Metamath Proof Explorer


Theorem mblfinlem4

Description: Backward direction of ismblfin . (Contributed by Brendan Leahy, 28-Mar-2018) (Revised by Brendan Leahy, 13-Jul-2018)

Ref Expression
Assertion mblfinlem4 ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) → ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) )

Proof

Step Hyp Ref Expression
1 ltso < Or ℝ
2 1 a1i ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) → < Or ℝ )
3 simplr ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) → ( vol* ‘ 𝐴 ) ∈ ℝ )
4 vex 𝑢 ∈ V
5 eqeq1 ( 𝑦 = 𝑢 → ( 𝑦 = ( vol ‘ 𝑏 ) ↔ 𝑢 = ( vol ‘ 𝑏 ) ) )
6 5 anbi2d ( 𝑦 = 𝑢 → ( ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) ↔ ( 𝑏𝐴𝑢 = ( vol ‘ 𝑏 ) ) ) )
7 6 rexbidv ( 𝑦 = 𝑢 → ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) ↔ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑢 = ( vol ‘ 𝑏 ) ) ) )
8 4 7 elab ( 𝑢 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } ↔ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑢 = ( vol ‘ 𝑏 ) ) )
9 simprl ( ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑏𝐴𝑢 = ( vol ‘ 𝑏 ) ) ) → 𝑏𝐴 )
10 ovolss ( ( 𝑏𝐴𝐴 ⊆ ℝ ) → ( vol* ‘ 𝑏 ) ≤ ( vol* ‘ 𝐴 ) )
11 sstr ( ( 𝑏𝐴𝐴 ⊆ ℝ ) → 𝑏 ⊆ ℝ )
12 ovolcl ( 𝑏 ⊆ ℝ → ( vol* ‘ 𝑏 ) ∈ ℝ* )
13 11 12 syl ( ( 𝑏𝐴𝐴 ⊆ ℝ ) → ( vol* ‘ 𝑏 ) ∈ ℝ* )
14 ovolcl ( 𝐴 ⊆ ℝ → ( vol* ‘ 𝐴 ) ∈ ℝ* )
15 14 adantl ( ( 𝑏𝐴𝐴 ⊆ ℝ ) → ( vol* ‘ 𝐴 ) ∈ ℝ* )
16 xrlenlt ( ( ( vol* ‘ 𝑏 ) ∈ ℝ* ∧ ( vol* ‘ 𝐴 ) ∈ ℝ* ) → ( ( vol* ‘ 𝑏 ) ≤ ( vol* ‘ 𝐴 ) ↔ ¬ ( vol* ‘ 𝐴 ) < ( vol* ‘ 𝑏 ) ) )
17 13 15 16 syl2anc ( ( 𝑏𝐴𝐴 ⊆ ℝ ) → ( ( vol* ‘ 𝑏 ) ≤ ( vol* ‘ 𝐴 ) ↔ ¬ ( vol* ‘ 𝐴 ) < ( vol* ‘ 𝑏 ) ) )
18 10 17 mpbid ( ( 𝑏𝐴𝐴 ⊆ ℝ ) → ¬ ( vol* ‘ 𝐴 ) < ( vol* ‘ 𝑏 ) )
19 18 ancoms ( ( 𝐴 ⊆ ℝ ∧ 𝑏𝐴 ) → ¬ ( vol* ‘ 𝐴 ) < ( vol* ‘ 𝑏 ) )
20 9 19 sylan2 ( ( 𝐴 ⊆ ℝ ∧ ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑏𝐴𝑢 = ( vol ‘ 𝑏 ) ) ) ) → ¬ ( vol* ‘ 𝐴 ) < ( vol* ‘ 𝑏 ) )
21 simprrr ( ( 𝐴 ⊆ ℝ ∧ ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑏𝐴𝑢 = ( vol ‘ 𝑏 ) ) ) ) → 𝑢 = ( vol ‘ 𝑏 ) )
22 uniretop ℝ = ( topGen ‘ ran (,) )
23 22 cldss ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → 𝑏 ⊆ ℝ )
24 dfss4 ( 𝑏 ⊆ ℝ ↔ ( ℝ ∖ ( ℝ ∖ 𝑏 ) ) = 𝑏 )
25 23 24 sylib ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → ( ℝ ∖ ( ℝ ∖ 𝑏 ) ) = 𝑏 )
26 rembl ℝ ∈ dom vol
27 22 cldopn ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → ( ℝ ∖ 𝑏 ) ∈ ( topGen ‘ ran (,) ) )
28 opnmbl ( ( ℝ ∖ 𝑏 ) ∈ ( topGen ‘ ran (,) ) → ( ℝ ∖ 𝑏 ) ∈ dom vol )
29 27 28 syl ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → ( ℝ ∖ 𝑏 ) ∈ dom vol )
30 difmbl ( ( ℝ ∈ dom vol ∧ ( ℝ ∖ 𝑏 ) ∈ dom vol ) → ( ℝ ∖ ( ℝ ∖ 𝑏 ) ) ∈ dom vol )
31 26 29 30 sylancr ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → ( ℝ ∖ ( ℝ ∖ 𝑏 ) ) ∈ dom vol )
32 25 31 eqeltrrd ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → 𝑏 ∈ dom vol )
33 mblvol ( 𝑏 ∈ dom vol → ( vol ‘ 𝑏 ) = ( vol* ‘ 𝑏 ) )
34 32 33 syl ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → ( vol ‘ 𝑏 ) = ( vol* ‘ 𝑏 ) )
35 34 ad2antrl ( ( 𝐴 ⊆ ℝ ∧ ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑏𝐴𝑢 = ( vol ‘ 𝑏 ) ) ) ) → ( vol ‘ 𝑏 ) = ( vol* ‘ 𝑏 ) )
36 21 35 eqtrd ( ( 𝐴 ⊆ ℝ ∧ ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑏𝐴𝑢 = ( vol ‘ 𝑏 ) ) ) ) → 𝑢 = ( vol* ‘ 𝑏 ) )
37 36 breq2d ( ( 𝐴 ⊆ ℝ ∧ ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑏𝐴𝑢 = ( vol ‘ 𝑏 ) ) ) ) → ( ( vol* ‘ 𝐴 ) < 𝑢 ↔ ( vol* ‘ 𝐴 ) < ( vol* ‘ 𝑏 ) ) )
38 20 37 mtbird ( ( 𝐴 ⊆ ℝ ∧ ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑏𝐴𝑢 = ( vol ‘ 𝑏 ) ) ) ) → ¬ ( vol* ‘ 𝐴 ) < 𝑢 )
39 38 rexlimdvaa ( 𝐴 ⊆ ℝ → ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑢 = ( vol ‘ 𝑏 ) ) → ¬ ( vol* ‘ 𝐴 ) < 𝑢 ) )
40 8 39 syl5bi ( 𝐴 ⊆ ℝ → ( 𝑢 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } → ¬ ( vol* ‘ 𝐴 ) < 𝑢 ) )
41 40 ad2antrr ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) → ( 𝑢 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } → ¬ ( vol* ‘ 𝐴 ) < 𝑢 ) )
42 41 imp ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } ) → ¬ ( vol* ‘ 𝐴 ) < 𝑢 )
43 1rp 1 ∈ ℝ+
44 eqid seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) )
45 44 ovolgelb ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 1 ∈ ℝ+ ) → ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) )
46 43 45 mp3an3 ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) )
47 elmapi ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) → 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) )
48 ssid ran ( (,) ∘ 𝑓 ) ⊆ ran ( (,) ∘ 𝑓 )
49 44 ovollb ( ( 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ran ( (,) ∘ 𝑓 ) ⊆ ran ( (,) ∘ 𝑓 ) ) → ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) )
50 48 49 mpan2 ( 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) )
51 50 adantl ( ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) → ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) )
52 eqid ( ( abs ∘ − ) ∘ 𝑓 ) = ( ( abs ∘ − ) ∘ 𝑓 )
53 52 44 ovolsf ( 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) : ℕ ⟶ ( 0 [,) +∞ ) )
54 frn ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) : ℕ ⟶ ( 0 [,) +∞ ) → ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ⊆ ( 0 [,) +∞ ) )
55 icossxr ( 0 [,) +∞ ) ⊆ ℝ*
56 54 55 sstrdi ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) : ℕ ⟶ ( 0 [,) +∞ ) → ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ⊆ ℝ* )
57 supxrcl ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ⊆ ℝ* → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ∈ ℝ* )
58 53 56 57 3syl ( 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ∈ ℝ* )
59 peano2re ( ( vol* ‘ 𝐴 ) ∈ ℝ → ( ( vol* ‘ 𝐴 ) + 1 ) ∈ ℝ )
60 59 rexrd ( ( vol* ‘ 𝐴 ) ∈ ℝ → ( ( vol* ‘ 𝐴 ) + 1 ) ∈ ℝ* )
61 rncoss ran ( (,) ∘ 𝑓 ) ⊆ ran (,)
62 61 unissi ran ( (,) ∘ 𝑓 ) ⊆ ran (,)
63 unirnioo ℝ = ran (,)
64 62 63 sseqtrri ran ( (,) ∘ 𝑓 ) ⊆ ℝ
65 ovolcl ( ran ( (,) ∘ 𝑓 ) ⊆ ℝ → ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ* )
66 64 65 ax-mp ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ*
67 xrletr ( ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ* ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ∈ ℝ* ∧ ( ( vol* ‘ 𝐴 ) + 1 ) ∈ ℝ* ) → ( ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) → ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) )
68 66 67 mp3an1 ( ( sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ∈ ℝ* ∧ ( ( vol* ‘ 𝐴 ) + 1 ) ∈ ℝ* ) → ( ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) → ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) )
69 58 60 68 syl2anr ( ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) → ( ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) → ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) )
70 51 69 mpand ( ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) → ( sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) → ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) )
71 70 adantll ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) → ( sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) → ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) )
72 47 71 sylan2 ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) → ( sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) → ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) )
73 72 anim2d ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) → ( ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) → ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) )
74 73 reximdva ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) → ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) )
75 46 74 mpd ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) )
76 rexex ( ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) → ∃ 𝑓 ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) )
77 75 76 syl ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ∃ 𝑓 ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) )
78 77 ad2antrr ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) → ∃ 𝑓 ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) )
79 difss ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑓 )
80 79 64 sstri ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ℝ
81 ovolcl ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ℝ → ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∈ ℝ* )
82 80 81 ax-mp ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∈ ℝ*
83 59 82 jctil ( ( vol* ‘ 𝐴 ) ∈ ℝ → ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∈ ℝ* ∧ ( ( vol* ‘ 𝐴 ) + 1 ) ∈ ℝ ) )
84 83 ad4antlr ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∈ ℝ* ∧ ( ( vol* ‘ 𝐴 ) + 1 ) ∈ ℝ ) )
85 ovolss ( ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑓 ) ∧ ran ( (,) ∘ 𝑓 ) ⊆ ℝ ) → ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) )
86 79 64 85 mp2an ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) )
87 xrletr ( ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∈ ℝ* ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ* ∧ ( ( vol* ‘ 𝐴 ) + 1 ) ∈ ℝ* ) → ( ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) → ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) )
88 82 66 87 mp3an12 ( ( ( vol* ‘ 𝐴 ) + 1 ) ∈ ℝ* → ( ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) → ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) )
89 60 88 syl ( ( vol* ‘ 𝐴 ) ∈ ℝ → ( ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) → ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) )
90 86 89 mpani ( ( vol* ‘ 𝐴 ) ∈ ℝ → ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) → ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) )
91 90 ad4antlr ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ 𝐴 ran ( (,) ∘ 𝑓 ) ) → ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) → ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) )
92 91 impr ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) )
93 ovolge0 ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ℝ → 0 ≤ ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) )
94 80 93 ax-mp 0 ≤ ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) )
95 92 94 jctil ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ( 0 ≤ ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∧ ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) )
96 xrrege0 ( ( ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∈ ℝ* ∧ ( ( vol* ‘ 𝐴 ) + 1 ) ∈ ℝ ) ∧ ( 0 ≤ ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∧ ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∈ ℝ )
97 84 95 96 syl2anc ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∈ ℝ )
98 resubcl ( ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝑢 ∈ ℝ ) → ( ( vol* ‘ 𝐴 ) − 𝑢 ) ∈ ℝ )
99 98 adantrr ( ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) → ( ( vol* ‘ 𝐴 ) − 𝑢 ) ∈ ℝ )
100 posdif ( ( 𝑢 ∈ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( 𝑢 < ( vol* ‘ 𝐴 ) ↔ 0 < ( ( vol* ‘ 𝐴 ) − 𝑢 ) ) )
101 100 ancoms ( ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝑢 ∈ ℝ ) → ( 𝑢 < ( vol* ‘ 𝐴 ) ↔ 0 < ( ( vol* ‘ 𝐴 ) − 𝑢 ) ) )
102 101 biimpd ( ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝑢 ∈ ℝ ) → ( 𝑢 < ( vol* ‘ 𝐴 ) → 0 < ( ( vol* ‘ 𝐴 ) − 𝑢 ) ) )
103 102 impr ( ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) → 0 < ( ( vol* ‘ 𝐴 ) − 𝑢 ) )
104 99 103 elrpd ( ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) → ( ( vol* ‘ 𝐴 ) − 𝑢 ) ∈ ℝ+ )
105 104 rphalfcld ( ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) → ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ∈ ℝ+ )
106 3 105 sylan ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) → ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ∈ ℝ+ )
107 106 adantr ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ∈ ℝ+ )
108 eqid seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) )
109 108 ovolgelb ( ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ℝ ∧ ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∈ ℝ ∧ ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ∈ ℝ+ ) → ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) )
110 80 109 mp3an1 ( ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∈ ℝ ∧ ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ∈ ℝ+ ) → ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) )
111 97 107 110 syl2anc ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) )
112 elmapi ( 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) → 𝑔 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) )
113 ssid ran ( (,) ∘ 𝑔 ) ⊆ ran ( (,) ∘ 𝑔 )
114 108 ovollb ( ( 𝑔 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ran ( (,) ∘ 𝑔 ) ⊆ ran ( (,) ∘ 𝑔 ) ) → ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) )
115 113 114 mpan2 ( 𝑔 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) )
116 115 adantl ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ 𝑔 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) → ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) )
117 eqid ( ( abs ∘ − ) ∘ 𝑔 ) = ( ( abs ∘ − ) ∘ 𝑔 )
118 117 108 ovolsf ( 𝑔 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) : ℕ ⟶ ( 0 [,) +∞ ) )
119 frn ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) : ℕ ⟶ ( 0 [,) +∞ ) → ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) ⊆ ( 0 [,) +∞ ) )
120 119 55 sstrdi ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) : ℕ ⟶ ( 0 [,) +∞ ) → ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) ⊆ ℝ* )
121 supxrcl ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) ⊆ ℝ* → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ∈ ℝ* )
122 118 120 121 3syl ( 𝑔 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ∈ ℝ* )
123 99 rehalfcld ( ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) → ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ∈ ℝ )
124 3 123 sylan ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) → ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ∈ ℝ )
125 124 adantr ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ∈ ℝ )
126 97 125 readdcld ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ∈ ℝ )
127 126 rexrd ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ∈ ℝ* )
128 rncoss ran ( (,) ∘ 𝑔 ) ⊆ ran (,)
129 128 unissi ran ( (,) ∘ 𝑔 ) ⊆ ran (,)
130 129 63 sseqtrri ran ( (,) ∘ 𝑔 ) ⊆ ℝ
131 ovolcl ( ran ( (,) ∘ 𝑔 ) ⊆ ℝ → ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ∈ ℝ* )
132 130 131 ax-mp ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ∈ ℝ*
133 xrletr ( ( ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ∈ ℝ* ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ∈ ℝ* ∧ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ∈ ℝ* ) → ( ( ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) → ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) )
134 132 133 mp3an1 ( ( sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ∈ ℝ* ∧ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ∈ ℝ* ) → ( ( ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) → ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) )
135 122 127 134 syl2anr ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ 𝑔 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) → ( ( ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) → ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) )
136 116 135 mpand ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ 𝑔 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) → ( sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) → ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) )
137 112 136 sylan2 ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) → ( sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) → ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) )
138 137 anim2d ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) → ( ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) → ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) )
139 138 reximdva ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ( ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) → ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) )
140 111 139 mpd ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) )
141 rexex ( ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) → ∃ 𝑔 ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) )
142 140 141 syl ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ∃ 𝑔 ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) )
143 59 66 jctil ( ( vol* ‘ 𝐴 ) ∈ ℝ → ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ* ∧ ( ( vol* ‘ 𝐴 ) + 1 ) ∈ ℝ ) )
144 143 ad3antlr ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) → ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ* ∧ ( ( vol* ‘ 𝐴 ) + 1 ) ∈ ℝ ) )
145 ovolge0 ( ran ( (,) ∘ 𝑓 ) ⊆ ℝ → 0 ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) )
146 64 145 ax-mp 0 ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) )
147 146 jctl ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) → ( 0 ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) )
148 147 adantl ( ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) → ( 0 ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) )
149 xrrege0 ( ( ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ* ∧ ( ( vol* ‘ 𝐴 ) + 1 ) ∈ ℝ ) ∧ ( 0 ≤ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ )
150 144 148 149 syl2an ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ )
151 150 125 resubcld ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ∈ ℝ )
152 150 107 ltsubrpd ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) )
153 retop ( topGen ‘ ran (,) ) ∈ Top
154 retopbas ran (,) ∈ TopBases
155 bastg ( ran (,) ∈ TopBases → ran (,) ⊆ ( topGen ‘ ran (,) ) )
156 154 155 ax-mp ran (,) ⊆ ( topGen ‘ ran (,) )
157 61 156 sstri ran ( (,) ∘ 𝑓 ) ⊆ ( topGen ‘ ran (,) )
158 uniopn ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ran ( (,) ∘ 𝑓 ) ⊆ ( topGen ‘ ran (,) ) ) → ran ( (,) ∘ 𝑓 ) ∈ ( topGen ‘ ran (,) ) )
159 153 157 158 mp2an ran ( (,) ∘ 𝑓 ) ∈ ( topGen ‘ ran (,) )
160 mblfinlem2 ( ( ran ( (,) ∘ 𝑓 ) ∈ ( topGen ‘ ran (,) ) ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ∈ ℝ ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ) → ∃ 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑠 ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) )
161 159 160 mp3an1 ( ( ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ∈ ℝ ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ) → ∃ 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑠 ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) )
162 151 152 161 syl2anc ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ∃ 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑠 ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) )
163 162 adantr ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ∃ 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑠 ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) )
164 indif2 ( 𝑠 ∩ ( ℝ ∖ ran ( (,) ∘ 𝑔 ) ) ) = ( ( 𝑠 ∩ ℝ ) ∖ ran ( (,) ∘ 𝑔 ) )
165 22 cldss ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → 𝑠 ⊆ ℝ )
166 df-ss ( 𝑠 ⊆ ℝ ↔ ( 𝑠 ∩ ℝ ) = 𝑠 )
167 165 166 sylib ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → ( 𝑠 ∩ ℝ ) = 𝑠 )
168 167 difeq1d ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → ( ( 𝑠 ∩ ℝ ) ∖ ran ( (,) ∘ 𝑔 ) ) = ( 𝑠 ran ( (,) ∘ 𝑔 ) ) )
169 164 168 syl5eq ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → ( 𝑠 ∩ ( ℝ ∖ ran ( (,) ∘ 𝑔 ) ) ) = ( 𝑠 ran ( (,) ∘ 𝑔 ) ) )
170 128 156 sstri ran ( (,) ∘ 𝑔 ) ⊆ ( topGen ‘ ran (,) )
171 uniopn ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ran ( (,) ∘ 𝑔 ) ⊆ ( topGen ‘ ran (,) ) ) → ran ( (,) ∘ 𝑔 ) ∈ ( topGen ‘ ran (,) ) )
172 153 170 171 mp2an ran ( (,) ∘ 𝑔 ) ∈ ( topGen ‘ ran (,) )
173 22 opncld ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ran ( (,) ∘ 𝑔 ) ∈ ( topGen ‘ ran (,) ) ) → ( ℝ ∖ ran ( (,) ∘ 𝑔 ) ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) )
174 153 172 173 mp2an ( ℝ ∖ ran ( (,) ∘ 𝑔 ) ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) )
175 incld ( ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( ℝ ∖ ran ( (,) ∘ 𝑔 ) ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) → ( 𝑠 ∩ ( ℝ ∖ ran ( (,) ∘ 𝑔 ) ) ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) )
176 174 175 mpan2 ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → ( 𝑠 ∩ ( ℝ ∖ ran ( (,) ∘ 𝑔 ) ) ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) )
177 169 176 eqeltrrd ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) )
178 simpr ( ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ 𝑠 ran ( (,) ∘ 𝑓 ) ) → 𝑠 ran ( (,) ∘ 𝑓 ) )
179 simpl ( ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ 𝑠 ran ( (,) ∘ 𝑓 ) ) → ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) )
180 178 179 ssdif2d ( ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ 𝑠 ran ( (,) ∘ 𝑓 ) ) → ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) )
181 dfin4 ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) = ( ran ( (,) ∘ 𝑓 ) ∖ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) )
182 inss2 ( ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ⊆ 𝐴
183 181 182 eqsstrri ( ran ( (,) ∘ 𝑓 ) ∖ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ⊆ 𝐴
184 180 183 sstrdi ( ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ 𝑠 ran ( (,) ∘ 𝑓 ) ) → ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ⊆ 𝐴 )
185 sseq1 ( 𝑏 = ( 𝑠 ran ( (,) ∘ 𝑔 ) ) → ( 𝑏𝐴 ↔ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ⊆ 𝐴 ) )
186 185 anbi1d ( 𝑏 = ( 𝑠 ran ( (,) ∘ 𝑔 ) ) → ( ( 𝑏𝐴 ∧ ( vol ‘ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) = ( vol ‘ 𝑏 ) ) ↔ ( ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ⊆ 𝐴 ∧ ( vol ‘ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) = ( vol ‘ 𝑏 ) ) ) )
187 fveq2 ( ( 𝑠 ran ( (,) ∘ 𝑔 ) ) = 𝑏 → ( vol ‘ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) = ( vol ‘ 𝑏 ) )
188 187 eqcoms ( 𝑏 = ( 𝑠 ran ( (,) ∘ 𝑔 ) ) → ( vol ‘ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) = ( vol ‘ 𝑏 ) )
189 188 biantrud ( 𝑏 = ( 𝑠 ran ( (,) ∘ 𝑔 ) ) → ( ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ⊆ 𝐴 ↔ ( ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ⊆ 𝐴 ∧ ( vol ‘ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) = ( vol ‘ 𝑏 ) ) ) )
190 186 189 bitr4d ( 𝑏 = ( 𝑠 ran ( (,) ∘ 𝑔 ) ) → ( ( 𝑏𝐴 ∧ ( vol ‘ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) = ( vol ‘ 𝑏 ) ) ↔ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ⊆ 𝐴 ) )
191 190 rspcev ( ( ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ⊆ 𝐴 ) → ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴 ∧ ( vol ‘ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) = ( vol ‘ 𝑏 ) ) )
192 177 184 191 syl2an ( ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ 𝑠 ran ( (,) ∘ 𝑓 ) ) ) → ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴 ∧ ( vol ‘ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) = ( vol ‘ 𝑏 ) ) )
193 192 an12s ( ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑠 ran ( (,) ∘ 𝑓 ) ) ) → ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴 ∧ ( vol ‘ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) = ( vol ‘ 𝑏 ) ) )
194 193 adantrrr ( ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴 ∧ ( vol ‘ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) = ( vol ‘ 𝑏 ) ) )
195 194 adantlr ( ( ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴 ∧ ( vol ‘ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) = ( vol ‘ 𝑏 ) ) )
196 195 adantll ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴 ∧ ( vol ‘ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) = ( vol ‘ 𝑏 ) ) )
197 difss ( 𝐴 ∖ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) ⊆ 𝐴
198 ovolsscl ( ( ( 𝐴 ∖ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) ⊆ 𝐴𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ ( 𝐴 ∖ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) ) ∈ ℝ )
199 197 198 mp3an1 ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ ( 𝐴 ∖ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) ) ∈ ℝ )
200 199 ad5antr ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ ( 𝐴 ∖ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) ) ∈ ℝ )
201 simp-6r ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ 𝐴 ) ∈ ℝ )
202 simpl ( ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) → 𝑢 ∈ ℝ )
203 202 ad4antlr ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → 𝑢 ∈ ℝ )
204 difdif2 ( 𝐴 ∖ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) = ( ( 𝐴𝑠 ) ∪ ( 𝐴 ran ( (,) ∘ 𝑔 ) ) )
205 204 fveq2i ( vol* ‘ ( 𝐴 ∖ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) ) = ( vol* ‘ ( ( 𝐴𝑠 ) ∪ ( 𝐴 ran ( (,) ∘ 𝑔 ) ) ) )
206 difss ( 𝐴𝑠 ) ⊆ 𝐴
207 inss1 ( 𝐴 ran ( (,) ∘ 𝑔 ) ) ⊆ 𝐴
208 206 207 unssi ( ( 𝐴𝑠 ) ∪ ( 𝐴 ran ( (,) ∘ 𝑔 ) ) ) ⊆ 𝐴
209 ovolsscl ( ( ( ( 𝐴𝑠 ) ∪ ( 𝐴 ran ( (,) ∘ 𝑔 ) ) ) ⊆ 𝐴𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ ( ( 𝐴𝑠 ) ∪ ( 𝐴 ran ( (,) ∘ 𝑔 ) ) ) ) ∈ ℝ )
210 208 209 mp3an1 ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ ( ( 𝐴𝑠 ) ∪ ( 𝐴 ran ( (,) ∘ 𝑔 ) ) ) ) ∈ ℝ )
211 210 ad5antr ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ ( ( 𝐴𝑠 ) ∪ ( 𝐴 ran ( (,) ∘ 𝑔 ) ) ) ) ∈ ℝ )
212 ovolsscl ( ( ( 𝐴𝑠 ) ⊆ 𝐴𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ ( 𝐴𝑠 ) ) ∈ ℝ )
213 206 212 mp3an1 ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ ( 𝐴𝑠 ) ) ∈ ℝ )
214 213 ad5antr ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ ( 𝐴𝑠 ) ) ∈ ℝ )
215 ovolsscl ( ( ( 𝐴 ran ( (,) ∘ 𝑔 ) ) ⊆ 𝐴𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ ( 𝐴 ran ( (,) ∘ 𝑔 ) ) ) ∈ ℝ )
216 207 215 mp3an1 ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ ( 𝐴 ran ( (,) ∘ 𝑔 ) ) ) ∈ ℝ )
217 216 ad5antr ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ ( 𝐴 ran ( (,) ∘ 𝑔 ) ) ) ∈ ℝ )
218 214 217 readdcld ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( ( vol* ‘ ( 𝐴𝑠 ) ) + ( vol* ‘ ( 𝐴 ran ( (,) ∘ 𝑔 ) ) ) ) ∈ ℝ )
219 3 202 98 syl2an ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) → ( ( vol* ‘ 𝐴 ) − 𝑢 ) ∈ ℝ )
220 219 ad3antrrr ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( ( vol* ‘ 𝐴 ) − 𝑢 ) ∈ ℝ )
221 ssdifss ( 𝐴 ⊆ ℝ → ( 𝐴𝑠 ) ⊆ ℝ )
222 221 adantr ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( 𝐴𝑠 ) ⊆ ℝ )
223 ssinss1 ( 𝐴 ⊆ ℝ → ( 𝐴 ran ( (,) ∘ 𝑔 ) ) ⊆ ℝ )
224 223 adantr ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( 𝐴 ran ( (,) ∘ 𝑔 ) ) ⊆ ℝ )
225 ovolun ( ( ( ( 𝐴𝑠 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝐴𝑠 ) ) ∈ ℝ ) ∧ ( ( 𝐴 ran ( (,) ∘ 𝑔 ) ) ⊆ ℝ ∧ ( vol* ‘ ( 𝐴 ran ( (,) ∘ 𝑔 ) ) ) ∈ ℝ ) ) → ( vol* ‘ ( ( 𝐴𝑠 ) ∪ ( 𝐴 ran ( (,) ∘ 𝑔 ) ) ) ) ≤ ( ( vol* ‘ ( 𝐴𝑠 ) ) + ( vol* ‘ ( 𝐴 ran ( (,) ∘ 𝑔 ) ) ) ) )
226 222 213 224 216 225 syl22anc ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ ( ( 𝐴𝑠 ) ∪ ( 𝐴 ran ( (,) ∘ 𝑔 ) ) ) ) ≤ ( ( vol* ‘ ( 𝐴𝑠 ) ) + ( vol* ‘ ( 𝐴 ran ( (,) ∘ 𝑔 ) ) ) ) )
227 226 ad5antr ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ ( ( 𝐴𝑠 ) ∪ ( 𝐴 ran ( (,) ∘ 𝑔 ) ) ) ) ≤ ( ( vol* ‘ ( 𝐴𝑠 ) ) + ( vol* ‘ ( 𝐴 ran ( (,) ∘ 𝑔 ) ) ) ) )
228 124 ad2antrr ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ∈ ℝ )
229 228 adantr ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ∈ ℝ )
230 150 ad2antrr ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ )
231 simprl ( ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) → 𝑠 ran ( (,) ∘ 𝑓 ) )
232 150 adantr ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ )
233 ovolsscl ( ( 𝑠 ran ( (,) ∘ 𝑓 ) ∧ ran ( (,) ∘ 𝑓 ) ⊆ ℝ ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) → ( vol* ‘ 𝑠 ) ∈ ℝ )
234 64 233 mp3an2 ( ( 𝑠 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) → ( vol* ‘ 𝑠 ) ∈ ℝ )
235 231 232 234 syl2anr ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ 𝑠 ) ∈ ℝ )
236 230 235 resubcld ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( vol* ‘ 𝑠 ) ) ∈ ℝ )
237 ssdif ( 𝐴 ran ( (,) ∘ 𝑓 ) → ( 𝐴𝑠 ) ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) )
238 difss ( ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ⊆ ran ( (,) ∘ 𝑓 )
239 238 64 sstri ( ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ⊆ ℝ
240 ovolss ( ( ( 𝐴𝑠 ) ⊆ ( ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ∧ ( ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ⊆ ℝ ) → ( vol* ‘ ( 𝐴𝑠 ) ) ≤ ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ) )
241 237 239 240 sylancl ( 𝐴 ran ( (,) ∘ 𝑓 ) → ( vol* ‘ ( 𝐴𝑠 ) ) ≤ ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ) )
242 241 adantr ( ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) → ( vol* ‘ ( 𝐴𝑠 ) ) ≤ ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ) )
243 242 ad3antlr ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ ( 𝐴𝑠 ) ) ≤ ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ) )
244 eleq1w ( 𝑏 = 𝑠 → ( 𝑏 ∈ dom vol ↔ 𝑠 ∈ dom vol ) )
245 244 32 vtoclga ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → 𝑠 ∈ dom vol )
246 245 adantr ( ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) → 𝑠 ∈ dom vol )
247 mblsplit ( ( 𝑠 ∈ dom vol ∧ ran ( (,) ∘ 𝑓 ) ⊆ ℝ ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) → ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) = ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∩ 𝑠 ) ) + ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ) ) )
248 64 247 mp3an2 ( ( 𝑠 ∈ dom vol ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) → ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) = ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∩ 𝑠 ) ) + ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ) ) )
249 246 232 248 syl2anr ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) = ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∩ 𝑠 ) ) + ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ) ) )
250 249 eqcomd ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∩ 𝑠 ) ) + ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ) ) = ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) )
251 230 recnd ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℂ )
252 inss1 ( ran ( (,) ∘ 𝑓 ) ∩ 𝑠 ) ⊆ ran ( (,) ∘ 𝑓 )
253 ovolsscl ( ( ( ran ( (,) ∘ 𝑓 ) ∩ 𝑠 ) ⊆ ran ( (,) ∘ 𝑓 ) ∧ ran ( (,) ∘ 𝑓 ) ⊆ ℝ ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) → ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∩ 𝑠 ) ) ∈ ℝ )
254 252 64 253 mp3an12 ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ → ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∩ 𝑠 ) ) ∈ ℝ )
255 150 254 syl ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∩ 𝑠 ) ) ∈ ℝ )
256 255 ad2antrr ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∩ 𝑠 ) ) ∈ ℝ )
257 256 recnd ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∩ 𝑠 ) ) ∈ ℂ )
258 ovolsscl ( ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ⊆ ran ( (,) ∘ 𝑓 ) ∧ ran ( (,) ∘ 𝑓 ) ⊆ ℝ ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) → ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ) ∈ ℝ )
259 238 64 258 mp3an12 ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ → ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ) ∈ ℝ )
260 150 259 syl ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ) ∈ ℝ )
261 260 recnd ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ) ∈ ℂ )
262 261 ad2antrr ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ) ∈ ℂ )
263 251 257 262 subaddd ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∩ 𝑠 ) ) ) = ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ) ↔ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∩ 𝑠 ) ) + ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ) ) = ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ) )
264 250 263 mpbird ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∩ 𝑠 ) ) ) = ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ) )
265 sseqin2 ( 𝑠 ran ( (,) ∘ 𝑓 ) ↔ ( ran ( (,) ∘ 𝑓 ) ∩ 𝑠 ) = 𝑠 )
266 265 biimpi ( 𝑠 ran ( (,) ∘ 𝑓 ) → ( ran ( (,) ∘ 𝑓 ) ∩ 𝑠 ) = 𝑠 )
267 266 fveq2d ( 𝑠 ran ( (,) ∘ 𝑓 ) → ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∩ 𝑠 ) ) = ( vol* ‘ 𝑠 ) )
268 267 oveq2d ( 𝑠 ran ( (,) ∘ 𝑓 ) → ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∩ 𝑠 ) ) ) = ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( vol* ‘ 𝑠 ) ) )
269 268 adantr ( ( 𝑠 ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) → ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∩ 𝑠 ) ) ) = ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( vol* ‘ 𝑠 ) ) )
270 269 ad2antll ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∩ 𝑠 ) ) ) = ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( vol* ‘ 𝑠 ) ) )
271 264 270 eqtr3d ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ) = ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( vol* ‘ 𝑠 ) ) )
272 243 271 breqtrd ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ ( 𝐴𝑠 ) ) ≤ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( vol* ‘ 𝑠 ) ) )
273 simprrr ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) )
274 230 229 235 273 ltsub23d ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( vol* ‘ 𝑠 ) ) < ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) )
275 214 236 229 272 274 lelttrd ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ ( 𝐴𝑠 ) ) < ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) )
276 216 ad4antr ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( vol* ‘ ( 𝐴 ran ( (,) ∘ 𝑔 ) ) ) ∈ ℝ )
277 126 132 jctil ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ( ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ∈ ℝ* ∧ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ∈ ℝ ) )
278 simpr ( ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) → ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) )
279 ovolge0 ( ran ( (,) ∘ 𝑔 ) ⊆ ℝ → 0 ≤ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) )
280 130 279 ax-mp 0 ≤ ( vol* ‘ ran ( (,) ∘ 𝑔 ) )
281 278 280 jctil ( ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) → ( 0 ≤ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) )
282 xrrege0 ( ( ( ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ∈ ℝ* ∧ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ∈ ℝ ) ∧ ( 0 ≤ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ∈ ℝ )
283 277 281 282 syl2an ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ∈ ℝ )
284 difss ( ran ( (,) ∘ 𝑔 ) ∖ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ⊆ ran ( (,) ∘ 𝑔 )
285 ovolsscl ( ( ( ran ( (,) ∘ 𝑔 ) ∖ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ran ( (,) ∘ 𝑔 ) ⊆ ℝ ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ∈ ℝ ) → ( vol* ‘ ( ran ( (,) ∘ 𝑔 ) ∖ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ∈ ℝ )
286 284 130 285 mp3an12 ( ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ∈ ℝ → ( vol* ‘ ( ran ( (,) ∘ 𝑔 ) ∖ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ∈ ℝ )
287 283 286 syl ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( vol* ‘ ( ran ( (,) ∘ 𝑔 ) ∖ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ∈ ℝ )
288 ssun2 ( ran ( (,) ∘ 𝑔 ) ∩ 𝐴 ) ⊆ ( ( ran ( (,) ∘ 𝑔 ) ∖ ran ( (,) ∘ 𝑓 ) ) ∪ ( ran ( (,) ∘ 𝑔 ) ∩ 𝐴 ) )
289 incom ( 𝐴 ran ( (,) ∘ 𝑔 ) ) = ( ran ( (,) ∘ 𝑔 ) ∩ 𝐴 )
290 difdif2 ( ran ( (,) ∘ 𝑔 ) ∖ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) = ( ( ran ( (,) ∘ 𝑔 ) ∖ ran ( (,) ∘ 𝑓 ) ) ∪ ( ran ( (,) ∘ 𝑔 ) ∩ 𝐴 ) )
291 288 289 290 3sstr4i ( 𝐴 ran ( (,) ∘ 𝑔 ) ) ⊆ ( ran ( (,) ∘ 𝑔 ) ∖ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) )
292 284 130 sstri ( ran ( (,) ∘ 𝑔 ) ∖ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ⊆ ℝ
293 291 292 pm3.2i ( ( 𝐴 ran ( (,) ∘ 𝑔 ) ) ⊆ ( ran ( (,) ∘ 𝑔 ) ∖ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∧ ( ran ( (,) ∘ 𝑔 ) ∖ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ⊆ ℝ )
294 ovolss ( ( ( 𝐴 ran ( (,) ∘ 𝑔 ) ) ⊆ ( ran ( (,) ∘ 𝑔 ) ∖ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∧ ( ran ( (,) ∘ 𝑔 ) ∖ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ⊆ ℝ ) → ( vol* ‘ ( 𝐴 ran ( (,) ∘ 𝑔 ) ) ) ≤ ( vol* ‘ ( ran ( (,) ∘ 𝑔 ) ∖ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) )
295 293 294 mp1i ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( vol* ‘ ( 𝐴 ran ( (,) ∘ 𝑔 ) ) ) ≤ ( vol* ‘ ( ran ( (,) ∘ 𝑔 ) ∖ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) )
296 opnmbl ( ran ( (,) ∘ 𝑓 ) ∈ ( topGen ‘ ran (,) ) → ran ( (,) ∘ 𝑓 ) ∈ dom vol )
297 159 296 ax-mp ran ( (,) ∘ 𝑓 ) ∈ dom vol
298 difmbl ( ( ran ( (,) ∘ 𝑓 ) ∈ dom vol ∧ 𝐴 ∈ dom vol ) → ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∈ dom vol )
299 297 298 mpan ( 𝐴 ∈ dom vol → ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∈ dom vol )
300 299 ad4antlr ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∈ dom vol )
301 mblsplit ( ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∈ dom vol ∧ ran ( (,) ∘ 𝑔 ) ⊆ ℝ ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ∈ ℝ ) → ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) = ( ( vol* ‘ ( ran ( (,) ∘ 𝑔 ) ∩ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) + ( vol* ‘ ( ran ( (,) ∘ 𝑔 ) ∖ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ) )
302 130 301 mp3an2 ( ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∈ dom vol ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ∈ ℝ ) → ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) = ( ( vol* ‘ ( ran ( (,) ∘ 𝑔 ) ∩ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) + ( vol* ‘ ( ran ( (,) ∘ 𝑔 ) ∖ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ) )
303 300 283 302 syl2anc ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) = ( ( vol* ‘ ( ran ( (,) ∘ 𝑔 ) ∩ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) + ( vol* ‘ ( ran ( (,) ∘ 𝑔 ) ∖ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ) )
304 sseqin2 ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ↔ ( ran ( (,) ∘ 𝑔 ) ∩ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) = ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) )
305 304 biimpi ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) → ( ran ( (,) ∘ 𝑔 ) ∩ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) = ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) )
306 305 fveq2d ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) → ( vol* ‘ ( ran ( (,) ∘ 𝑔 ) ∩ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) = ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) )
307 306 oveq1d ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) → ( ( vol* ‘ ( ran ( (,) ∘ 𝑔 ) ∩ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) + ( vol* ‘ ( ran ( (,) ∘ 𝑔 ) ∖ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ) = ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( vol* ‘ ( ran ( (,) ∘ 𝑔 ) ∖ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ) )
308 307 ad2antrl ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( ( vol* ‘ ( ran ( (,) ∘ 𝑔 ) ∩ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) + ( vol* ‘ ( ran ( (,) ∘ 𝑔 ) ∖ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ) = ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( vol* ‘ ( ran ( (,) ∘ 𝑔 ) ∖ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ) )
309 303 308 eqtr2d ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( vol* ‘ ( ran ( (,) ∘ 𝑔 ) ∖ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ) = ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) )
310 283 recnd ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ∈ ℂ )
311 97 adantr ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∈ ℝ )
312 311 recnd ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∈ ℂ )
313 287 recnd ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( vol* ‘ ( ran ( (,) ∘ 𝑔 ) ∖ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ∈ ℂ )
314 310 312 313 subaddd ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( ( ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) − ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) = ( vol* ‘ ( ran ( (,) ∘ 𝑔 ) ∖ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ↔ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( vol* ‘ ( ran ( (,) ∘ 𝑔 ) ∖ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ) = ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ) )
315 309 314 mpbird ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) − ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) = ( vol* ‘ ( ran ( (,) ∘ 𝑔 ) ∖ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) )
316 simprr ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) )
317 283 311 228 lesubadd2d ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( ( ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) − ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ≤ ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ↔ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) )
318 316 317 mpbird ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) − ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ≤ ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) )
319 315 318 eqbrtrrd ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( vol* ‘ ( ran ( (,) ∘ 𝑔 ) ∖ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ≤ ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) )
320 276 287 228 295 319 letrd ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( vol* ‘ ( 𝐴 ran ( (,) ∘ 𝑔 ) ) ) ≤ ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) )
321 320 adantr ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ ( 𝐴 ran ( (,) ∘ 𝑔 ) ) ) ≤ ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) )
322 214 217 229 229 275 321 ltleaddd ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( ( vol* ‘ ( 𝐴𝑠 ) ) + ( vol* ‘ ( 𝐴 ran ( (,) ∘ 𝑔 ) ) ) ) < ( ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) )
323 98 recnd ( ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝑢 ∈ ℝ ) → ( ( vol* ‘ 𝐴 ) − 𝑢 ) ∈ ℂ )
324 323 2halvesd ( ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝑢 ∈ ℝ ) → ( ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) = ( ( vol* ‘ 𝐴 ) − 𝑢 ) )
325 324 adantll ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑢 ∈ ℝ ) → ( ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) = ( ( vol* ‘ 𝐴 ) − 𝑢 ) )
326 325 ad2ant2r ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) → ( ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) = ( ( vol* ‘ 𝐴 ) − 𝑢 ) )
327 326 ad3antrrr ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) = ( ( vol* ‘ 𝐴 ) − 𝑢 ) )
328 322 327 breqtrd ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( ( vol* ‘ ( 𝐴𝑠 ) ) + ( vol* ‘ ( 𝐴 ran ( (,) ∘ 𝑔 ) ) ) ) < ( ( vol* ‘ 𝐴 ) − 𝑢 ) )
329 211 218 220 227 328 lelttrd ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ ( ( 𝐴𝑠 ) ∪ ( 𝐴 ran ( (,) ∘ 𝑔 ) ) ) ) < ( ( vol* ‘ 𝐴 ) − 𝑢 ) )
330 205 329 eqbrtrid ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ ( 𝐴 ∖ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) ) < ( ( vol* ‘ 𝐴 ) − 𝑢 ) )
331 200 201 203 330 ltsub13d ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → 𝑢 < ( ( vol* ‘ 𝐴 ) − ( vol* ‘ ( 𝐴 ∖ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) ) ) )
332 opnmbl ( ran ( (,) ∘ 𝑔 ) ∈ ( topGen ‘ ran (,) ) → ran ( (,) ∘ 𝑔 ) ∈ dom vol )
333 172 332 ax-mp ran ( (,) ∘ 𝑔 ) ∈ dom vol
334 difmbl ( ( 𝑠 ∈ dom vol ∧ ran ( (,) ∘ 𝑔 ) ∈ dom vol ) → ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ∈ dom vol )
335 245 333 334 sylancl ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ∈ dom vol )
336 mblvol ( ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ∈ dom vol → ( vol ‘ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) = ( vol* ‘ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) )
337 335 336 syl ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → ( vol ‘ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) = ( vol* ‘ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) )
338 337 ad2antrl ( ( ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol ‘ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) = ( vol* ‘ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) )
339 sseqin2 ( ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ⊆ 𝐴 ↔ ( 𝐴 ∩ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) = ( 𝑠 ran ( (,) ∘ 𝑔 ) ) )
340 184 339 sylib ( ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ 𝑠 ran ( (,) ∘ 𝑓 ) ) → ( 𝐴 ∩ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) = ( 𝑠 ran ( (,) ∘ 𝑔 ) ) )
341 340 fveq2d ( ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ 𝑠 ran ( (,) ∘ 𝑓 ) ) → ( vol* ‘ ( 𝐴 ∩ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) ) = ( vol* ‘ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) )
342 341 adantrr ( ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( 𝑠 ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) → ( vol* ‘ ( 𝐴 ∩ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) ) = ( vol* ‘ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) )
343 342 ad2ant2rl ( ( ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ ( 𝐴 ∩ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) ) = ( vol* ‘ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) )
344 338 343 eqtr4d ( ( ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol ‘ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) = ( vol* ‘ ( 𝐴 ∩ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) ) )
345 344 adantll ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol ‘ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) = ( vol* ‘ ( 𝐴 ∩ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) ) )
346 335 adantr ( ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) → ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ∈ dom vol )
347 simp-4l ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) )
348 mblsplit ( ( ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ∈ dom vol ∧ 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ 𝐴 ) = ( ( vol* ‘ ( 𝐴 ∩ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) ) + ( vol* ‘ ( 𝐴 ∖ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) ) ) )
349 348 3expb ( ( ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ∈ dom vol ∧ ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ) → ( vol* ‘ 𝐴 ) = ( ( vol* ‘ ( 𝐴 ∩ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) ) + ( vol* ‘ ( 𝐴 ∖ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) ) ) )
350 349 eqcomd ( ( ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ∈ dom vol ∧ ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ) → ( ( vol* ‘ ( 𝐴 ∩ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) ) + ( vol* ‘ ( 𝐴 ∖ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) ) ) = ( vol* ‘ 𝐴 ) )
351 346 347 350 syl2anr ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( ( vol* ‘ ( 𝐴 ∩ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) ) + ( vol* ‘ ( 𝐴 ∖ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) ) ) = ( vol* ‘ 𝐴 ) )
352 recn ( ( vol* ‘ 𝐴 ) ∈ ℝ → ( vol* ‘ 𝐴 ) ∈ ℂ )
353 352 adantl ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ 𝐴 ) ∈ ℂ )
354 199 recnd ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ ( 𝐴 ∖ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) ) ∈ ℂ )
355 inss1 ( 𝐴 ∩ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) ⊆ 𝐴
356 ovolsscl ( ( ( 𝐴 ∩ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) ⊆ 𝐴𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ ( 𝐴 ∩ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) ) ∈ ℝ )
357 355 356 mp3an1 ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ ( 𝐴 ∩ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) ) ∈ ℝ )
358 357 recnd ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ ( 𝐴 ∩ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) ) ∈ ℂ )
359 353 354 358 subadd2d ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( ( ( vol* ‘ 𝐴 ) − ( vol* ‘ ( 𝐴 ∖ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) ) ) = ( vol* ‘ ( 𝐴 ∩ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) ) ↔ ( ( vol* ‘ ( 𝐴 ∩ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) ) + ( vol* ‘ ( 𝐴 ∖ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) ) ) = ( vol* ‘ 𝐴 ) ) )
360 359 ad5antr ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( ( ( vol* ‘ 𝐴 ) − ( vol* ‘ ( 𝐴 ∖ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) ) ) = ( vol* ‘ ( 𝐴 ∩ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) ) ↔ ( ( vol* ‘ ( 𝐴 ∩ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) ) + ( vol* ‘ ( 𝐴 ∖ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) ) ) = ( vol* ‘ 𝐴 ) ) )
361 351 360 mpbird ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( ( vol* ‘ 𝐴 ) − ( vol* ‘ ( 𝐴 ∖ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) ) ) = ( vol* ‘ ( 𝐴 ∩ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) ) )
362 345 361 eqtr4d ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol ‘ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) = ( ( vol* ‘ 𝐴 ) − ( vol* ‘ ( 𝐴 ∖ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) ) ) )
363 331 362 breqtrrd ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → 𝑢 < ( vol ‘ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) )
364 fvex ( vol ‘ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) ∈ V
365 eqeq1 ( 𝑣 = ( vol ‘ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) → ( 𝑣 = ( vol ‘ 𝑏 ) ↔ ( vol ‘ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) = ( vol ‘ 𝑏 ) ) )
366 365 anbi2d ( 𝑣 = ( vol ‘ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) → ( ( 𝑏𝐴𝑣 = ( vol ‘ 𝑏 ) ) ↔ ( 𝑏𝐴 ∧ ( vol ‘ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) = ( vol ‘ 𝑏 ) ) ) )
367 366 rexbidv ( 𝑣 = ( vol ‘ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) → ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑣 = ( vol ‘ 𝑏 ) ) ↔ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴 ∧ ( vol ‘ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) = ( vol ‘ 𝑏 ) ) ) )
368 breq2 ( 𝑣 = ( vol ‘ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) → ( 𝑢 < 𝑣𝑢 < ( vol ‘ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) ) )
369 367 368 anbi12d ( 𝑣 = ( vol ‘ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) → ( ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑣 = ( vol ‘ 𝑏 ) ) ∧ 𝑢 < 𝑣 ) ↔ ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴 ∧ ( vol ‘ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) = ( vol ‘ 𝑏 ) ) ∧ 𝑢 < ( vol ‘ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) ) ) )
370 364 369 spcev ( ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴 ∧ ( vol ‘ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) = ( vol ‘ 𝑏 ) ) ∧ 𝑢 < ( vol ‘ ( 𝑠 ran ( (,) ∘ 𝑔 ) ) ) ) → ∃ 𝑣 ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑣 = ( vol ‘ 𝑏 ) ) ∧ 𝑢 < 𝑣 ) )
371 196 363 370 syl2anc ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ∃ 𝑣 ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑣 = ( vol ‘ 𝑏 ) ) ∧ 𝑢 < 𝑣 ) )
372 163 371 rexlimddv ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ∃ 𝑣 ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑣 = ( vol ‘ 𝑏 ) ) ∧ 𝑢 < 𝑣 ) )
373 142 372 exlimddv ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ∃ 𝑣 ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑣 = ( vol ‘ 𝑏 ) ) ∧ 𝑢 < 𝑣 ) )
374 78 373 exlimddv ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) → ∃ 𝑣 ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑣 = ( vol ‘ 𝑏 ) ) ∧ 𝑢 < 𝑣 ) )
375 eqeq1 ( 𝑦 = 𝑣 → ( 𝑦 = ( vol ‘ 𝑏 ) ↔ 𝑣 = ( vol ‘ 𝑏 ) ) )
376 375 anbi2d ( 𝑦 = 𝑣 → ( ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) ↔ ( 𝑏𝐴𝑣 = ( vol ‘ 𝑏 ) ) ) )
377 376 rexbidv ( 𝑦 = 𝑣 → ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) ↔ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑣 = ( vol ‘ 𝑏 ) ) ) )
378 377 rexab ( ∃ 𝑣 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } 𝑢 < 𝑣 ↔ ∃ 𝑣 ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑣 = ( vol ‘ 𝑏 ) ) ∧ 𝑢 < 𝑣 ) )
379 374 378 sylibr ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) → ∃ 𝑣 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } 𝑢 < 𝑣 )
380 2 3 42 379 eqsupd ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) → sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) = ( vol* ‘ 𝐴 ) )
381 380 eqcomd ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) → ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏𝐴𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) )