 𝐵 ) ∧ ( 𝐴 ∖ 𝐵 ) ⊆ ℝ ) → ( vol* ‘ 𝑏 ) ≤ ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) |
15 |
12 13 14
|
syl2anr |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑏 ⊆ ( 𝐴 ∖ 𝐵 ) ∧ 𝑢 = ( vol ‘ 𝑏 ) ) ) ) → ( vol* ‘ 𝑏 ) ≤ ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) |
16 |
|
uniretop |
⊢ ℝ = ∪ ( topGen ‘ ran (,) ) |
17 |
16
|
cldss |
⊢ ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → 𝑏 ⊆ ℝ ) |
18 |
|
ovolcl |
⊢ ( 𝑏 ⊆ ℝ → ( vol* ‘ 𝑏 ) ∈ ℝ* ) |
19 |
17 18
|
syl |
⊢ ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → ( vol* ‘ 𝑏 ) ∈ ℝ* ) |
20 |
|
ovolcl |
⊢ ( ( 𝐴 ∖ 𝐵 ) ⊆ ℝ → ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℝ* ) |
21 |
13 20
|
syl |
⊢ ( 𝐴 ⊆ ℝ → ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℝ* ) |
22 |
|
xrlenlt |
⊢ ( ( ( vol* ‘ 𝑏 ) ∈ ℝ* ∧ ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℝ* ) → ( ( vol* ‘ 𝑏 ) ≤ ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ↔ ¬ ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) < ( vol* ‘ 𝑏 ) ) ) |
23 |
19 21 22
|
syl2anr |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) → ( ( vol* ‘ 𝑏 ) ≤ ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ↔ ¬ ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) < ( vol* ‘ 𝑏 ) ) ) |
24 |
23
|
adantrr |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑏 ⊆ ( 𝐴 ∖ 𝐵 ) ∧ 𝑢 = ( vol ‘ 𝑏 ) ) ) ) → ( ( vol* ‘ 𝑏 ) ≤ ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ↔ ¬ ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) < ( vol* ‘ 𝑏 ) ) ) |
25 |
|
id |
⊢ ( 𝑢 = ( vol ‘ 𝑏 ) → 𝑢 = ( vol ‘ 𝑏 ) ) |
26 |
|
dfss4 |
⊢ ( 𝑏 ⊆ ℝ ↔ ( ℝ ∖ ( ℝ ∖ 𝑏 ) ) = 𝑏 ) |
27 |
17 26
|
sylib |
⊢ ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → ( ℝ ∖ ( ℝ ∖ 𝑏 ) ) = 𝑏 ) |
28 |
|
rembl |
⊢ ℝ ∈ dom vol |
29 |
16
|
cldopn |
⊢ ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → ( ℝ ∖ 𝑏 ) ∈ ( topGen ‘ ran (,) ) ) |
30 |
|
opnmbl |
⊢ ( ( ℝ ∖ 𝑏 ) ∈ ( topGen ‘ ran (,) ) → ( ℝ ∖ 𝑏 ) ∈ dom vol ) |
31 |
29 30
|
syl |
⊢ ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → ( ℝ ∖ 𝑏 ) ∈ dom vol ) |
32 |
|
difmbl |
⊢ ( ( ℝ ∈ dom vol ∧ ( ℝ ∖ 𝑏 ) ∈ dom vol ) → ( ℝ ∖ ( ℝ ∖ 𝑏 ) ) ∈ dom vol ) |
33 |
28 31 32
|
sylancr |
⊢ ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → ( ℝ ∖ ( ℝ ∖ 𝑏 ) ) ∈ dom vol ) |
34 |
27 33
|
eqeltrrd |
⊢ ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → 𝑏 ∈ dom vol ) |
35 |
|
mblvol |
⊢ ( 𝑏 ∈ dom vol → ( vol ‘ 𝑏 ) = ( vol* ‘ 𝑏 ) ) |
36 |
34 35
|
syl |
⊢ ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → ( vol ‘ 𝑏 ) = ( vol* ‘ 𝑏 ) ) |
37 |
25 36
|
sylan9eqr |
⊢ ( ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑢 = ( vol ‘ 𝑏 ) ) → 𝑢 = ( vol* ‘ 𝑏 ) ) |
38 |
37
|
breq2d |
⊢ ( ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑢 = ( vol ‘ 𝑏 ) ) → ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) < 𝑢 ↔ ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) < ( vol* ‘ 𝑏 ) ) ) |
39 |
38
|
notbid |
⊢ ( ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑢 = ( vol ‘ 𝑏 ) ) → ( ¬ ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) < 𝑢 ↔ ¬ ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) < ( vol* ‘ 𝑏 ) ) ) |
40 |
39
|
adantrl |
⊢ ( ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑏 ⊆ ( 𝐴 ∖ 𝐵 ) ∧ 𝑢 = ( vol ‘ 𝑏 ) ) ) → ( ¬ ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) < 𝑢 ↔ ¬ ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) < ( vol* ‘ 𝑏 ) ) ) |
41 |
40
|
adantl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑏 ⊆ ( 𝐴 ∖ 𝐵 ) ∧ 𝑢 = ( vol ‘ 𝑏 ) ) ) ) → ( ¬ ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) < 𝑢 ↔ ¬ ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) < ( vol* ‘ 𝑏 ) ) ) |
42 |
24 41
|
bitr4d |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑏 ⊆ ( 𝐴 ∖ 𝐵 ) ∧ 𝑢 = ( vol ‘ 𝑏 ) ) ) ) → ( ( vol* ‘ 𝑏 ) ≤ ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ↔ ¬ ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) < 𝑢 ) ) |
43 |
15 42
|
mpbid |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑏 ⊆ ( 𝐴 ∖ 𝐵 ) ∧ 𝑢 = ( vol ‘ 𝑏 ) ) ) ) → ¬ ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) < 𝑢 ) |
44 |
43
|
rexlimdvaa |
⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ ( 𝐴 ∖ 𝐵 ) ∧ 𝑢 = ( vol ‘ 𝑏 ) ) → ¬ ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) < 𝑢 ) ) |
45 |
44
|
imp |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ ( 𝐴 ∖ 𝐵 ) ∧ 𝑢 = ( vol ‘ 𝑏 ) ) ) → ¬ ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) < 𝑢 ) |
46 |
11 45
|
sylan2b |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ ( 𝐴 ∖ 𝐵 ) ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ) → ¬ ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) < 𝑢 ) |
47 |
46
|
adantlr |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ ( 𝐴 ∖ 𝐵 ) ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ) → ¬ ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) < 𝑢 ) |
48 |
47
|
3ad2antl1 |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ∧ ( vol* ‘ 𝐵 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐵 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) ) ∧ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ ( 𝐴 ∖ 𝐵 ) ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ) → ¬ ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) < 𝑢 ) |
49 |
|
simplr |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) → ( vol* ‘ 𝐴 ) ∈ ℝ ) |
50 |
|
resubcl |
⊢ ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℝ ∧ 𝑢 ∈ ℝ ) → ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) ∈ ℝ ) |
51 |
50
|
adantrr |
⊢ ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℝ ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) → ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) ∈ ℝ ) |
52 |
|
posdif |
⊢ ( ( 𝑢 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℝ ) → ( 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ↔ 0 < ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) ) ) |
53 |
52
|
ancoms |
⊢ ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℝ ∧ 𝑢 ∈ ℝ ) → ( 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ↔ 0 < ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) ) ) |
54 |
53
|
biimpd |
⊢ ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℝ ∧ 𝑢 ∈ ℝ ) → ( 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) → 0 < ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) ) ) |
55 |
54
|
impr |
⊢ ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℝ ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) → 0 < ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) ) |
56 |
51 55
|
elrpd |
⊢ ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℝ ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) → ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) ∈ ℝ+ ) |
57 |
|
3nn |
⊢ 3 ∈ ℕ |
58 |
|
nnrp |
⊢ ( 3 ∈ ℕ → 3 ∈ ℝ+ ) |
59 |
57 58
|
ax-mp |
⊢ 3 ∈ ℝ+ |
60 |
|
rpdivcl |
⊢ ( ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) ∈ ℝ+ ∧ 3 ∈ ℝ+ ) → ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ∈ ℝ+ ) |
61 |
56 59 60
|
sylancl |
⊢ ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℝ ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) → ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ∈ ℝ+ ) |
62 |
5 61
|
sylan |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) → ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ∈ ℝ+ ) |
63 |
49 62
|
ltsubrpd |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) → ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol* ‘ 𝐴 ) ) |
64 |
63
|
adantr |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) → ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol* ‘ 𝐴 ) ) |
65 |
|
simpr |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) → ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) |
66 |
64 65
|
breqtrd |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) → ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) |
67 |
|
reex |
⊢ ℝ ∈ V |
68 |
67
|
ssex |
⊢ ( 𝐴 ⊆ ℝ → 𝐴 ∈ V ) |
69 |
68
|
adantr |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → 𝐴 ∈ V ) |
70 |
|
sseq1 |
⊢ ( 𝑣 = 𝐴 → ( 𝑣 ⊆ ℝ ↔ 𝐴 ⊆ ℝ ) ) |
71 |
|
fveq2 |
⊢ ( 𝑣 = 𝐴 → ( vol* ‘ 𝑣 ) = ( vol* ‘ 𝐴 ) ) |
72 |
71
|
eleq1d |
⊢ ( 𝑣 = 𝐴 → ( ( vol* ‘ 𝑣 ) ∈ ℝ ↔ ( vol* ‘ 𝐴 ) ∈ ℝ ) ) |
73 |
70 72
|
anbi12d |
⊢ ( 𝑣 = 𝐴 → ( ( 𝑣 ⊆ ℝ ∧ ( vol* ‘ 𝑣 ) ∈ ℝ ) ↔ ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ) ) |
74 |
|
sseq2 |
⊢ ( 𝑣 = 𝐴 → ( 𝑏 ⊆ 𝑣 ↔ 𝑏 ⊆ 𝐴 ) ) |
75 |
74
|
anbi1d |
⊢ ( 𝑣 = 𝐴 → ( ( 𝑏 ⊆ 𝑣 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) ↔ ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) ) ) |
76 |
75
|
rexbidv |
⊢ ( 𝑣 = 𝐴 → ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝑣 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) ↔ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) ) ) |
77 |
76
|
abbidv |
⊢ ( 𝑣 = 𝐴 → { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝑣 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } = { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ) |
78 |
77
|
sseq1d |
⊢ ( 𝑣 = 𝐴 → ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝑣 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ⊆ ℝ ↔ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ⊆ ℝ ) ) |
79 |
77
|
neeq1d |
⊢ ( 𝑣 = 𝐴 → ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝑣 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ≠ ∅ ↔ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ≠ ∅ ) ) |
80 |
77
|
raleqdv |
⊢ ( 𝑣 = 𝐴 → ( ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝑣 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } 𝑧 ≤ 𝑥 ↔ ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } 𝑧 ≤ 𝑥 ) ) |
81 |
80
|
rexbidv |
⊢ ( 𝑣 = 𝐴 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝑣 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } 𝑧 ≤ 𝑥 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } 𝑧 ≤ 𝑥 ) ) |
82 |
78 79 81
|
3anbi123d |
⊢ ( 𝑣 = 𝐴 → ( ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝑣 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ⊆ ℝ ∧ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝑣 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝑣 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } 𝑧 ≤ 𝑥 ) ↔ ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ⊆ ℝ ∧ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } 𝑧 ≤ 𝑥 ) ) ) |
83 |
73 82
|
imbi12d |
⊢ ( 𝑣 = 𝐴 → ( ( ( 𝑣 ⊆ ℝ ∧ ( vol* ‘ 𝑣 ) ∈ ℝ ) → ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝑣 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ⊆ ℝ ∧ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝑣 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝑣 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } 𝑧 ≤ 𝑥 ) ) ↔ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ⊆ ℝ ∧ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } 𝑧 ≤ 𝑥 ) ) ) ) |
84 |
|
simpr |
⊢ ( ( 𝑏 ⊆ 𝑣 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) → 𝑦 = ( vol ‘ 𝑏 ) ) |
85 |
84 36
|
sylan9eqr |
⊢ ( ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑏 ⊆ 𝑣 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) ) → 𝑦 = ( vol* ‘ 𝑏 ) ) |
86 |
85
|
adantl |
⊢ ( ( ( 𝑣 ⊆ ℝ ∧ ( vol* ‘ 𝑣 ) ∈ ℝ ) ∧ ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑏 ⊆ 𝑣 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) ) ) → 𝑦 = ( vol* ‘ 𝑏 ) ) |
87 |
|
simprl |
⊢ ( ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑏 ⊆ 𝑣 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) ) → 𝑏 ⊆ 𝑣 ) |
88 |
|
ovolsscl |
⊢ ( ( 𝑏 ⊆ 𝑣 ∧ 𝑣 ⊆ ℝ ∧ ( vol* ‘ 𝑣 ) ∈ ℝ ) → ( vol* ‘ 𝑏 ) ∈ ℝ ) |
89 |
88
|
3expb |
⊢ ( ( 𝑏 ⊆ 𝑣 ∧ ( 𝑣 ⊆ ℝ ∧ ( vol* ‘ 𝑣 ) ∈ ℝ ) ) → ( vol* ‘ 𝑏 ) ∈ ℝ ) |
90 |
89
|
ancoms |
⊢ ( ( ( 𝑣 ⊆ ℝ ∧ ( vol* ‘ 𝑣 ) ∈ ℝ ) ∧ 𝑏 ⊆ 𝑣 ) → ( vol* ‘ 𝑏 ) ∈ ℝ ) |
91 |
87 90
|
sylan2 |
⊢ ( ( ( 𝑣 ⊆ ℝ ∧ ( vol* ‘ 𝑣 ) ∈ ℝ ) ∧ ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑏 ⊆ 𝑣 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) ) ) → ( vol* ‘ 𝑏 ) ∈ ℝ ) |
92 |
86 91
|
eqeltrd |
⊢ ( ( ( 𝑣 ⊆ ℝ ∧ ( vol* ‘ 𝑣 ) ∈ ℝ ) ∧ ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑏 ⊆ 𝑣 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) ) ) → 𝑦 ∈ ℝ ) |
93 |
92
|
rexlimdvaa |
⊢ ( ( 𝑣 ⊆ ℝ ∧ ( vol* ‘ 𝑣 ) ∈ ℝ ) → ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝑣 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) → 𝑦 ∈ ℝ ) ) |
94 |
93
|
abssdv |
⊢ ( ( 𝑣 ⊆ ℝ ∧ ( vol* ‘ 𝑣 ) ∈ ℝ ) → { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝑣 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ⊆ ℝ ) |
95 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
96 |
|
0cld |
⊢ ( ( topGen ‘ ran (,) ) ∈ Top → ∅ ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
97 |
95 96
|
ax-mp |
⊢ ∅ ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) |
98 |
|
0ss |
⊢ ∅ ⊆ 𝑣 |
99 |
|
0mbl |
⊢ ∅ ∈ dom vol |
100 |
|
mblvol |
⊢ ( ∅ ∈ dom vol → ( vol ‘ ∅ ) = ( vol* ‘ ∅ ) ) |
101 |
99 100
|
ax-mp |
⊢ ( vol ‘ ∅ ) = ( vol* ‘ ∅ ) |
102 |
|
ovol0 |
⊢ ( vol* ‘ ∅ ) = 0 |
103 |
101 102
|
eqtr2i |
⊢ 0 = ( vol ‘ ∅ ) |
104 |
98 103
|
pm3.2i |
⊢ ( ∅ ⊆ 𝑣 ∧ 0 = ( vol ‘ ∅ ) ) |
105 |
|
sseq1 |
⊢ ( 𝑏 = ∅ → ( 𝑏 ⊆ 𝑣 ↔ ∅ ⊆ 𝑣 ) ) |
106 |
|
fveq2 |
⊢ ( 𝑏 = ∅ → ( vol ‘ 𝑏 ) = ( vol ‘ ∅ ) ) |
107 |
106
|
eqeq2d |
⊢ ( 𝑏 = ∅ → ( 0 = ( vol ‘ 𝑏 ) ↔ 0 = ( vol ‘ ∅ ) ) ) |
108 |
105 107
|
anbi12d |
⊢ ( 𝑏 = ∅ → ( ( 𝑏 ⊆ 𝑣 ∧ 0 = ( vol ‘ 𝑏 ) ) ↔ ( ∅ ⊆ 𝑣 ∧ 0 = ( vol ‘ ∅ ) ) ) ) |
109 |
108
|
rspcev |
⊢ ( ( ∅ ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( ∅ ⊆ 𝑣 ∧ 0 = ( vol ‘ ∅ ) ) ) → ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝑣 ∧ 0 = ( vol ‘ 𝑏 ) ) ) |
110 |
97 104 109
|
mp2an |
⊢ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝑣 ∧ 0 = ( vol ‘ 𝑏 ) ) |
111 |
|
c0ex |
⊢ 0 ∈ V |
112 |
|
eqeq1 |
⊢ ( 𝑦 = 0 → ( 𝑦 = ( vol ‘ 𝑏 ) ↔ 0 = ( vol ‘ 𝑏 ) ) ) |
113 |
112
|
anbi2d |
⊢ ( 𝑦 = 0 → ( ( 𝑏 ⊆ 𝑣 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) ↔ ( 𝑏 ⊆ 𝑣 ∧ 0 = ( vol ‘ 𝑏 ) ) ) ) |
114 |
113
|
rexbidv |
⊢ ( 𝑦 = 0 → ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝑣 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) ↔ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝑣 ∧ 0 = ( vol ‘ 𝑏 ) ) ) ) |
115 |
111 114
|
spcev |
⊢ ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝑣 ∧ 0 = ( vol ‘ 𝑏 ) ) → ∃ 𝑦 ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝑣 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) ) |
116 |
110 115
|
ax-mp |
⊢ ∃ 𝑦 ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝑣 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) |
117 |
|
abn0 |
⊢ ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝑣 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ≠ ∅ ↔ ∃ 𝑦 ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝑣 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) ) |
118 |
117
|
biimpri |
⊢ ( ∃ 𝑦 ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝑣 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) → { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝑣 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ≠ ∅ ) |
119 |
116 118
|
mp1i |
⊢ ( ( 𝑣 ⊆ ℝ ∧ ( vol* ‘ 𝑣 ) ∈ ℝ ) → { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝑣 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ≠ ∅ ) |
120 |
|
simpr |
⊢ ( ( 𝑏 ⊆ 𝑣 ∧ 𝑧 = ( vol ‘ 𝑏 ) ) → 𝑧 = ( vol ‘ 𝑏 ) ) |
121 |
120 36
|
sylan9eqr |
⊢ ( ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑏 ⊆ 𝑣 ∧ 𝑧 = ( vol ‘ 𝑏 ) ) ) → 𝑧 = ( vol* ‘ 𝑏 ) ) |
122 |
121
|
adantl |
⊢ ( ( 𝑣 ⊆ ℝ ∧ ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑏 ⊆ 𝑣 ∧ 𝑧 = ( vol ‘ 𝑏 ) ) ) ) → 𝑧 = ( vol* ‘ 𝑏 ) ) |
123 |
|
simprl |
⊢ ( ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑏 ⊆ 𝑣 ∧ 𝑧 = ( vol ‘ 𝑏 ) ) ) → 𝑏 ⊆ 𝑣 ) |
124 |
|
ovolss |
⊢ ( ( 𝑏 ⊆ 𝑣 ∧ 𝑣 ⊆ ℝ ) → ( vol* ‘ 𝑏 ) ≤ ( vol* ‘ 𝑣 ) ) |
125 |
124
|
ancoms |
⊢ ( ( 𝑣 ⊆ ℝ ∧ 𝑏 ⊆ 𝑣 ) → ( vol* ‘ 𝑏 ) ≤ ( vol* ‘ 𝑣 ) ) |
126 |
123 125
|
sylan2 |
⊢ ( ( 𝑣 ⊆ ℝ ∧ ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑏 ⊆ 𝑣 ∧ 𝑧 = ( vol ‘ 𝑏 ) ) ) ) → ( vol* ‘ 𝑏 ) ≤ ( vol* ‘ 𝑣 ) ) |
127 |
122 126
|
eqbrtrd |
⊢ ( ( 𝑣 ⊆ ℝ ∧ ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑏 ⊆ 𝑣 ∧ 𝑧 = ( vol ‘ 𝑏 ) ) ) ) → 𝑧 ≤ ( vol* ‘ 𝑣 ) ) |
128 |
127
|
rexlimdvaa |
⊢ ( 𝑣 ⊆ ℝ → ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝑣 ∧ 𝑧 = ( vol ‘ 𝑏 ) ) → 𝑧 ≤ ( vol* ‘ 𝑣 ) ) ) |
129 |
128
|
alrimiv |
⊢ ( 𝑣 ⊆ ℝ → ∀ 𝑧 ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝑣 ∧ 𝑧 = ( vol ‘ 𝑏 ) ) → 𝑧 ≤ ( vol* ‘ 𝑣 ) ) ) |
130 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 = ( vol ‘ 𝑏 ) ↔ 𝑧 = ( vol ‘ 𝑏 ) ) ) |
131 |
130
|
anbi2d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑏 ⊆ 𝑣 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) ↔ ( 𝑏 ⊆ 𝑣 ∧ 𝑧 = ( vol ‘ 𝑏 ) ) ) ) |
132 |
131
|
rexbidv |
⊢ ( 𝑦 = 𝑧 → ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝑣 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) ↔ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝑣 ∧ 𝑧 = ( vol ‘ 𝑏 ) ) ) ) |
133 |
132
|
ralab |
⊢ ( ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝑣 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } 𝑧 ≤ ( vol* ‘ 𝑣 ) ↔ ∀ 𝑧 ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝑣 ∧ 𝑧 = ( vol ‘ 𝑏 ) ) → 𝑧 ≤ ( vol* ‘ 𝑣 ) ) ) |
134 |
129 133
|
sylibr |
⊢ ( 𝑣 ⊆ ℝ → ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝑣 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } 𝑧 ≤ ( vol* ‘ 𝑣 ) ) |
135 |
|
brralrspcev |
⊢ ( ( ( vol* ‘ 𝑣 ) ∈ ℝ ∧ ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝑣 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } 𝑧 ≤ ( vol* ‘ 𝑣 ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝑣 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } 𝑧 ≤ 𝑥 ) |
136 |
134 135
|
sylan2 |
⊢ ( ( ( vol* ‘ 𝑣 ) ∈ ℝ ∧ 𝑣 ⊆ ℝ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝑣 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } 𝑧 ≤ 𝑥 ) |
137 |
136
|
ancoms |
⊢ ( ( 𝑣 ⊆ ℝ ∧ ( vol* ‘ 𝑣 ) ∈ ℝ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝑣 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } 𝑧 ≤ 𝑥 ) |
138 |
94 119 137
|
3jca |
⊢ ( ( 𝑣 ⊆ ℝ ∧ ( vol* ‘ 𝑣 ) ∈ ℝ ) → ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝑣 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ⊆ ℝ ∧ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝑣 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝑣 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } 𝑧 ≤ 𝑥 ) ) |
139 |
83 138
|
vtoclg |
⊢ ( 𝐴 ∈ V → ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ⊆ ℝ ∧ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } 𝑧 ≤ 𝑥 ) ) ) |
140 |
69 139
|
mpcom |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ⊆ ℝ ∧ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } 𝑧 ≤ 𝑥 ) ) |
141 |
140
|
adantr |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) → ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ⊆ ℝ ∧ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } 𝑧 ≤ 𝑥 ) ) |
142 |
62
|
rpred |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) → ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ∈ ℝ ) |
143 |
49 142
|
resubcld |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) → ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ∈ ℝ ) |
144 |
|
suprlub |
⊢ ( ( ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ⊆ ℝ ∧ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } 𝑧 ≤ 𝑥 ) ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ∈ ℝ ) → ( ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ↔ ∃ 𝑣 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < 𝑣 ) ) |
145 |
141 143 144
|
syl2anc |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) → ( ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ↔ ∃ 𝑣 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < 𝑣 ) ) |
146 |
145
|
adantr |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) → ( ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ↔ ∃ 𝑣 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < 𝑣 ) ) |
147 |
66 146
|
mpbid |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) → ∃ 𝑣 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < 𝑣 ) |
148 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑣 → ( 𝑦 = ( vol ‘ 𝑏 ) ↔ 𝑣 = ( vol ‘ 𝑏 ) ) ) |
149 |
148
|
anbi2d |
⊢ ( 𝑦 = 𝑣 → ( ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) ↔ ( 𝑏 ⊆ 𝐴 ∧ 𝑣 = ( vol ‘ 𝑏 ) ) ) ) |
150 |
149
|
rexbidv |
⊢ ( 𝑦 = 𝑣 → ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) ↔ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑣 = ( vol ‘ 𝑏 ) ) ) ) |
151 |
150
|
rexab |
⊢ ( ∃ 𝑣 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < 𝑣 ↔ ∃ 𝑣 ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑣 = ( vol ‘ 𝑏 ) ) ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < 𝑣 ) ) |
152 |
|
breq2 |
⊢ ( 𝑣 = ( vol ‘ 𝑏 ) → ( ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < 𝑣 ↔ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑏 ) ) ) |
153 |
152
|
ad2antll |
⊢ ( ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑣 = ( vol ‘ 𝑏 ) ) ) → ( ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < 𝑣 ↔ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑏 ) ) ) |
154 |
|
sseq1 |
⊢ ( 𝑠 = 𝑏 → ( 𝑠 ⊆ 𝐴 ↔ 𝑏 ⊆ 𝐴 ) ) |
155 |
|
fveq2 |
⊢ ( 𝑠 = 𝑏 → ( vol ‘ 𝑠 ) = ( vol ‘ 𝑏 ) ) |
156 |
155
|
breq2d |
⊢ ( 𝑠 = 𝑏 → ( ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ↔ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑏 ) ) ) |
157 |
154 156
|
anbi12d |
⊢ ( 𝑠 = 𝑏 → ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ↔ ( 𝑏 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑏 ) ) ) ) |
158 |
157
|
rspcev |
⊢ ( ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑏 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑏 ) ) ) → ∃ 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ) |
159 |
158
|
expr |
⊢ ( ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑏 ⊆ 𝐴 ) → ( ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑏 ) → ∃ 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ) ) |
160 |
159
|
adantrr |
⊢ ( ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑣 = ( vol ‘ 𝑏 ) ) ) → ( ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑏 ) → ∃ 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ) ) |
161 |
153 160
|
sylbid |
⊢ ( ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑣 = ( vol ‘ 𝑏 ) ) ) → ( ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < 𝑣 → ∃ 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ) ) |
162 |
161
|
rexlimiva |
⊢ ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑣 = ( vol ‘ 𝑏 ) ) → ( ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < 𝑣 → ∃ 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ) ) |
163 |
162
|
imp |
⊢ ( ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑣 = ( vol ‘ 𝑏 ) ) ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < 𝑣 ) → ∃ 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ) |
164 |
163
|
exlimiv |
⊢ ( ∃ 𝑣 ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑣 = ( vol ‘ 𝑏 ) ) ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < 𝑣 ) → ∃ 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ) |
165 |
151 164
|
sylbi |
⊢ ( ∃ 𝑣 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < 𝑣 → ∃ 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ) |
166 |
147 165
|
syl |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) → ∃ 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ) |
167 |
166
|
ex |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) → ( ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) → ∃ 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ) ) |
168 |
167
|
adantlr |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) → ( ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) → ∃ 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ) ) |
169 |
|
simplrr |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) → ( vol* ‘ 𝐵 ) ∈ ℝ ) |
170 |
62
|
adantlr |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) → ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ∈ ℝ+ ) |
171 |
169 170
|
ltsubrpd |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) → ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol* ‘ 𝐵 ) ) |
172 |
171
|
adantr |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( vol* ‘ 𝐵 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐵 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) → ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol* ‘ 𝐵 ) ) |
173 |
|
simpr |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( vol* ‘ 𝐵 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐵 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) → ( vol* ‘ 𝐵 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐵 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) |
174 |
172 173
|
breqtrd |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( vol* ‘ 𝐵 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐵 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) → ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐵 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) |
175 |
67
|
ssex |
⊢ ( 𝐵 ⊆ ℝ → 𝐵 ∈ V ) |
176 |
175
|
adantr |
⊢ ( ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → 𝐵 ∈ V ) |
177 |
|
sseq1 |
⊢ ( 𝑣 = 𝐵 → ( 𝑣 ⊆ ℝ ↔ 𝐵 ⊆ ℝ ) ) |
178 |
|
fveq2 |
⊢ ( 𝑣 = 𝐵 → ( vol* ‘ 𝑣 ) = ( vol* ‘ 𝐵 ) ) |
179 |
178
|
eleq1d |
⊢ ( 𝑣 = 𝐵 → ( ( vol* ‘ 𝑣 ) ∈ ℝ ↔ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) |
180 |
177 179
|
anbi12d |
⊢ ( 𝑣 = 𝐵 → ( ( 𝑣 ⊆ ℝ ∧ ( vol* ‘ 𝑣 ) ∈ ℝ ) ↔ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ) |
181 |
|
sseq2 |
⊢ ( 𝑣 = 𝐵 → ( 𝑏 ⊆ 𝑣 ↔ 𝑏 ⊆ 𝐵 ) ) |
182 |
181
|
anbi1d |
⊢ ( 𝑣 = 𝐵 → ( ( 𝑏 ⊆ 𝑣 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) ↔ ( 𝑏 ⊆ 𝐵 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) ) ) |
183 |
182
|
rexbidv |
⊢ ( 𝑣 = 𝐵 → ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝑣 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) ↔ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐵 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) ) ) |
184 |
183
|
abbidv |
⊢ ( 𝑣 = 𝐵 → { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝑣 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } = { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐵 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ) |
185 |
184
|
sseq1d |
⊢ ( 𝑣 = 𝐵 → ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝑣 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ⊆ ℝ ↔ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐵 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ⊆ ℝ ) ) |
186 |
184
|
neeq1d |
⊢ ( 𝑣 = 𝐵 → ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝑣 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ≠ ∅ ↔ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐵 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ≠ ∅ ) ) |
187 |
184
|
raleqdv |
⊢ ( 𝑣 = 𝐵 → ( ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝑣 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } 𝑧 ≤ 𝑥 ↔ ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐵 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } 𝑧 ≤ 𝑥 ) ) |
188 |
187
|
rexbidv |
⊢ ( 𝑣 = 𝐵 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝑣 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } 𝑧 ≤ 𝑥 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐵 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } 𝑧 ≤ 𝑥 ) ) |
189 |
185 186 188
|
3anbi123d |
⊢ ( 𝑣 = 𝐵 → ( ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝑣 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ⊆ ℝ ∧ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝑣 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝑣 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } 𝑧 ≤ 𝑥 ) ↔ ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐵 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ⊆ ℝ ∧ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐵 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐵 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } 𝑧 ≤ 𝑥 ) ) ) |
190 |
180 189
|
imbi12d |
⊢ ( 𝑣 = 𝐵 → ( ( ( 𝑣 ⊆ ℝ ∧ ( vol* ‘ 𝑣 ) ∈ ℝ ) → ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝑣 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ⊆ ℝ ∧ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝑣 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝑣 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } 𝑧 ≤ 𝑥 ) ) ↔ ( ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐵 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ⊆ ℝ ∧ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐵 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐵 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } 𝑧 ≤ 𝑥 ) ) ) ) |
191 |
190 138
|
vtoclg |
⊢ ( 𝐵 ∈ V → ( ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐵 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ⊆ ℝ ∧ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐵 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐵 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } 𝑧 ≤ 𝑥 ) ) ) |
192 |
176 191
|
mpcom |
⊢ ( ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐵 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ⊆ ℝ ∧ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐵 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐵 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } 𝑧 ≤ 𝑥 ) ) |
193 |
192
|
ad2antlr |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) → ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐵 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ⊆ ℝ ∧ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐵 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐵 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } 𝑧 ≤ 𝑥 ) ) |
194 |
142
|
adantlr |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) → ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ∈ ℝ ) |
195 |
169 194
|
resubcld |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) → ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ∈ ℝ ) |
196 |
|
suprlub |
⊢ ( ( ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐵 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ⊆ ℝ ∧ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐵 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐵 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } 𝑧 ≤ 𝑥 ) ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ∈ ℝ ) → ( ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐵 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ↔ ∃ 𝑣 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐵 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < 𝑣 ) ) |
197 |
193 195 196
|
syl2anc |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) → ( ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐵 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ↔ ∃ 𝑣 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐵 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < 𝑣 ) ) |
198 |
197
|
adantr |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( vol* ‘ 𝐵 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐵 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) → ( ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐵 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ↔ ∃ 𝑣 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐵 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < 𝑣 ) ) |
199 |
174 198
|
mpbid |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( vol* ‘ 𝐵 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐵 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) → ∃ 𝑣 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐵 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < 𝑣 ) |
200 |
148
|
anbi2d |
⊢ ( 𝑦 = 𝑣 → ( ( 𝑏 ⊆ 𝐵 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) ↔ ( 𝑏 ⊆ 𝐵 ∧ 𝑣 = ( vol ‘ 𝑏 ) ) ) ) |
201 |
200
|
rexbidv |
⊢ ( 𝑦 = 𝑣 → ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐵 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) ↔ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐵 ∧ 𝑣 = ( vol ‘ 𝑏 ) ) ) ) |
202 |
201
|
rexab |
⊢ ( ∃ 𝑣 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐵 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < 𝑣 ↔ ∃ 𝑣 ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐵 ∧ 𝑣 = ( vol ‘ 𝑏 ) ) ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < 𝑣 ) ) |
203 |
|
breq2 |
⊢ ( 𝑣 = ( vol ‘ 𝑏 ) → ( ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < 𝑣 ↔ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑏 ) ) ) |
204 |
203
|
ad2antll |
⊢ ( ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑏 ⊆ 𝐵 ∧ 𝑣 = ( vol ‘ 𝑏 ) ) ) → ( ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < 𝑣 ↔ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑏 ) ) ) |
205 |
|
sseq1 |
⊢ ( 𝑤 = 𝑏 → ( 𝑤 ⊆ 𝐵 ↔ 𝑏 ⊆ 𝐵 ) ) |
206 |
|
fveq2 |
⊢ ( 𝑤 = 𝑏 → ( vol ‘ 𝑤 ) = ( vol ‘ 𝑏 ) ) |
207 |
206
|
breq2d |
⊢ ( 𝑤 = 𝑏 → ( ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ↔ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑏 ) ) ) |
208 |
205 207
|
anbi12d |
⊢ ( 𝑤 = 𝑏 → ( ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ↔ ( 𝑏 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑏 ) ) ) ) |
209 |
208
|
rspcev |
⊢ ( ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑏 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑏 ) ) ) → ∃ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) |
210 |
209
|
expr |
⊢ ( ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑏 ⊆ 𝐵 ) → ( ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑏 ) → ∃ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) |
211 |
210
|
adantrr |
⊢ ( ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑏 ⊆ 𝐵 ∧ 𝑣 = ( vol ‘ 𝑏 ) ) ) → ( ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑏 ) → ∃ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) |
212 |
204 211
|
sylbid |
⊢ ( ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑏 ⊆ 𝐵 ∧ 𝑣 = ( vol ‘ 𝑏 ) ) ) → ( ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < 𝑣 → ∃ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) |
213 |
212
|
rexlimiva |
⊢ ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐵 ∧ 𝑣 = ( vol ‘ 𝑏 ) ) → ( ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < 𝑣 → ∃ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) |
214 |
213
|
imp |
⊢ ( ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐵 ∧ 𝑣 = ( vol ‘ 𝑏 ) ) ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < 𝑣 ) → ∃ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) |
215 |
214
|
exlimiv |
⊢ ( ∃ 𝑣 ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐵 ∧ 𝑣 = ( vol ‘ 𝑏 ) ) ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < 𝑣 ) → ∃ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) |
216 |
202 215
|
sylbi |
⊢ ( ∃ 𝑣 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐵 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < 𝑣 → ∃ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) |
217 |
199 216
|
syl |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( vol* ‘ 𝐵 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐵 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) → ∃ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) |
218 |
217
|
ex |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) → ( ( vol* ‘ 𝐵 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐵 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) → ∃ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) |
219 |
168 218
|
anim12d |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) → ( ( ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ∧ ( vol* ‘ 𝐵 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐵 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) → ( ∃ 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ∃ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) ) |
220 |
|
reeanv |
⊢ ( ∃ 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∃ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ↔ ( ∃ 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ∃ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) |
221 |
219 220
|
syl6ibr |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) → ( ( ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ∧ ( vol* ‘ 𝐵 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐵 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) → ∃ 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∃ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) ) |
222 |
|
eqid |
⊢ seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) |
223 |
222
|
ovolgelb |
⊢ ( ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ∧ ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ∈ ℝ+ ) → ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) |
224 |
223
|
3expa |
⊢ ( ( ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ∈ ℝ+ ) → ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) |
225 |
62 224
|
sylan2 |
⊢ ( ( ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ) → ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) |
226 |
225
|
ancoms |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) → ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) |
227 |
226
|
an32s |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) → ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) |
228 |
|
elmapi |
⊢ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) → 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
229 |
|
ssid |
⊢ ∪ ran ( (,) ∘ 𝑓 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) |
230 |
222
|
ovollb |
⊢ ( ( 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ∪ ran ( (,) ∘ 𝑓 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) |
231 |
229 230
|
mpan2 |
⊢ ( 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) |
232 |
231
|
adantl |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) |
233 |
|
eqid |
⊢ ( ( abs ∘ − ) ∘ 𝑓 ) = ( ( abs ∘ − ) ∘ 𝑓 ) |
234 |
233 222
|
ovolsf |
⊢ ( 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
235 |
|
frn |
⊢ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) : ℕ ⟶ ( 0 [,) +∞ ) → ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ⊆ ( 0 [,) +∞ ) ) |
236 |
|
icossxr |
⊢ ( 0 [,) +∞ ) ⊆ ℝ* |
237 |
235 236
|
sstrdi |
⊢ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) : ℕ ⟶ ( 0 [,) +∞ ) → ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ⊆ ℝ* ) |
238 |
|
supxrcl |
⊢ ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ⊆ ℝ* → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ∈ ℝ* ) |
239 |
234 237 238
|
3syl |
⊢ ( 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ∈ ℝ* ) |
240 |
|
simpr |
⊢ ( ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → ( vol* ‘ 𝐵 ) ∈ ℝ ) |
241 |
|
readdcl |
⊢ ( ( ( vol* ‘ 𝐵 ) ∈ ℝ ∧ ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ∈ ℝ ) → ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ∈ ℝ ) |
242 |
240 142 241
|
syl2anr |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) → ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ∈ ℝ ) |
243 |
242
|
rexrd |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) → ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ∈ ℝ* ) |
244 |
243
|
an32s |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) → ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ∈ ℝ* ) |
245 |
|
rncoss |
⊢ ran ( (,) ∘ 𝑓 ) ⊆ ran (,) |
246 |
245
|
unissi |
⊢ ∪ ran ( (,) ∘ 𝑓 ) ⊆ ∪ ran (,) |
247 |
|
unirnioo |
⊢ ℝ = ∪ ran (,) |
248 |
246 247
|
sseqtrri |
⊢ ∪ ran ( (,) ∘ 𝑓 ) ⊆ ℝ |
249 |
|
ovolcl |
⊢ ( ∪ ran ( (,) ∘ 𝑓 ) ⊆ ℝ → ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ* ) |
250 |
248 249
|
ax-mp |
⊢ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ* |
251 |
|
xrletr |
⊢ ( ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ* ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ∈ ℝ* ∧ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ∈ ℝ* ) → ( ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) |
252 |
250 251
|
mp3an1 |
⊢ ( ( sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ∈ ℝ* ∧ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ∈ ℝ* ) → ( ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) |
253 |
239 244 252
|
syl2anr |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) → ( ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) |
254 |
232 253
|
mpand |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) → ( sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) |
255 |
228 254
|
sylan2 |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) → ( sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) |
256 |
255
|
anim2d |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) → ( ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) → ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ) |
257 |
256
|
reximdva |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) → ( ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) → ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ) |
258 |
227 257
|
mpd |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) → ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) |
259 |
|
rexex |
⊢ ( ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) → ∃ 𝑓 ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) |
260 |
258 259
|
syl |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) → ∃ 𝑓 ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) |
261 |
16
|
cldss |
⊢ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → 𝑠 ⊆ ℝ ) |
262 |
|
indif2 |
⊢ ( 𝑠 ∩ ( ℝ ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) = ( ( 𝑠 ∩ ℝ ) ∖ ∪ ran ( (,) ∘ 𝑓 ) ) |
263 |
|
df-ss |
⊢ ( 𝑠 ⊆ ℝ ↔ ( 𝑠 ∩ ℝ ) = 𝑠 ) |
264 |
263
|
biimpi |
⊢ ( 𝑠 ⊆ ℝ → ( 𝑠 ∩ ℝ ) = 𝑠 ) |
265 |
264
|
difeq1d |
⊢ ( 𝑠 ⊆ ℝ → ( ( 𝑠 ∩ ℝ ) ∖ ∪ ran ( (,) ∘ 𝑓 ) ) = ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) |
266 |
262 265
|
eqtrid |
⊢ ( 𝑠 ⊆ ℝ → ( 𝑠 ∩ ( ℝ ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) = ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) |
267 |
261 266
|
syl |
⊢ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → ( 𝑠 ∩ ( ℝ ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) = ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) |
268 |
|
retopbas |
⊢ ran (,) ∈ TopBases |
269 |
|
bastg |
⊢ ( ran (,) ∈ TopBases → ran (,) ⊆ ( topGen ‘ ran (,) ) ) |
270 |
268 269
|
ax-mp |
⊢ ran (,) ⊆ ( topGen ‘ ran (,) ) |
271 |
245 270
|
sstri |
⊢ ran ( (,) ∘ 𝑓 ) ⊆ ( topGen ‘ ran (,) ) |
272 |
|
uniopn |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ran ( (,) ∘ 𝑓 ) ⊆ ( topGen ‘ ran (,) ) ) → ∪ ran ( (,) ∘ 𝑓 ) ∈ ( topGen ‘ ran (,) ) ) |
273 |
95 271 272
|
mp2an |
⊢ ∪ ran ( (,) ∘ 𝑓 ) ∈ ( topGen ‘ ran (,) ) |
274 |
16
|
opncld |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ∪ ran ( (,) ∘ 𝑓 ) ∈ ( topGen ‘ ran (,) ) ) → ( ℝ ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
275 |
95 273 274
|
mp2an |
⊢ ( ℝ ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) |
276 |
|
incld |
⊢ ( ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( ℝ ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) → ( 𝑠 ∩ ( ℝ ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
277 |
275 276
|
mpan2 |
⊢ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → ( 𝑠 ∩ ( ℝ ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
278 |
267 277
|
eqeltrrd |
⊢ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
279 |
278
|
adantr |
⊢ ( ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) → ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
280 |
279
|
ad2antlr |
⊢ ( ( ( ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
281 |
|
simprll |
⊢ ( ( ( ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → 𝑠 ⊆ 𝐴 ) |
282 |
|
simplll |
⊢ ( ( ( ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) |
283 |
281 282
|
ssdif2d |
⊢ ( ( ( ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ⊆ ( 𝐴 ∖ 𝐵 ) ) |
284 |
|
fveq2 |
⊢ ( ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) = 𝑏 → ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) = ( vol ‘ 𝑏 ) ) |
285 |
284
|
eqcoms |
⊢ ( 𝑏 = ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) → ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) = ( vol ‘ 𝑏 ) ) |
286 |
285
|
biantrud |
⊢ ( 𝑏 = ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) → ( 𝑏 ⊆ ( 𝐴 ∖ 𝐵 ) ↔ ( 𝑏 ⊆ ( 𝐴 ∖ 𝐵 ) ∧ ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) = ( vol ‘ 𝑏 ) ) ) ) |
287 |
|
sseq1 |
⊢ ( 𝑏 = ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) → ( 𝑏 ⊆ ( 𝐴 ∖ 𝐵 ) ↔ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ⊆ ( 𝐴 ∖ 𝐵 ) ) ) |
288 |
286 287
|
bitr3d |
⊢ ( 𝑏 = ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) → ( ( 𝑏 ⊆ ( 𝐴 ∖ 𝐵 ) ∧ ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) = ( vol ‘ 𝑏 ) ) ↔ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ⊆ ( 𝐴 ∖ 𝐵 ) ) ) |
289 |
288
|
rspcev |
⊢ ( ( ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ⊆ ( 𝐴 ∖ 𝐵 ) ) → ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ ( 𝐴 ∖ 𝐵 ) ∧ ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) = ( vol ‘ 𝑏 ) ) ) |
290 |
280 283 289
|
syl2anc |
⊢ ( ( ( ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ ( 𝐴 ∖ 𝐵 ) ∧ ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) = ( vol ‘ 𝑏 ) ) ) |
291 |
290
|
adantlll |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ ( 𝐴 ∖ 𝐵 ) ∧ ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) = ( vol ‘ 𝑏 ) ) ) |
292 |
|
difss |
⊢ ( ( 𝐴 ∖ 𝐵 ) ∖ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) ⊆ ( 𝐴 ∖ 𝐵 ) |
293 |
292 3
|
sstri |
⊢ ( ( 𝐴 ∖ 𝐵 ) ∖ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) ⊆ 𝐴 |
294 |
|
ovolsscl |
⊢ ( ( ( ( 𝐴 ∖ 𝐵 ) ∖ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ ( ( 𝐴 ∖ 𝐵 ) ∖ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) ) ∈ ℝ ) |
295 |
293 294
|
mp3an1 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ ( ( 𝐴 ∖ 𝐵 ) ∖ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) ) ∈ ℝ ) |
296 |
295
|
ad5antr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( vol* ‘ ( ( 𝐴 ∖ 𝐵 ) ∖ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) ) ∈ ℝ ) |
297 |
5
|
ad5antr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℝ ) |
298 |
|
simpl |
⊢ ( ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) → 𝑢 ∈ ℝ ) |
299 |
298
|
ad4antlr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → 𝑢 ∈ ℝ ) |
300 |
|
difdif2 |
⊢ ( ( 𝐴 ∖ 𝐵 ) ∖ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) = ( ( ( 𝐴 ∖ 𝐵 ) ∖ 𝑠 ) ∪ ( ( 𝐴 ∖ 𝐵 ) ∩ ∪ ran ( (,) ∘ 𝑓 ) ) ) |
301 |
300
|
fveq2i |
⊢ ( vol* ‘ ( ( 𝐴 ∖ 𝐵 ) ∖ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) ) = ( vol* ‘ ( ( ( 𝐴 ∖ 𝐵 ) ∖ 𝑠 ) ∪ ( ( 𝐴 ∖ 𝐵 ) ∩ ∪ ran ( (,) ∘ 𝑓 ) ) ) ) |
302 |
|
difss |
⊢ ( ( 𝐴 ∖ 𝐵 ) ∖ 𝑠 ) ⊆ ( 𝐴 ∖ 𝐵 ) |
303 |
302 3
|
sstri |
⊢ ( ( 𝐴 ∖ 𝐵 ) ∖ 𝑠 ) ⊆ 𝐴 |
304 |
|
inss1 |
⊢ ( ( 𝐴 ∖ 𝐵 ) ∩ ∪ ran ( (,) ∘ 𝑓 ) ) ⊆ ( 𝐴 ∖ 𝐵 ) |
305 |
304 3
|
sstri |
⊢ ( ( 𝐴 ∖ 𝐵 ) ∩ ∪ ran ( (,) ∘ 𝑓 ) ) ⊆ 𝐴 |
306 |
303 305
|
unssi |
⊢ ( ( ( 𝐴 ∖ 𝐵 ) ∖ 𝑠 ) ∪ ( ( 𝐴 ∖ 𝐵 ) ∩ ∪ ran ( (,) ∘ 𝑓 ) ) ) ⊆ 𝐴 |
307 |
|
ovolsscl |
⊢ ( ( ( ( ( 𝐴 ∖ 𝐵 ) ∖ 𝑠 ) ∪ ( ( 𝐴 ∖ 𝐵 ) ∩ ∪ ran ( (,) ∘ 𝑓 ) ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ ( ( ( 𝐴 ∖ 𝐵 ) ∖ 𝑠 ) ∪ ( ( 𝐴 ∖ 𝐵 ) ∩ ∪ ran ( (,) ∘ 𝑓 ) ) ) ) ∈ ℝ ) |
308 |
306 307
|
mp3an1 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ ( ( ( 𝐴 ∖ 𝐵 ) ∖ 𝑠 ) ∪ ( ( 𝐴 ∖ 𝐵 ) ∩ ∪ ran ( (,) ∘ 𝑓 ) ) ) ) ∈ ℝ ) |
309 |
308
|
ad5antr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( vol* ‘ ( ( ( 𝐴 ∖ 𝐵 ) ∖ 𝑠 ) ∪ ( ( 𝐴 ∖ 𝐵 ) ∩ ∪ ran ( (,) ∘ 𝑓 ) ) ) ) ∈ ℝ ) |
310 |
|
difss |
⊢ ( 𝐴 ∖ 𝑠 ) ⊆ 𝐴 |
311 |
|
ovolsscl |
⊢ ( ( ( 𝐴 ∖ 𝑠 ) ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ ( 𝐴 ∖ 𝑠 ) ) ∈ ℝ ) |
312 |
310 311
|
mp3an1 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ ( 𝐴 ∖ 𝑠 ) ) ∈ ℝ ) |
313 |
312
|
ad5antr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( vol* ‘ ( 𝐴 ∖ 𝑠 ) ) ∈ ℝ ) |
314 |
169 194
|
readdcld |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) → ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ∈ ℝ ) |
315 |
314 250
|
jctil |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) → ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ* ∧ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ∈ ℝ ) ) |
316 |
|
simpr |
⊢ ( ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) |
317 |
|
ovolge0 |
⊢ ( ∪ ran ( (,) ∘ 𝑓 ) ⊆ ℝ → 0 ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ) |
318 |
248 317
|
ax-mp |
⊢ 0 ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) |
319 |
316 318
|
jctil |
⊢ ( ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) → ( 0 ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) |
320 |
|
xrrege0 |
⊢ ( ( ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ* ∧ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ∈ ℝ ) ∧ ( 0 ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) |
321 |
315 319 320
|
syl2an |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) |
322 |
|
difss |
⊢ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) |
323 |
|
ovolsscl |
⊢ ( ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ∪ ran ( (,) ∘ 𝑓 ) ⊆ ℝ ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ) ∈ ℝ ) |
324 |
322 248 323
|
mp3an12 |
⊢ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ) ∈ ℝ ) |
325 |
321 324
|
syl |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ) ∈ ℝ ) |
326 |
325
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ) ∈ ℝ ) |
327 |
313 326
|
readdcld |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( ( vol* ‘ ( 𝐴 ∖ 𝑠 ) ) + ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ) ) ∈ ℝ ) |
328 |
5 50
|
sylan |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑢 ∈ ℝ ) → ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) ∈ ℝ ) |
329 |
328
|
adantrr |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) → ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) ∈ ℝ ) |
330 |
329
|
adantlr |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) → ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) ∈ ℝ ) |
331 |
330
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) ∈ ℝ ) |
332 |
|
ssdifss |
⊢ ( 𝐴 ⊆ ℝ → ( 𝐴 ∖ 𝑠 ) ⊆ ℝ ) |
333 |
322 248
|
sstri |
⊢ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ⊆ ℝ |
334 |
|
unss |
⊢ ( ( ( 𝐴 ∖ 𝑠 ) ⊆ ℝ ∧ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ⊆ ℝ ) ↔ ( ( 𝐴 ∖ 𝑠 ) ∪ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ) ⊆ ℝ ) |
335 |
332 333 334
|
sylanblc |
⊢ ( 𝐴 ⊆ ℝ → ( ( 𝐴 ∖ 𝑠 ) ∪ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ) ⊆ ℝ ) |
336 |
|
ovolcl |
⊢ ( ( ( 𝐴 ∖ 𝑠 ) ∪ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ) ⊆ ℝ → ( vol* ‘ ( ( 𝐴 ∖ 𝑠 ) ∪ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ) ) ∈ ℝ* ) |
337 |
335 336
|
syl |
⊢ ( 𝐴 ⊆ ℝ → ( vol* ‘ ( ( 𝐴 ∖ 𝑠 ) ∪ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ) ) ∈ ℝ* ) |
338 |
337
|
ad4antr |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) → ( vol* ‘ ( ( 𝐴 ∖ 𝑠 ) ∪ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ) ) ∈ ℝ* ) |
339 |
312
|
ad3antrrr |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) → ( vol* ‘ ( 𝐴 ∖ 𝑠 ) ) ∈ ℝ ) |
340 |
339 325
|
readdcld |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) → ( ( vol* ‘ ( 𝐴 ∖ 𝑠 ) ) + ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ) ) ∈ ℝ ) |
341 |
|
ovolge0 |
⊢ ( ( ( 𝐴 ∖ 𝑠 ) ∪ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ) ⊆ ℝ → 0 ≤ ( vol* ‘ ( ( 𝐴 ∖ 𝑠 ) ∪ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ) ) ) |
342 |
335 341
|
syl |
⊢ ( 𝐴 ⊆ ℝ → 0 ≤ ( vol* ‘ ( ( 𝐴 ∖ 𝑠 ) ∪ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ) ) ) |
343 |
342
|
ad4antr |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) → 0 ≤ ( vol* ‘ ( ( 𝐴 ∖ 𝑠 ) ∪ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ) ) ) |
344 |
332
|
adantr |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( 𝐴 ∖ 𝑠 ) ⊆ ℝ ) |
345 |
344 312
|
jca |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( ( 𝐴 ∖ 𝑠 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝐴 ∖ 𝑠 ) ) ∈ ℝ ) ) |
346 |
345
|
ad3antrrr |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) → ( ( 𝐴 ∖ 𝑠 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝐴 ∖ 𝑠 ) ) ∈ ℝ ) ) |
347 |
325 333
|
jctil |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) → ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ⊆ ℝ ∧ ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ) ∈ ℝ ) ) |
348 |
|
ovolun |
⊢ ( ( ( ( 𝐴 ∖ 𝑠 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝐴 ∖ 𝑠 ) ) ∈ ℝ ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ⊆ ℝ ∧ ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ) ∈ ℝ ) ) → ( vol* ‘ ( ( 𝐴 ∖ 𝑠 ) ∪ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ) ) ≤ ( ( vol* ‘ ( 𝐴 ∖ 𝑠 ) ) + ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ) ) ) |
349 |
346 347 348
|
syl2anc |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) → ( vol* ‘ ( ( 𝐴 ∖ 𝑠 ) ∪ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ) ) ≤ ( ( vol* ‘ ( 𝐴 ∖ 𝑠 ) ) + ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ) ) ) |
350 |
|
xrrege0 |
⊢ ( ( ( ( vol* ‘ ( ( 𝐴 ∖ 𝑠 ) ∪ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ) ) ∈ ℝ* ∧ ( ( vol* ‘ ( 𝐴 ∖ 𝑠 ) ) + ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ) ) ∈ ℝ ) ∧ ( 0 ≤ ( vol* ‘ ( ( 𝐴 ∖ 𝑠 ) ∪ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ) ) ∧ ( vol* ‘ ( ( 𝐴 ∖ 𝑠 ) ∪ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ) ) ≤ ( ( vol* ‘ ( 𝐴 ∖ 𝑠 ) ) + ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ) ) ) ) → ( vol* ‘ ( ( 𝐴 ∖ 𝑠 ) ∪ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ) ) ∈ ℝ ) |
351 |
338 340 343 349 350
|
syl22anc |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) → ( vol* ‘ ( ( 𝐴 ∖ 𝑠 ) ∪ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ) ) ∈ ℝ ) |
352 |
351
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( vol* ‘ ( ( 𝐴 ∖ 𝑠 ) ∪ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ) ) ∈ ℝ ) |
353 |
|
ssdif |
⊢ ( ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 → ( ( 𝐴 ∖ 𝐵 ) ∖ 𝑠 ) ⊆ ( 𝐴 ∖ 𝑠 ) ) |
354 |
3 353
|
ax-mp |
⊢ ( ( 𝐴 ∖ 𝐵 ) ∖ 𝑠 ) ⊆ ( 𝐴 ∖ 𝑠 ) |
355 |
|
incom |
⊢ ( ( 𝐴 ∖ 𝐵 ) ∩ ∪ ran ( (,) ∘ 𝑓 ) ) = ( ∪ ran ( (,) ∘ 𝑓 ) ∩ ( 𝐴 ∖ 𝐵 ) ) |
356 |
|
indif2 |
⊢ ( ∪ ran ( (,) ∘ 𝑓 ) ∩ ( 𝐴 ∖ 𝐵 ) ) = ( ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∖ 𝐵 ) |
357 |
355 356
|
eqtri |
⊢ ( ( 𝐴 ∖ 𝐵 ) ∩ ∪ ran ( (,) ∘ 𝑓 ) ) = ( ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∖ 𝐵 ) |
358 |
|
inss1 |
⊢ ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) |
359 |
358
|
a1i |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) |
360 |
|
simprrl |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → 𝑤 ⊆ 𝐵 ) |
361 |
359 360
|
ssdif2d |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ∖ 𝐵 ) ⊆ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ) |
362 |
357 361
|
eqsstrid |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( ( 𝐴 ∖ 𝐵 ) ∩ ∪ ran ( (,) ∘ 𝑓 ) ) ⊆ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ) |
363 |
|
unss12 |
⊢ ( ( ( ( 𝐴 ∖ 𝐵 ) ∖ 𝑠 ) ⊆ ( 𝐴 ∖ 𝑠 ) ∧ ( ( 𝐴 ∖ 𝐵 ) ∩ ∪ ran ( (,) ∘ 𝑓 ) ) ⊆ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ) → ( ( ( 𝐴 ∖ 𝐵 ) ∖ 𝑠 ) ∪ ( ( 𝐴 ∖ 𝐵 ) ∩ ∪ ran ( (,) ∘ 𝑓 ) ) ) ⊆ ( ( 𝐴 ∖ 𝑠 ) ∪ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ) ) |
364 |
354 362 363
|
sylancr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( ( ( 𝐴 ∖ 𝐵 ) ∖ 𝑠 ) ∪ ( ( 𝐴 ∖ 𝐵 ) ∩ ∪ ran ( (,) ∘ 𝑓 ) ) ) ⊆ ( ( 𝐴 ∖ 𝑠 ) ∪ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ) ) |
365 |
335
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( ( 𝐴 ∖ 𝑠 ) ∪ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ) ⊆ ℝ ) |
366 |
|
ovolss |
⊢ ( ( ( ( ( 𝐴 ∖ 𝐵 ) ∖ 𝑠 ) ∪ ( ( 𝐴 ∖ 𝐵 ) ∩ ∪ ran ( (,) ∘ 𝑓 ) ) ) ⊆ ( ( 𝐴 ∖ 𝑠 ) ∪ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ) ∧ ( ( 𝐴 ∖ 𝑠 ) ∪ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ) ⊆ ℝ ) → ( vol* ‘ ( ( ( 𝐴 ∖ 𝐵 ) ∖ 𝑠 ) ∪ ( ( 𝐴 ∖ 𝐵 ) ∩ ∪ ran ( (,) ∘ 𝑓 ) ) ) ) ≤ ( vol* ‘ ( ( 𝐴 ∖ 𝑠 ) ∪ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ) ) ) |
367 |
364 365 366
|
syl2anc |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( vol* ‘ ( ( ( 𝐴 ∖ 𝐵 ) ∖ 𝑠 ) ∪ ( ( 𝐴 ∖ 𝐵 ) ∩ ∪ ran ( (,) ∘ 𝑓 ) ) ) ) ≤ ( vol* ‘ ( ( 𝐴 ∖ 𝑠 ) ∪ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ) ) ) |
368 |
332
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( 𝐴 ∖ 𝑠 ) ⊆ ℝ ) |
369 |
326 333
|
jctil |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ⊆ ℝ ∧ ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ) ∈ ℝ ) ) |
370 |
368 313 369 348
|
syl21anc |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( vol* ‘ ( ( 𝐴 ∖ 𝑠 ) ∪ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ) ) ≤ ( ( vol* ‘ ( 𝐴 ∖ 𝑠 ) ) + ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ) ) ) |
371 |
309 352 327 367 370
|
letrd |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( vol* ‘ ( ( ( 𝐴 ∖ 𝐵 ) ∖ 𝑠 ) ∪ ( ( 𝐴 ∖ 𝐵 ) ∩ ∪ ran ( (,) ∘ 𝑓 ) ) ) ) ≤ ( ( vol* ‘ ( 𝐴 ∖ 𝑠 ) ) + ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ) ) ) |
372 |
194
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ∈ ℝ ) |
373 |
194 194
|
readdcld |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) → ( ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ∈ ℝ ) |
374 |
373
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ∈ ℝ ) |
375 |
|
eleq1w |
⊢ ( 𝑏 = 𝑠 → ( 𝑏 ∈ dom vol ↔ 𝑠 ∈ dom vol ) ) |
376 |
375 34
|
vtoclga |
⊢ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → 𝑠 ∈ dom vol ) |
377 |
|
mblvol |
⊢ ( 𝑠 ∈ dom vol → ( vol ‘ 𝑠 ) = ( vol* ‘ 𝑠 ) ) |
378 |
376 377
|
syl |
⊢ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → ( vol ‘ 𝑠 ) = ( vol* ‘ 𝑠 ) ) |
379 |
378
|
adantr |
⊢ ( ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) → ( vol ‘ 𝑠 ) = ( vol* ‘ 𝑠 ) ) |
380 |
|
sseqin2 |
⊢ ( 𝑠 ⊆ 𝐴 ↔ ( 𝐴 ∩ 𝑠 ) = 𝑠 ) |
381 |
380
|
biimpi |
⊢ ( 𝑠 ⊆ 𝐴 → ( 𝐴 ∩ 𝑠 ) = 𝑠 ) |
382 |
381
|
eqcomd |
⊢ ( 𝑠 ⊆ 𝐴 → 𝑠 = ( 𝐴 ∩ 𝑠 ) ) |
383 |
382
|
fveq2d |
⊢ ( 𝑠 ⊆ 𝐴 → ( vol* ‘ 𝑠 ) = ( vol* ‘ ( 𝐴 ∩ 𝑠 ) ) ) |
384 |
383
|
ad2antrr |
⊢ ( ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) → ( vol* ‘ 𝑠 ) = ( vol* ‘ ( 𝐴 ∩ 𝑠 ) ) ) |
385 |
379 384
|
sylan9eq |
⊢ ( ( ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( vol ‘ 𝑠 ) = ( vol* ‘ ( 𝐴 ∩ 𝑠 ) ) ) |
386 |
385
|
oveq2d |
⊢ ( ( ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( ( vol* ‘ 𝐴 ) − ( vol ‘ 𝑠 ) ) = ( ( vol* ‘ 𝐴 ) − ( vol* ‘ ( 𝐴 ∩ 𝑠 ) ) ) ) |
387 |
386
|
adantll |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( ( vol* ‘ 𝐴 ) − ( vol ‘ 𝑠 ) ) = ( ( vol* ‘ 𝐴 ) − ( vol* ‘ ( 𝐴 ∩ 𝑠 ) ) ) ) |
388 |
376
|
adantr |
⊢ ( ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) → 𝑠 ∈ dom vol ) |
389 |
|
simplll |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) → ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ) |
390 |
|
mblsplit |
⊢ ( ( 𝑠 ∈ dom vol ∧ 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ 𝐴 ) = ( ( vol* ‘ ( 𝐴 ∩ 𝑠 ) ) + ( vol* ‘ ( 𝐴 ∖ 𝑠 ) ) ) ) |
391 |
390
|
eqcomd |
⊢ ( ( 𝑠 ∈ dom vol ∧ 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( ( vol* ‘ ( 𝐴 ∩ 𝑠 ) ) + ( vol* ‘ ( 𝐴 ∖ 𝑠 ) ) ) = ( vol* ‘ 𝐴 ) ) |
392 |
391
|
3expb |
⊢ ( ( 𝑠 ∈ dom vol ∧ ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ) → ( ( vol* ‘ ( 𝐴 ∩ 𝑠 ) ) + ( vol* ‘ ( 𝐴 ∖ 𝑠 ) ) ) = ( vol* ‘ 𝐴 ) ) |
393 |
388 389 392
|
syl2anr |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) → ( ( vol* ‘ ( 𝐴 ∩ 𝑠 ) ) + ( vol* ‘ ( 𝐴 ∖ 𝑠 ) ) ) = ( vol* ‘ 𝐴 ) ) |
394 |
393
|
adantr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( ( vol* ‘ ( 𝐴 ∩ 𝑠 ) ) + ( vol* ‘ ( 𝐴 ∖ 𝑠 ) ) ) = ( vol* ‘ 𝐴 ) ) |
395 |
|
simp-6r |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( vol* ‘ 𝐴 ) ∈ ℝ ) |
396 |
395
|
recnd |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( vol* ‘ 𝐴 ) ∈ ℂ ) |
397 |
|
inss1 |
⊢ ( 𝐴 ∩ 𝑠 ) ⊆ 𝐴 |
398 |
|
ovolsscl |
⊢ ( ( ( 𝐴 ∩ 𝑠 ) ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ ( 𝐴 ∩ 𝑠 ) ) ∈ ℝ ) |
399 |
397 398
|
mp3an1 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ ( 𝐴 ∩ 𝑠 ) ) ∈ ℝ ) |
400 |
399
|
recnd |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ ( 𝐴 ∩ 𝑠 ) ) ∈ ℂ ) |
401 |
400
|
ad5antr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( vol* ‘ ( 𝐴 ∩ 𝑠 ) ) ∈ ℂ ) |
402 |
312
|
recnd |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ ( 𝐴 ∖ 𝑠 ) ) ∈ ℂ ) |
403 |
402
|
ad5antr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( vol* ‘ ( 𝐴 ∖ 𝑠 ) ) ∈ ℂ ) |
404 |
396 401 403
|
subaddd |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( ( ( vol* ‘ 𝐴 ) − ( vol* ‘ ( 𝐴 ∩ 𝑠 ) ) ) = ( vol* ‘ ( 𝐴 ∖ 𝑠 ) ) ↔ ( ( vol* ‘ ( 𝐴 ∩ 𝑠 ) ) + ( vol* ‘ ( 𝐴 ∖ 𝑠 ) ) ) = ( vol* ‘ 𝐴 ) ) ) |
405 |
394 404
|
mpbird |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( ( vol* ‘ 𝐴 ) − ( vol* ‘ ( 𝐴 ∩ 𝑠 ) ) ) = ( vol* ‘ ( 𝐴 ∖ 𝑠 ) ) ) |
406 |
387 405
|
eqtrd |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( ( vol* ‘ 𝐴 ) − ( vol ‘ 𝑠 ) ) = ( vol* ‘ ( 𝐴 ∖ 𝑠 ) ) ) |
407 |
379
|
ad2antlr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( vol ‘ 𝑠 ) = ( vol* ‘ 𝑠 ) ) |
408 |
|
simpll |
⊢ ( ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) → 𝑠 ⊆ 𝐴 ) |
409 |
|
simp-4l |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) → ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ) |
410 |
|
ovolsscl |
⊢ ( ( 𝑠 ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ 𝑠 ) ∈ ℝ ) |
411 |
410
|
3expb |
⊢ ( ( 𝑠 ⊆ 𝐴 ∧ ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ) → ( vol* ‘ 𝑠 ) ∈ ℝ ) |
412 |
408 409 411
|
syl2anr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( vol* ‘ 𝑠 ) ∈ ℝ ) |
413 |
407 412
|
eqeltrd |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( vol ‘ 𝑠 ) ∈ ℝ ) |
414 |
|
simprlr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) |
415 |
395 372 413 414
|
ltsub23d |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( ( vol* ‘ 𝐴 ) − ( vol ‘ 𝑠 ) ) < ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) |
416 |
406 415
|
eqbrtrrd |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( vol* ‘ ( 𝐴 ∖ 𝑠 ) ) < ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) |
417 |
321
|
recnd |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ℂ ) |
418 |
417
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ℂ ) |
419 |
240
|
ad5antlr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( vol* ‘ 𝐵 ) ∈ ℝ ) |
420 |
419
|
recnd |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( vol* ‘ 𝐵 ) ∈ ℂ ) |
421 |
|
eleq1w |
⊢ ( 𝑏 = 𝑤 → ( 𝑏 ∈ dom vol ↔ 𝑤 ∈ dom vol ) ) |
422 |
421 34
|
vtoclga |
⊢ ( 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → 𝑤 ∈ dom vol ) |
423 |
|
mblvol |
⊢ ( 𝑤 ∈ dom vol → ( vol ‘ 𝑤 ) = ( vol* ‘ 𝑤 ) ) |
424 |
422 423
|
syl |
⊢ ( 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → ( vol ‘ 𝑤 ) = ( vol* ‘ 𝑤 ) ) |
425 |
424
|
adantl |
⊢ ( ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) → ( vol ‘ 𝑤 ) = ( vol* ‘ 𝑤 ) ) |
426 |
425
|
ad2antlr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( vol ‘ 𝑤 ) = ( vol* ‘ 𝑤 ) ) |
427 |
|
simprl |
⊢ ( ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) → 𝑤 ⊆ 𝐵 ) |
428 |
|
simp-4r |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) → ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) |
429 |
|
ovolsscl |
⊢ ( ( 𝑤 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → ( vol* ‘ 𝑤 ) ∈ ℝ ) |
430 |
429
|
3expb |
⊢ ( ( 𝑤 ⊆ 𝐵 ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) → ( vol* ‘ 𝑤 ) ∈ ℝ ) |
431 |
427 428 430
|
syl2anr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( vol* ‘ 𝑤 ) ∈ ℝ ) |
432 |
426 431
|
eqeltrd |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( vol ‘ 𝑤 ) ∈ ℝ ) |
433 |
432
|
recnd |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( vol ‘ 𝑤 ) ∈ ℂ ) |
434 |
418 420 433
|
npncand |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( vol* ‘ 𝐵 ) ) + ( ( vol* ‘ 𝐵 ) − ( vol ‘ 𝑤 ) ) ) = ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( vol ‘ 𝑤 ) ) ) |
435 |
|
simplrl |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) → 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) |
436 |
427 435
|
sylan9ssr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → 𝑤 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) |
437 |
|
sseqin2 |
⊢ ( 𝑤 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ↔ ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝑤 ) = 𝑤 ) |
438 |
436 437
|
sylib |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝑤 ) = 𝑤 ) |
439 |
438
|
fveq2d |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝑤 ) ) = ( vol* ‘ 𝑤 ) ) |
440 |
426 439
|
eqtr4d |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( vol ‘ 𝑤 ) = ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝑤 ) ) ) |
441 |
440
|
oveq2d |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( vol ‘ 𝑤 ) ) = ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝑤 ) ) ) ) |
442 |
422
|
adantl |
⊢ ( ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) → 𝑤 ∈ dom vol ) |
443 |
321 248
|
jctil |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) → ( ∪ ran ( (,) ∘ 𝑓 ) ⊆ ℝ ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) ) |
444 |
|
mblsplit |
⊢ ( ( 𝑤 ∈ dom vol ∧ ∪ ran ( (,) ∘ 𝑓 ) ⊆ ℝ ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) = ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝑤 ) ) + ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ) ) ) |
445 |
444
|
eqcomd |
⊢ ( ( 𝑤 ∈ dom vol ∧ ∪ ran ( (,) ∘ 𝑓 ) ⊆ ℝ ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) → ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝑤 ) ) + ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ) ) = ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ) |
446 |
445
|
3expb |
⊢ ( ( 𝑤 ∈ dom vol ∧ ( ∪ ran ( (,) ∘ 𝑓 ) ⊆ ℝ ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) ) → ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝑤 ) ) + ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ) ) = ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ) |
447 |
442 443 446
|
syl2anr |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) → ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝑤 ) ) + ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ) ) = ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ) |
448 |
447
|
adantr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝑤 ) ) + ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ) ) = ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ) |
449 |
|
inss1 |
⊢ ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝑤 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) |
450 |
|
ovolsscl |
⊢ ( ( ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝑤 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ∪ ran ( (,) ∘ 𝑓 ) ⊆ ℝ ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝑤 ) ) ∈ ℝ ) |
451 |
449 248 450
|
mp3an12 |
⊢ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝑤 ) ) ∈ ℝ ) |
452 |
321 451
|
syl |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝑤 ) ) ∈ ℝ ) |
453 |
452
|
recnd |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝑤 ) ) ∈ ℂ ) |
454 |
325
|
recnd |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ) ∈ ℂ ) |
455 |
417 453 454
|
subaddd |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) → ( ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝑤 ) ) ) = ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ) ↔ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝑤 ) ) + ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ) ) = ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ) ) |
456 |
455
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝑤 ) ) ) = ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ) ↔ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝑤 ) ) + ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ) ) = ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ) ) |
457 |
448 456
|
mpbird |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝑤 ) ) ) = ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ) ) |
458 |
434 441 457
|
3eqtrd |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( vol* ‘ 𝐵 ) ) + ( ( vol* ‘ 𝐵 ) − ( vol ‘ 𝑤 ) ) ) = ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ) ) |
459 |
240
|
ad3antlr |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) → ( vol* ‘ 𝐵 ) ∈ ℝ ) |
460 |
321 459
|
resubcld |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) → ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( vol* ‘ 𝐵 ) ) ∈ ℝ ) |
461 |
460
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( vol* ‘ 𝐵 ) ) ∈ ℝ ) |
462 |
419 432
|
resubcld |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( ( vol* ‘ 𝐵 ) − ( vol ‘ 𝑤 ) ) ∈ ℝ ) |
463 |
|
simprr |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) |
464 |
194
|
adantr |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) → ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ∈ ℝ ) |
465 |
321 459 464
|
lesubadd2d |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) → ( ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( vol* ‘ 𝐵 ) ) ≤ ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ↔ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) |
466 |
463 465
|
mpbird |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) → ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( vol* ‘ 𝐵 ) ) ≤ ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) |
467 |
466
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( vol* ‘ 𝐵 ) ) ≤ ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) |
468 |
|
simprrr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) |
469 |
419 372 432 468
|
ltsub23d |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( ( vol* ‘ 𝐵 ) − ( vol ‘ 𝑤 ) ) < ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) |
470 |
461 462 372 372 467 469
|
leltaddd |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( vol* ‘ 𝐵 ) ) + ( ( vol* ‘ 𝐵 ) − ( vol ‘ 𝑤 ) ) ) < ( ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) |
471 |
458 470
|
eqbrtrrd |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ) < ( ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) |
472 |
313 326 372 374 416 471
|
lt2addd |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( ( vol* ‘ ( 𝐴 ∖ 𝑠 ) ) + ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ) ) < ( ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) + ( ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) |
473 |
|
df-3 |
⊢ 3 = ( 2 + 1 ) |
474 |
|
2cn |
⊢ 2 ∈ ℂ |
475 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
476 |
474 475
|
addcomi |
⊢ ( 2 + 1 ) = ( 1 + 2 ) |
477 |
473 476
|
eqtri |
⊢ 3 = ( 1 + 2 ) |
478 |
477
|
oveq1i |
⊢ ( 3 · ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) = ( ( 1 + 2 ) · ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) |
479 |
62
|
rpcnd |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) → ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ∈ ℂ ) |
480 |
|
adddir |
⊢ ( ( 1 ∈ ℂ ∧ 2 ∈ ℂ ∧ ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ∈ ℂ ) → ( ( 1 + 2 ) · ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) = ( ( 1 · ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) + ( 2 · ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) |
481 |
475 474 480
|
mp3an12 |
⊢ ( ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ∈ ℂ → ( ( 1 + 2 ) · ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) = ( ( 1 · ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) + ( 2 · ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) |
482 |
479 481
|
syl |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) → ( ( 1 + 2 ) · ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) = ( ( 1 · ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) + ( 2 · ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) |
483 |
479
|
mulid2d |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) → ( 1 · ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) = ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) |
484 |
479
|
2timesd |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) → ( 2 · ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) = ( ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) |
485 |
483 484
|
oveq12d |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) → ( ( 1 · ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) + ( 2 · ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) = ( ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) + ( ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) |
486 |
482 485
|
eqtrd |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) → ( ( 1 + 2 ) · ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) = ( ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) + ( ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) |
487 |
478 486
|
eqtrid |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) → ( 3 · ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) = ( ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) + ( ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) |
488 |
329
|
recnd |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) → ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) ∈ ℂ ) |
489 |
|
3cn |
⊢ 3 ∈ ℂ |
490 |
|
3ne0 |
⊢ 3 ≠ 0 |
491 |
|
divcan2 |
⊢ ( ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) ∈ ℂ ∧ 3 ∈ ℂ ∧ 3 ≠ 0 ) → ( 3 · ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) = ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) ) |
492 |
489 490 491
|
mp3an23 |
⊢ ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) ∈ ℂ → ( 3 · ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) = ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) ) |
493 |
488 492
|
syl |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) → ( 3 · ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) = ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) ) |
494 |
487 493
|
eqtr3d |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) → ( ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) + ( ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) = ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) ) |
495 |
494
|
adantlr |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) → ( ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) + ( ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) = ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) ) |
496 |
495
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) + ( ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) = ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) ) |
497 |
472 496
|
breqtrd |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( ( vol* ‘ ( 𝐴 ∖ 𝑠 ) ) + ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑤 ) ) ) < ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) ) |
498 |
309 327 331 371 497
|
lelttrd |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( vol* ‘ ( ( ( 𝐴 ∖ 𝐵 ) ∖ 𝑠 ) ∪ ( ( 𝐴 ∖ 𝐵 ) ∩ ∪ ran ( (,) ∘ 𝑓 ) ) ) ) < ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) ) |
499 |
301 498
|
eqbrtrid |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( vol* ‘ ( ( 𝐴 ∖ 𝐵 ) ∖ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) ) < ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) ) |
500 |
296 297 299 499
|
ltsub13d |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → 𝑢 < ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − ( vol* ‘ ( ( 𝐴 ∖ 𝐵 ) ∖ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) ) ) ) |
501 |
283
|
adantlll |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ⊆ ( 𝐴 ∖ 𝐵 ) ) |
502 |
|
sseqin2 |
⊢ ( ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ⊆ ( 𝐴 ∖ 𝐵 ) ↔ ( ( 𝐴 ∖ 𝐵 ) ∩ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) = ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) |
503 |
501 502
|
sylib |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( ( 𝐴 ∖ 𝐵 ) ∩ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) = ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) |
504 |
503
|
fveq2d |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( vol* ‘ ( ( 𝐴 ∖ 𝐵 ) ∩ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) ) = ( vol* ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) ) |
505 |
|
opnmbl |
⊢ ( ∪ ran ( (,) ∘ 𝑓 ) ∈ ( topGen ‘ ran (,) ) → ∪ ran ( (,) ∘ 𝑓 ) ∈ dom vol ) |
506 |
273 505
|
ax-mp |
⊢ ∪ ran ( (,) ∘ 𝑓 ) ∈ dom vol |
507 |
|
difmbl |
⊢ ( ( 𝑠 ∈ dom vol ∧ ∪ ran ( (,) ∘ 𝑓 ) ∈ dom vol ) → ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ dom vol ) |
508 |
376 506 507
|
sylancl |
⊢ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ dom vol ) |
509 |
508
|
adantr |
⊢ ( ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) → ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ dom vol ) |
510 |
509
|
ad2antlr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ dom vol ) |
511 |
13
|
adantr |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( 𝐴 ∖ 𝐵 ) ⊆ ℝ ) |
512 |
511 5
|
jca |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( ( 𝐴 ∖ 𝐵 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℝ ) ) |
513 |
512
|
ad5antr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( ( 𝐴 ∖ 𝐵 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℝ ) ) |
514 |
|
mblsplit |
⊢ ( ( ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ dom vol ∧ ( 𝐴 ∖ 𝐵 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℝ ) → ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) = ( ( vol* ‘ ( ( 𝐴 ∖ 𝐵 ) ∩ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) ) + ( vol* ‘ ( ( 𝐴 ∖ 𝐵 ) ∖ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) ) ) ) |
515 |
514
|
3expb |
⊢ ( ( ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ dom vol ∧ ( ( 𝐴 ∖ 𝐵 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℝ ) ) → ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) = ( ( vol* ‘ ( ( 𝐴 ∖ 𝐵 ) ∩ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) ) + ( vol* ‘ ( ( 𝐴 ∖ 𝐵 ) ∖ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) ) ) ) |
516 |
515
|
eqcomd |
⊢ ( ( ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ dom vol ∧ ( ( 𝐴 ∖ 𝐵 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℝ ) ) → ( ( vol* ‘ ( ( 𝐴 ∖ 𝐵 ) ∩ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) ) + ( vol* ‘ ( ( 𝐴 ∖ 𝐵 ) ∖ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) ) ) = ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) |
517 |
510 513 516
|
syl2anc |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( ( vol* ‘ ( ( 𝐴 ∖ 𝐵 ) ∩ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) ) + ( vol* ‘ ( ( 𝐴 ∖ 𝐵 ) ∖ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) ) ) = ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) |
518 |
297
|
recnd |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℂ ) |
519 |
296
|
recnd |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( vol* ‘ ( ( 𝐴 ∖ 𝐵 ) ∖ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) ) ∈ ℂ ) |
520 |
|
inss1 |
⊢ ( ( 𝐴 ∖ 𝐵 ) ∩ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) ⊆ ( 𝐴 ∖ 𝐵 ) |
521 |
520 3
|
sstri |
⊢ ( ( 𝐴 ∖ 𝐵 ) ∩ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) ⊆ 𝐴 |
522 |
|
ovolsscl |
⊢ ( ( ( ( 𝐴 ∖ 𝐵 ) ∩ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ ( ( 𝐴 ∖ 𝐵 ) ∩ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) ) ∈ ℝ ) |
523 |
521 522
|
mp3an1 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ ( ( 𝐴 ∖ 𝐵 ) ∩ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) ) ∈ ℝ ) |
524 |
523
|
ad5antr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( vol* ‘ ( ( 𝐴 ∖ 𝐵 ) ∩ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) ) ∈ ℝ ) |
525 |
524
|
recnd |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( vol* ‘ ( ( 𝐴 ∖ 𝐵 ) ∩ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) ) ∈ ℂ ) |
526 |
518 519 525
|
subadd2d |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − ( vol* ‘ ( ( 𝐴 ∖ 𝐵 ) ∖ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) ) ) = ( vol* ‘ ( ( 𝐴 ∖ 𝐵 ) ∩ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) ) ↔ ( ( vol* ‘ ( ( 𝐴 ∖ 𝐵 ) ∩ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) ) + ( vol* ‘ ( ( 𝐴 ∖ 𝐵 ) ∖ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) ) ) = ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) |
527 |
517 526
|
mpbird |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − ( vol* ‘ ( ( 𝐴 ∖ 𝐵 ) ∖ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) ) ) = ( vol* ‘ ( ( 𝐴 ∖ 𝐵 ) ∩ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) ) ) |
528 |
|
mblvol |
⊢ ( ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ dom vol → ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) = ( vol* ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) ) |
529 |
507 528
|
syl |
⊢ ( ( 𝑠 ∈ dom vol ∧ ∪ ran ( (,) ∘ 𝑓 ) ∈ dom vol ) → ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) = ( vol* ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) ) |
530 |
376 506 529
|
sylancl |
⊢ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) = ( vol* ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) ) |
531 |
530
|
adantr |
⊢ ( ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) → ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) = ( vol* ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) ) |
532 |
531
|
ad2antlr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) = ( vol* ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) ) |
533 |
504 527 532
|
3eqtr4rd |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) = ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − ( vol* ‘ ( ( 𝐴 ∖ 𝐵 ) ∖ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) ) ) ) |
534 |
500 533
|
breqtrrd |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → 𝑢 < ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) ) |
535 |
|
fvex |
⊢ ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) ∈ V |
536 |
|
eqeq1 |
⊢ ( 𝑣 = ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) → ( 𝑣 = ( vol ‘ 𝑏 ) ↔ ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) = ( vol ‘ 𝑏 ) ) ) |
537 |
536
|
anbi2d |
⊢ ( 𝑣 = ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) → ( ( 𝑏 ⊆ ( 𝐴 ∖ 𝐵 ) ∧ 𝑣 = ( vol ‘ 𝑏 ) ) ↔ ( 𝑏 ⊆ ( 𝐴 ∖ 𝐵 ) ∧ ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) = ( vol ‘ 𝑏 ) ) ) ) |
538 |
537
|
rexbidv |
⊢ ( 𝑣 = ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) → ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ ( 𝐴 ∖ 𝐵 ) ∧ 𝑣 = ( vol ‘ 𝑏 ) ) ↔ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ ( 𝐴 ∖ 𝐵 ) ∧ ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) = ( vol ‘ 𝑏 ) ) ) ) |
539 |
|
breq2 |
⊢ ( 𝑣 = ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) → ( 𝑢 < 𝑣 ↔ 𝑢 < ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) ) ) |
540 |
538 539
|
anbi12d |
⊢ ( 𝑣 = ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) → ( ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ ( 𝐴 ∖ 𝐵 ) ∧ 𝑣 = ( vol ‘ 𝑏 ) ) ∧ 𝑢 < 𝑣 ) ↔ ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ ( 𝐴 ∖ 𝐵 ) ∧ ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) = ( vol ‘ 𝑏 ) ) ∧ 𝑢 < ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) ) ) ) |
541 |
535 540
|
spcev |
⊢ ( ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ ( 𝐴 ∖ 𝐵 ) ∧ ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) = ( vol ‘ 𝑏 ) ) ∧ 𝑢 < ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ) ) → ∃ 𝑣 ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ ( 𝐴 ∖ 𝐵 ) ∧ 𝑣 = ( vol ‘ 𝑏 ) ) ∧ 𝑢 < 𝑣 ) ) |
542 |
291 534 541
|
syl2anc |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ∃ 𝑣 ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ ( 𝐴 ∖ 𝐵 ) ∧ 𝑣 = ( vol ‘ 𝑏 ) ) ∧ 𝑢 < 𝑣 ) ) |
543 |
148
|
anbi2d |
⊢ ( 𝑦 = 𝑣 → ( ( 𝑏 ⊆ ( 𝐴 ∖ 𝐵 ) ∧ 𝑦 = ( vol ‘ 𝑏 ) ) ↔ ( 𝑏 ⊆ ( 𝐴 ∖ 𝐵 ) ∧ 𝑣 = ( vol ‘ 𝑏 ) ) ) ) |
544 |
543
|
rexbidv |
⊢ ( 𝑦 = 𝑣 → ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ ( 𝐴 ∖ 𝐵 ) ∧ 𝑦 = ( vol ‘ 𝑏 ) ) ↔ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ ( 𝐴 ∖ 𝐵 ) ∧ 𝑣 = ( vol ‘ 𝑏 ) ) ) ) |
545 |
544
|
rexab |
⊢ ( ∃ 𝑣 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ ( 𝐴 ∖ 𝐵 ) ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } 𝑢 < 𝑣 ↔ ∃ 𝑣 ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ ( 𝐴 ∖ 𝐵 ) ∧ 𝑣 = ( vol ‘ 𝑏 ) ) ∧ 𝑢 < 𝑣 ) ) |
546 |
542 545
|
sylibr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) ∧ ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) ) → ∃ 𝑣 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ ( 𝐴 ∖ 𝐵 ) ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } 𝑢 < 𝑣 ) |
547 |
546
|
ex |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) ) → ( ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) → ∃ 𝑣 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ ( 𝐴 ∖ 𝐵 ) ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } 𝑢 < 𝑣 ) ) |
548 |
547
|
rexlimdvva |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) ) ) → ( ∃ 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∃ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) → ∃ 𝑣 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ ( 𝐴 ∖ 𝐵 ) ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } 𝑢 < 𝑣 ) ) |
549 |
260 548
|
exlimddv |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) → ( ∃ 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∃ 𝑤 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( ( 𝑠 ⊆ 𝐴 ∧ ( ( vol* ‘ 𝐴 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑠 ) ) ∧ ( 𝑤 ⊆ 𝐵 ∧ ( ( vol* ‘ 𝐵 ) − ( ( ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) − 𝑢 ) / 3 ) ) < ( vol ‘ 𝑤 ) ) ) → ∃ 𝑣 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ ( 𝐴 ∖ 𝐵 ) ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } 𝑢 < 𝑣 ) ) |
550 |
221 549
|
syld |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) → ( ( ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ∧ ( vol* ‘ 𝐵 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐵 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) → ∃ 𝑣 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ ( 𝐴 ∖ 𝐵 ) ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } 𝑢 < 𝑣 ) ) |
551 |
550
|
exp31 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → ( ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) → ( ( ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ∧ ( vol* ‘ 𝐵 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐵 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) → ∃ 𝑣 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ ( 𝐴 ∖ 𝐵 ) ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } 𝑢 < 𝑣 ) ) ) ) |
552 |
551
|
com34 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → ( ( ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ∧ ( vol* ‘ 𝐵 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐵 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) → ( ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) → ∃ 𝑣 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ ( 𝐴 ∖ 𝐵 ) ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } 𝑢 < 𝑣 ) ) ) ) |
553 |
552
|
3imp1 |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ∧ ( vol* ‘ 𝐵 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐵 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) → ∃ 𝑣 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ ( 𝐴 ∖ 𝐵 ) ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } 𝑢 < 𝑣 ) |
554 |
2 6 48 553
|
eqsupd |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ∧ ( vol* ‘ 𝐵 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐵 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) ) → sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ ( 𝐴 ∖ 𝐵 ) ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) = ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) |