Step |
Hyp |
Ref |
Expression |
1 |
|
ltso |
⊢ < Or ℝ |
2 |
1
|
a1i |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) → < Or ℝ ) |
3 |
|
simplr |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) → ( vol* ‘ 𝐴 ) ∈ ℝ ) |
4 |
|
vex |
⊢ 𝑢 ∈ V |
5 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑢 → ( 𝑦 = ( vol ‘ 𝑏 ) ↔ 𝑢 = ( vol ‘ 𝑏 ) ) ) |
6 |
5
|
anbi2d |
⊢ ( 𝑦 = 𝑢 → ( ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) ↔ ( 𝑏 ⊆ 𝐴 ∧ 𝑢 = ( vol ‘ 𝑏 ) ) ) ) |
7 |
6
|
rexbidv |
⊢ ( 𝑦 = 𝑢 → ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) ↔ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑢 = ( vol ‘ 𝑏 ) ) ) ) |
8 |
4 7
|
elab |
⊢ ( 𝑢 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ↔ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑢 = ( vol ‘ 𝑏 ) ) ) |
9 |
|
simprl |
⊢ ( ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑢 = ( vol ‘ 𝑏 ) ) ) → 𝑏 ⊆ 𝐴 ) |
10 |
|
ovolss |
⊢ ( ( 𝑏 ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ ) → ( vol* ‘ 𝑏 ) ≤ ( vol* ‘ 𝐴 ) ) |
11 |
|
sstr |
⊢ ( ( 𝑏 ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ ) → 𝑏 ⊆ ℝ ) |
12 |
|
ovolcl |
⊢ ( 𝑏 ⊆ ℝ → ( vol* ‘ 𝑏 ) ∈ ℝ* ) |
13 |
11 12
|
syl |
⊢ ( ( 𝑏 ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ ) → ( vol* ‘ 𝑏 ) ∈ ℝ* ) |
14 |
|
ovolcl |
⊢ ( 𝐴 ⊆ ℝ → ( vol* ‘ 𝐴 ) ∈ ℝ* ) |
15 |
14
|
adantl |
⊢ ( ( 𝑏 ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ ) → ( vol* ‘ 𝐴 ) ∈ ℝ* ) |
16 |
|
xrlenlt |
⊢ ( ( ( vol* ‘ 𝑏 ) ∈ ℝ* ∧ ( vol* ‘ 𝐴 ) ∈ ℝ* ) → ( ( vol* ‘ 𝑏 ) ≤ ( vol* ‘ 𝐴 ) ↔ ¬ ( vol* ‘ 𝐴 ) < ( vol* ‘ 𝑏 ) ) ) |
17 |
13 15 16
|
syl2anc |
⊢ ( ( 𝑏 ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ ) → ( ( vol* ‘ 𝑏 ) ≤ ( vol* ‘ 𝐴 ) ↔ ¬ ( vol* ‘ 𝐴 ) < ( vol* ‘ 𝑏 ) ) ) |
18 |
10 17
|
mpbid |
⊢ ( ( 𝑏 ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ ) → ¬ ( vol* ‘ 𝐴 ) < ( vol* ‘ 𝑏 ) ) |
19 |
18
|
ancoms |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑏 ⊆ 𝐴 ) → ¬ ( vol* ‘ 𝐴 ) < ( vol* ‘ 𝑏 ) ) |
20 |
9 19
|
sylan2 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑢 = ( vol ‘ 𝑏 ) ) ) ) → ¬ ( vol* ‘ 𝐴 ) < ( vol* ‘ 𝑏 ) ) |
21 |
|
simprrr |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑢 = ( vol ‘ 𝑏 ) ) ) ) → 𝑢 = ( vol ‘ 𝑏 ) ) |
22 |
|
uniretop |
⊢ ℝ = ∪ ( topGen ‘ ran (,) ) |
23 |
22
|
cldss |
⊢ ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → 𝑏 ⊆ ℝ ) |
24 |
|
dfss4 |
⊢ ( 𝑏 ⊆ ℝ ↔ ( ℝ ∖ ( ℝ ∖ 𝑏 ) ) = 𝑏 ) |
25 |
23 24
|
sylib |
⊢ ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → ( ℝ ∖ ( ℝ ∖ 𝑏 ) ) = 𝑏 ) |
26 |
|
rembl |
⊢ ℝ ∈ dom vol |
27 |
22
|
cldopn |
⊢ ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → ( ℝ ∖ 𝑏 ) ∈ ( topGen ‘ ran (,) ) ) |
28 |
|
opnmbl |
⊢ ( ( ℝ ∖ 𝑏 ) ∈ ( topGen ‘ ran (,) ) → ( ℝ ∖ 𝑏 ) ∈ dom vol ) |
29 |
27 28
|
syl |
⊢ ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → ( ℝ ∖ 𝑏 ) ∈ dom vol ) |
30 |
|
difmbl |
⊢ ( ( ℝ ∈ dom vol ∧ ( ℝ ∖ 𝑏 ) ∈ dom vol ) → ( ℝ ∖ ( ℝ ∖ 𝑏 ) ) ∈ dom vol ) |
31 |
26 29 30
|
sylancr |
⊢ ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → ( ℝ ∖ ( ℝ ∖ 𝑏 ) ) ∈ dom vol ) |
32 |
25 31
|
eqeltrrd |
⊢ ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → 𝑏 ∈ dom vol ) |
33 |
|
mblvol |
⊢ ( 𝑏 ∈ dom vol → ( vol ‘ 𝑏 ) = ( vol* ‘ 𝑏 ) ) |
34 |
32 33
|
syl |
⊢ ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → ( vol ‘ 𝑏 ) = ( vol* ‘ 𝑏 ) ) |
35 |
34
|
ad2antrl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑢 = ( vol ‘ 𝑏 ) ) ) ) → ( vol ‘ 𝑏 ) = ( vol* ‘ 𝑏 ) ) |
36 |
21 35
|
eqtrd |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑢 = ( vol ‘ 𝑏 ) ) ) ) → 𝑢 = ( vol* ‘ 𝑏 ) ) |
37 |
36
|
breq2d |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑢 = ( vol ‘ 𝑏 ) ) ) ) → ( ( vol* ‘ 𝐴 ) < 𝑢 ↔ ( vol* ‘ 𝐴 ) < ( vol* ‘ 𝑏 ) ) ) |
38 |
20 37
|
mtbird |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑢 = ( vol ‘ 𝑏 ) ) ) ) → ¬ ( vol* ‘ 𝐴 ) < 𝑢 ) |
39 |
38
|
rexlimdvaa |
⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑢 = ( vol ‘ 𝑏 ) ) → ¬ ( vol* ‘ 𝐴 ) < 𝑢 ) ) |
40 |
8 39
|
biimtrid |
⊢ ( 𝐴 ⊆ ℝ → ( 𝑢 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } → ¬ ( vol* ‘ 𝐴 ) < 𝑢 ) ) |
41 |
40
|
ad2antrr |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) → ( 𝑢 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } → ¬ ( vol* ‘ 𝐴 ) < 𝑢 ) ) |
42 |
41
|
imp |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ) → ¬ ( vol* ‘ 𝐴 ) < 𝑢 ) |
43 |
|
1rp |
⊢ 1 ∈ ℝ+ |
44 |
|
eqid |
⊢ seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) |
45 |
44
|
ovolgelb |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 1 ∈ ℝ+ ) → ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) |
46 |
43 45
|
mp3an3 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) |
47 |
|
elmapi |
⊢ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) → 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
48 |
|
ssid |
⊢ ∪ ran ( (,) ∘ 𝑓 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) |
49 |
44
|
ovollb |
⊢ ( ( 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ∪ ran ( (,) ∘ 𝑓 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) |
50 |
48 49
|
mpan2 |
⊢ ( 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) |
51 |
50
|
adantl |
⊢ ( ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) |
52 |
|
eqid |
⊢ ( ( abs ∘ − ) ∘ 𝑓 ) = ( ( abs ∘ − ) ∘ 𝑓 ) |
53 |
52 44
|
ovolsf |
⊢ ( 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
54 |
|
frn |
⊢ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) : ℕ ⟶ ( 0 [,) +∞ ) → ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ⊆ ( 0 [,) +∞ ) ) |
55 |
|
icossxr |
⊢ ( 0 [,) +∞ ) ⊆ ℝ* |
56 |
54 55
|
sstrdi |
⊢ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) : ℕ ⟶ ( 0 [,) +∞ ) → ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ⊆ ℝ* ) |
57 |
|
supxrcl |
⊢ ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ⊆ ℝ* → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ∈ ℝ* ) |
58 |
53 56 57
|
3syl |
⊢ ( 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ∈ ℝ* ) |
59 |
|
peano2re |
⊢ ( ( vol* ‘ 𝐴 ) ∈ ℝ → ( ( vol* ‘ 𝐴 ) + 1 ) ∈ ℝ ) |
60 |
59
|
rexrd |
⊢ ( ( vol* ‘ 𝐴 ) ∈ ℝ → ( ( vol* ‘ 𝐴 ) + 1 ) ∈ ℝ* ) |
61 |
|
rncoss |
⊢ ran ( (,) ∘ 𝑓 ) ⊆ ran (,) |
62 |
61
|
unissi |
⊢ ∪ ran ( (,) ∘ 𝑓 ) ⊆ ∪ ran (,) |
63 |
|
unirnioo |
⊢ ℝ = ∪ ran (,) |
64 |
62 63
|
sseqtrri |
⊢ ∪ ran ( (,) ∘ 𝑓 ) ⊆ ℝ |
65 |
|
ovolcl |
⊢ ( ∪ ran ( (,) ∘ 𝑓 ) ⊆ ℝ → ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ* ) |
66 |
64 65
|
ax-mp |
⊢ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ* |
67 |
|
xrletr |
⊢ ( ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ* ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ∈ ℝ* ∧ ( ( vol* ‘ 𝐴 ) + 1 ) ∈ ℝ* ) → ( ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) |
68 |
66 67
|
mp3an1 |
⊢ ( ( sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ∈ ℝ* ∧ ( ( vol* ‘ 𝐴 ) + 1 ) ∈ ℝ* ) → ( ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) |
69 |
58 60 68
|
syl2anr |
⊢ ( ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) → ( ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) |
70 |
51 69
|
mpand |
⊢ ( ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) → ( sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) |
71 |
70
|
adantll |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) → ( sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) |
72 |
47 71
|
sylan2 |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) → ( sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) |
73 |
72
|
anim2d |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) → ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) → ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ) |
74 |
73
|
reximdva |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) → ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ) |
75 |
46 74
|
mpd |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) |
76 |
|
rexex |
⊢ ( ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) → ∃ 𝑓 ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) |
77 |
75 76
|
syl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ∃ 𝑓 ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) |
78 |
77
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) → ∃ 𝑓 ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) |
79 |
|
difss |
⊢ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) |
80 |
79 64
|
sstri |
⊢ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ℝ |
81 |
|
ovolcl |
⊢ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ℝ → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∈ ℝ* ) |
82 |
80 81
|
ax-mp |
⊢ ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∈ ℝ* |
83 |
59 82
|
jctil |
⊢ ( ( vol* ‘ 𝐴 ) ∈ ℝ → ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∈ ℝ* ∧ ( ( vol* ‘ 𝐴 ) + 1 ) ∈ ℝ ) ) |
84 |
83
|
ad4antlr |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∈ ℝ* ∧ ( ( vol* ‘ 𝐴 ) + 1 ) ∈ ℝ ) ) |
85 |
|
ovolss |
⊢ ( ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ∪ ran ( (,) ∘ 𝑓 ) ⊆ ℝ ) → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ) |
86 |
79 64 85
|
mp2an |
⊢ ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) |
87 |
|
xrletr |
⊢ ( ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∈ ℝ* ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ* ∧ ( ( vol* ‘ 𝐴 ) + 1 ) ∈ ℝ* ) → ( ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) |
88 |
82 66 87
|
mp3an12 |
⊢ ( ( ( vol* ‘ 𝐴 ) + 1 ) ∈ ℝ* → ( ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) |
89 |
60 88
|
syl |
⊢ ( ( vol* ‘ 𝐴 ) ∈ ℝ → ( ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) |
90 |
86 89
|
mpani |
⊢ ( ( vol* ‘ 𝐴 ) ∈ ℝ → ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) |
91 |
90
|
ad4antlr |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) → ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) |
92 |
91
|
impr |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) |
93 |
|
ovolge0 |
⊢ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ℝ → 0 ≤ ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) |
94 |
80 93
|
ax-mp |
⊢ 0 ≤ ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) |
95 |
92 94
|
jctil |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ( 0 ≤ ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∧ ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) |
96 |
|
xrrege0 |
⊢ ( ( ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∈ ℝ* ∧ ( ( vol* ‘ 𝐴 ) + 1 ) ∈ ℝ ) ∧ ( 0 ≤ ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∧ ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∈ ℝ ) |
97 |
84 95 96
|
syl2anc |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∈ ℝ ) |
98 |
|
resubcl |
⊢ ( ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝑢 ∈ ℝ ) → ( ( vol* ‘ 𝐴 ) − 𝑢 ) ∈ ℝ ) |
99 |
98
|
adantrr |
⊢ ( ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) → ( ( vol* ‘ 𝐴 ) − 𝑢 ) ∈ ℝ ) |
100 |
|
posdif |
⊢ ( ( 𝑢 ∈ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( 𝑢 < ( vol* ‘ 𝐴 ) ↔ 0 < ( ( vol* ‘ 𝐴 ) − 𝑢 ) ) ) |
101 |
100
|
ancoms |
⊢ ( ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝑢 ∈ ℝ ) → ( 𝑢 < ( vol* ‘ 𝐴 ) ↔ 0 < ( ( vol* ‘ 𝐴 ) − 𝑢 ) ) ) |
102 |
101
|
biimpd |
⊢ ( ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝑢 ∈ ℝ ) → ( 𝑢 < ( vol* ‘ 𝐴 ) → 0 < ( ( vol* ‘ 𝐴 ) − 𝑢 ) ) ) |
103 |
102
|
impr |
⊢ ( ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) → 0 < ( ( vol* ‘ 𝐴 ) − 𝑢 ) ) |
104 |
99 103
|
elrpd |
⊢ ( ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) → ( ( vol* ‘ 𝐴 ) − 𝑢 ) ∈ ℝ+ ) |
105 |
104
|
rphalfcld |
⊢ ( ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) → ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ∈ ℝ+ ) |
106 |
3 105
|
sylan |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) → ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ∈ ℝ+ ) |
107 |
106
|
adantr |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ∈ ℝ+ ) |
108 |
|
eqid |
⊢ seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) |
109 |
108
|
ovolgelb |
⊢ ( ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ℝ ∧ ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∈ ℝ ∧ ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ∈ ℝ+ ) → ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) |
110 |
80 109
|
mp3an1 |
⊢ ( ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∈ ℝ ∧ ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ∈ ℝ+ ) → ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) |
111 |
97 107 110
|
syl2anc |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) |
112 |
|
elmapi |
⊢ ( 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) → 𝑔 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
113 |
|
ssid |
⊢ ∪ ran ( (,) ∘ 𝑔 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) |
114 |
108
|
ovollb |
⊢ ( ( 𝑔 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ∪ ran ( (,) ∘ 𝑔 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) |
115 |
113 114
|
mpan2 |
⊢ ( 𝑔 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) |
116 |
115
|
adantl |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ 𝑔 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) |
117 |
|
eqid |
⊢ ( ( abs ∘ − ) ∘ 𝑔 ) = ( ( abs ∘ − ) ∘ 𝑔 ) |
118 |
117 108
|
ovolsf |
⊢ ( 𝑔 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
119 |
|
frn |
⊢ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) : ℕ ⟶ ( 0 [,) +∞ ) → ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) ⊆ ( 0 [,) +∞ ) ) |
120 |
119 55
|
sstrdi |
⊢ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) : ℕ ⟶ ( 0 [,) +∞ ) → ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) ⊆ ℝ* ) |
121 |
|
supxrcl |
⊢ ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) ⊆ ℝ* → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ∈ ℝ* ) |
122 |
118 120 121
|
3syl |
⊢ ( 𝑔 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ∈ ℝ* ) |
123 |
99
|
rehalfcld |
⊢ ( ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) → ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ∈ ℝ ) |
124 |
3 123
|
sylan |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) → ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ∈ ℝ ) |
125 |
124
|
adantr |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ∈ ℝ ) |
126 |
97 125
|
readdcld |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ∈ ℝ ) |
127 |
126
|
rexrd |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ∈ ℝ* ) |
128 |
|
rncoss |
⊢ ran ( (,) ∘ 𝑔 ) ⊆ ran (,) |
129 |
128
|
unissi |
⊢ ∪ ran ( (,) ∘ 𝑔 ) ⊆ ∪ ran (,) |
130 |
129 63
|
sseqtrri |
⊢ ∪ ran ( (,) ∘ 𝑔 ) ⊆ ℝ |
131 |
|
ovolcl |
⊢ ( ∪ ran ( (,) ∘ 𝑔 ) ⊆ ℝ → ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ∈ ℝ* ) |
132 |
130 131
|
ax-mp |
⊢ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ∈ ℝ* |
133 |
|
xrletr |
⊢ ( ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ∈ ℝ* ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ∈ ℝ* ∧ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ∈ ℝ* ) → ( ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) |
134 |
132 133
|
mp3an1 |
⊢ ( ( sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ∈ ℝ* ∧ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ∈ ℝ* ) → ( ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) |
135 |
122 127 134
|
syl2anr |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ 𝑔 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) → ( ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) |
136 |
116 135
|
mpand |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ 𝑔 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) → ( sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) |
137 |
112 136
|
sylan2 |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) → ( sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) |
138 |
137
|
anim2d |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) → ( ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) → ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ) |
139 |
138
|
reximdva |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ( ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) → ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ) |
140 |
111 139
|
mpd |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) |
141 |
|
rexex |
⊢ ( ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) → ∃ 𝑔 ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) |
142 |
140 141
|
syl |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ∃ 𝑔 ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) |
143 |
59 66
|
jctil |
⊢ ( ( vol* ‘ 𝐴 ) ∈ ℝ → ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ* ∧ ( ( vol* ‘ 𝐴 ) + 1 ) ∈ ℝ ) ) |
144 |
143
|
ad3antlr |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) → ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ* ∧ ( ( vol* ‘ 𝐴 ) + 1 ) ∈ ℝ ) ) |
145 |
|
ovolge0 |
⊢ ( ∪ ran ( (,) ∘ 𝑓 ) ⊆ ℝ → 0 ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ) |
146 |
64 145
|
ax-mp |
⊢ 0 ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) |
147 |
146
|
jctl |
⊢ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) → ( 0 ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) |
148 |
147
|
adantl |
⊢ ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) → ( 0 ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) |
149 |
|
xrrege0 |
⊢ ( ( ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ* ∧ ( ( vol* ‘ 𝐴 ) + 1 ) ∈ ℝ ) ∧ ( 0 ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) |
150 |
144 148 149
|
syl2an |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) |
151 |
150 125
|
resubcld |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ∈ ℝ ) |
152 |
150 107
|
ltsubrpd |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ) |
153 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
154 |
|
retopbas |
⊢ ran (,) ∈ TopBases |
155 |
|
bastg |
⊢ ( ran (,) ∈ TopBases → ran (,) ⊆ ( topGen ‘ ran (,) ) ) |
156 |
154 155
|
ax-mp |
⊢ ran (,) ⊆ ( topGen ‘ ran (,) ) |
157 |
61 156
|
sstri |
⊢ ran ( (,) ∘ 𝑓 ) ⊆ ( topGen ‘ ran (,) ) |
158 |
|
uniopn |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ran ( (,) ∘ 𝑓 ) ⊆ ( topGen ‘ ran (,) ) ) → ∪ ran ( (,) ∘ 𝑓 ) ∈ ( topGen ‘ ran (,) ) ) |
159 |
153 157 158
|
mp2an |
⊢ ∪ ran ( (,) ∘ 𝑓 ) ∈ ( topGen ‘ ran (,) ) |
160 |
|
mblfinlem2 |
⊢ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∈ ( topGen ‘ ran (,) ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ∈ ℝ ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ) → ∃ 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) |
161 |
159 160
|
mp3an1 |
⊢ ( ( ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ∈ ℝ ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ) → ∃ 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) |
162 |
151 152 161
|
syl2anc |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ∃ 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) |
163 |
162
|
adantr |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ∃ 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) |
164 |
|
indif2 |
⊢ ( 𝑠 ∩ ( ℝ ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) = ( ( 𝑠 ∩ ℝ ) ∖ ∪ ran ( (,) ∘ 𝑔 ) ) |
165 |
22
|
cldss |
⊢ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → 𝑠 ⊆ ℝ ) |
166 |
|
df-ss |
⊢ ( 𝑠 ⊆ ℝ ↔ ( 𝑠 ∩ ℝ ) = 𝑠 ) |
167 |
165 166
|
sylib |
⊢ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → ( 𝑠 ∩ ℝ ) = 𝑠 ) |
168 |
167
|
difeq1d |
⊢ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → ( ( 𝑠 ∩ ℝ ) ∖ ∪ ran ( (,) ∘ 𝑔 ) ) = ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) |
169 |
164 168
|
eqtrid |
⊢ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → ( 𝑠 ∩ ( ℝ ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) = ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) |
170 |
128 156
|
sstri |
⊢ ran ( (,) ∘ 𝑔 ) ⊆ ( topGen ‘ ran (,) ) |
171 |
|
uniopn |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ran ( (,) ∘ 𝑔 ) ⊆ ( topGen ‘ ran (,) ) ) → ∪ ran ( (,) ∘ 𝑔 ) ∈ ( topGen ‘ ran (,) ) ) |
172 |
153 170 171
|
mp2an |
⊢ ∪ ran ( (,) ∘ 𝑔 ) ∈ ( topGen ‘ ran (,) ) |
173 |
22
|
opncld |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ∪ ran ( (,) ∘ 𝑔 ) ∈ ( topGen ‘ ran (,) ) ) → ( ℝ ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
174 |
153 172 173
|
mp2an |
⊢ ( ℝ ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) |
175 |
|
incld |
⊢ ( ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( ℝ ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) → ( 𝑠 ∩ ( ℝ ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
176 |
174 175
|
mpan2 |
⊢ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → ( 𝑠 ∩ ( ℝ ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
177 |
169 176
|
eqeltrrd |
⊢ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
178 |
|
simpr |
⊢ ( ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) → 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) |
179 |
|
simpl |
⊢ ( ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) → ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ) |
180 |
178 179
|
ssdif2d |
⊢ ( ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) → ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ⊆ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) |
181 |
|
dfin4 |
⊢ ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) = ( ∪ ran ( (,) ∘ 𝑓 ) ∖ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) |
182 |
|
inss2 |
⊢ ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ⊆ 𝐴 |
183 |
181 182
|
eqsstrri |
⊢ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ⊆ 𝐴 |
184 |
180 183
|
sstrdi |
⊢ ( ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) → ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ⊆ 𝐴 ) |
185 |
|
sseq1 |
⊢ ( 𝑏 = ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) → ( 𝑏 ⊆ 𝐴 ↔ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ⊆ 𝐴 ) ) |
186 |
185
|
anbi1d |
⊢ ( 𝑏 = ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) → ( ( 𝑏 ⊆ 𝐴 ∧ ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) = ( vol ‘ 𝑏 ) ) ↔ ( ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ⊆ 𝐴 ∧ ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) = ( vol ‘ 𝑏 ) ) ) ) |
187 |
|
fveq2 |
⊢ ( ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) = 𝑏 → ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) = ( vol ‘ 𝑏 ) ) |
188 |
187
|
eqcoms |
⊢ ( 𝑏 = ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) → ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) = ( vol ‘ 𝑏 ) ) |
189 |
188
|
biantrud |
⊢ ( 𝑏 = ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) → ( ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ⊆ 𝐴 ↔ ( ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ⊆ 𝐴 ∧ ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) = ( vol ‘ 𝑏 ) ) ) ) |
190 |
186 189
|
bitr4d |
⊢ ( 𝑏 = ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) → ( ( 𝑏 ⊆ 𝐴 ∧ ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) = ( vol ‘ 𝑏 ) ) ↔ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ⊆ 𝐴 ) ) |
191 |
190
|
rspcev |
⊢ ( ( ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ⊆ 𝐴 ) → ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) = ( vol ‘ 𝑏 ) ) ) |
192 |
177 184 191
|
syl2an |
⊢ ( ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) ) → ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) = ( vol ‘ 𝑏 ) ) ) |
193 |
192
|
an12s |
⊢ ( ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) ) → ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) = ( vol ‘ 𝑏 ) ) ) |
194 |
193
|
adantrrr |
⊢ ( ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) = ( vol ‘ 𝑏 ) ) ) |
195 |
194
|
adantlr |
⊢ ( ( ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) = ( vol ‘ 𝑏 ) ) ) |
196 |
195
|
adantll |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) = ( vol ‘ 𝑏 ) ) ) |
197 |
|
difss |
⊢ ( 𝐴 ∖ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ⊆ 𝐴 |
198 |
|
ovolsscl |
⊢ ( ( ( 𝐴 ∖ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ ( 𝐴 ∖ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ∈ ℝ ) |
199 |
197 198
|
mp3an1 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ ( 𝐴 ∖ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ∈ ℝ ) |
200 |
199
|
ad5antr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ ( 𝐴 ∖ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ∈ ℝ ) |
201 |
|
simp-6r |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ 𝐴 ) ∈ ℝ ) |
202 |
|
simpl |
⊢ ( ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) → 𝑢 ∈ ℝ ) |
203 |
202
|
ad4antlr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → 𝑢 ∈ ℝ ) |
204 |
|
difdif2 |
⊢ ( 𝐴 ∖ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) = ( ( 𝐴 ∖ 𝑠 ) ∪ ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ) |
205 |
204
|
fveq2i |
⊢ ( vol* ‘ ( 𝐴 ∖ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) = ( vol* ‘ ( ( 𝐴 ∖ 𝑠 ) ∪ ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) |
206 |
|
difss |
⊢ ( 𝐴 ∖ 𝑠 ) ⊆ 𝐴 |
207 |
|
inss1 |
⊢ ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ⊆ 𝐴 |
208 |
206 207
|
unssi |
⊢ ( ( 𝐴 ∖ 𝑠 ) ∪ ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ) ⊆ 𝐴 |
209 |
|
ovolsscl |
⊢ ( ( ( ( 𝐴 ∖ 𝑠 ) ∪ ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ ( ( 𝐴 ∖ 𝑠 ) ∪ ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ∈ ℝ ) |
210 |
208 209
|
mp3an1 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ ( ( 𝐴 ∖ 𝑠 ) ∪ ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ∈ ℝ ) |
211 |
210
|
ad5antr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ ( ( 𝐴 ∖ 𝑠 ) ∪ ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ∈ ℝ ) |
212 |
|
ovolsscl |
⊢ ( ( ( 𝐴 ∖ 𝑠 ) ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ ( 𝐴 ∖ 𝑠 ) ) ∈ ℝ ) |
213 |
206 212
|
mp3an1 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ ( 𝐴 ∖ 𝑠 ) ) ∈ ℝ ) |
214 |
213
|
ad5antr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ ( 𝐴 ∖ 𝑠 ) ) ∈ ℝ ) |
215 |
|
ovolsscl |
⊢ ( ( ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ) ∈ ℝ ) |
216 |
207 215
|
mp3an1 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ) ∈ ℝ ) |
217 |
216
|
ad5antr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ) ∈ ℝ ) |
218 |
214 217
|
readdcld |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( ( vol* ‘ ( 𝐴 ∖ 𝑠 ) ) + ( vol* ‘ ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ∈ ℝ ) |
219 |
3 202 98
|
syl2an |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) → ( ( vol* ‘ 𝐴 ) − 𝑢 ) ∈ ℝ ) |
220 |
219
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( ( vol* ‘ 𝐴 ) − 𝑢 ) ∈ ℝ ) |
221 |
|
ssdifss |
⊢ ( 𝐴 ⊆ ℝ → ( 𝐴 ∖ 𝑠 ) ⊆ ℝ ) |
222 |
221
|
adantr |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( 𝐴 ∖ 𝑠 ) ⊆ ℝ ) |
223 |
|
ssinss1 |
⊢ ( 𝐴 ⊆ ℝ → ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ⊆ ℝ ) |
224 |
223
|
adantr |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ⊆ ℝ ) |
225 |
|
ovolun |
⊢ ( ( ( ( 𝐴 ∖ 𝑠 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝐴 ∖ 𝑠 ) ) ∈ ℝ ) ∧ ( ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ⊆ ℝ ∧ ( vol* ‘ ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ) ∈ ℝ ) ) → ( vol* ‘ ( ( 𝐴 ∖ 𝑠 ) ∪ ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ≤ ( ( vol* ‘ ( 𝐴 ∖ 𝑠 ) ) + ( vol* ‘ ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ) |
226 |
222 213 224 216 225
|
syl22anc |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ ( ( 𝐴 ∖ 𝑠 ) ∪ ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ≤ ( ( vol* ‘ ( 𝐴 ∖ 𝑠 ) ) + ( vol* ‘ ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ) |
227 |
226
|
ad5antr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ ( ( 𝐴 ∖ 𝑠 ) ∪ ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ≤ ( ( vol* ‘ ( 𝐴 ∖ 𝑠 ) ) + ( vol* ‘ ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ) |
228 |
124
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ∈ ℝ ) |
229 |
228
|
adantr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ∈ ℝ ) |
230 |
150
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) |
231 |
|
simprl |
⊢ ( ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) → 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) |
232 |
150
|
adantr |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) |
233 |
|
ovolsscl |
⊢ ( ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ∪ ran ( (,) ∘ 𝑓 ) ⊆ ℝ ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) → ( vol* ‘ 𝑠 ) ∈ ℝ ) |
234 |
64 233
|
mp3an2 |
⊢ ( ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) → ( vol* ‘ 𝑠 ) ∈ ℝ ) |
235 |
231 232 234
|
syl2anr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ 𝑠 ) ∈ ℝ ) |
236 |
230 235
|
resubcld |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( vol* ‘ 𝑠 ) ) ∈ ℝ ) |
237 |
|
ssdif |
⊢ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) → ( 𝐴 ∖ 𝑠 ) ⊆ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ) |
238 |
|
difss |
⊢ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) |
239 |
238 64
|
sstri |
⊢ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ⊆ ℝ |
240 |
|
ovolss |
⊢ ( ( ( 𝐴 ∖ 𝑠 ) ⊆ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ∧ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ⊆ ℝ ) → ( vol* ‘ ( 𝐴 ∖ 𝑠 ) ) ≤ ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ) ) |
241 |
237 239 240
|
sylancl |
⊢ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) → ( vol* ‘ ( 𝐴 ∖ 𝑠 ) ) ≤ ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ) ) |
242 |
241
|
adantr |
⊢ ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) → ( vol* ‘ ( 𝐴 ∖ 𝑠 ) ) ≤ ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ) ) |
243 |
242
|
ad3antlr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ ( 𝐴 ∖ 𝑠 ) ) ≤ ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ) ) |
244 |
|
eleq1w |
⊢ ( 𝑏 = 𝑠 → ( 𝑏 ∈ dom vol ↔ 𝑠 ∈ dom vol ) ) |
245 |
244 32
|
vtoclga |
⊢ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → 𝑠 ∈ dom vol ) |
246 |
245
|
adantr |
⊢ ( ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) → 𝑠 ∈ dom vol ) |
247 |
|
mblsplit |
⊢ ( ( 𝑠 ∈ dom vol ∧ ∪ ran ( (,) ∘ 𝑓 ) ⊆ ℝ ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) = ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝑠 ) ) + ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ) ) ) |
248 |
64 247
|
mp3an2 |
⊢ ( ( 𝑠 ∈ dom vol ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) = ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝑠 ) ) + ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ) ) ) |
249 |
246 232 248
|
syl2anr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) = ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝑠 ) ) + ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ) ) ) |
250 |
249
|
eqcomd |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝑠 ) ) + ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ) ) = ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ) |
251 |
230
|
recnd |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ℂ ) |
252 |
|
inss1 |
⊢ ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝑠 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) |
253 |
|
ovolsscl |
⊢ ( ( ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝑠 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ∪ ran ( (,) ∘ 𝑓 ) ⊆ ℝ ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝑠 ) ) ∈ ℝ ) |
254 |
252 64 253
|
mp3an12 |
⊢ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝑠 ) ) ∈ ℝ ) |
255 |
150 254
|
syl |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝑠 ) ) ∈ ℝ ) |
256 |
255
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝑠 ) ) ∈ ℝ ) |
257 |
256
|
recnd |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝑠 ) ) ∈ ℂ ) |
258 |
|
ovolsscl |
⊢ ( ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ∪ ran ( (,) ∘ 𝑓 ) ⊆ ℝ ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ) ∈ ℝ ) |
259 |
238 64 258
|
mp3an12 |
⊢ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ) ∈ ℝ ) |
260 |
150 259
|
syl |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ) ∈ ℝ ) |
261 |
260
|
recnd |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ) ∈ ℂ ) |
262 |
261
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ) ∈ ℂ ) |
263 |
251 257 262
|
subaddd |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝑠 ) ) ) = ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ) ↔ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝑠 ) ) + ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ) ) = ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ) ) |
264 |
250 263
|
mpbird |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝑠 ) ) ) = ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ) ) |
265 |
|
sseqin2 |
⊢ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ↔ ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝑠 ) = 𝑠 ) |
266 |
265
|
biimpi |
⊢ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) → ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝑠 ) = 𝑠 ) |
267 |
266
|
fveq2d |
⊢ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝑠 ) ) = ( vol* ‘ 𝑠 ) ) |
268 |
267
|
oveq2d |
⊢ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) → ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝑠 ) ) ) = ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( vol* ‘ 𝑠 ) ) ) |
269 |
268
|
adantr |
⊢ ( ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) → ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝑠 ) ) ) = ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( vol* ‘ 𝑠 ) ) ) |
270 |
269
|
ad2antll |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝑠 ) ) ) = ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( vol* ‘ 𝑠 ) ) ) |
271 |
264 270
|
eqtr3d |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ) = ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( vol* ‘ 𝑠 ) ) ) |
272 |
243 271
|
breqtrd |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ ( 𝐴 ∖ 𝑠 ) ) ≤ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( vol* ‘ 𝑠 ) ) ) |
273 |
|
simprrr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) |
274 |
230 229 235 273
|
ltsub23d |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( vol* ‘ 𝑠 ) ) < ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) |
275 |
214 236 229 272 274
|
lelttrd |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ ( 𝐴 ∖ 𝑠 ) ) < ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) |
276 |
216
|
ad4antr |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( vol* ‘ ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ) ∈ ℝ ) |
277 |
126 132
|
jctil |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ∈ ℝ* ∧ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ∈ ℝ ) ) |
278 |
|
simpr |
⊢ ( ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) |
279 |
|
ovolge0 |
⊢ ( ∪ ran ( (,) ∘ 𝑔 ) ⊆ ℝ → 0 ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ) |
280 |
130 279
|
ax-mp |
⊢ 0 ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) |
281 |
278 280
|
jctil |
⊢ ( ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) → ( 0 ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) |
282 |
|
xrrege0 |
⊢ ( ( ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ∈ ℝ* ∧ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ∈ ℝ ) ∧ ( 0 ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ∈ ℝ ) |
283 |
277 281 282
|
syl2an |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ∈ ℝ ) |
284 |
|
difss |
⊢ ( ∪ ran ( (,) ∘ 𝑔 ) ∖ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) |
285 |
|
ovolsscl |
⊢ ( ( ( ∪ ran ( (,) ∘ 𝑔 ) ∖ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ∪ ran ( (,) ∘ 𝑔 ) ⊆ ℝ ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ∈ ℝ ) → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑔 ) ∖ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ∈ ℝ ) |
286 |
284 130 285
|
mp3an12 |
⊢ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ∈ ℝ → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑔 ) ∖ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ∈ ℝ ) |
287 |
283 286
|
syl |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑔 ) ∖ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ∈ ℝ ) |
288 |
|
ssun2 |
⊢ ( ∪ ran ( (,) ∘ 𝑔 ) ∩ 𝐴 ) ⊆ ( ( ∪ ran ( (,) ∘ 𝑔 ) ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ∪ ( ∪ ran ( (,) ∘ 𝑔 ) ∩ 𝐴 ) ) |
289 |
|
incom |
⊢ ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) = ( ∪ ran ( (,) ∘ 𝑔 ) ∩ 𝐴 ) |
290 |
|
difdif2 |
⊢ ( ∪ ran ( (,) ∘ 𝑔 ) ∖ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) = ( ( ∪ ran ( (,) ∘ 𝑔 ) ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ∪ ( ∪ ran ( (,) ∘ 𝑔 ) ∩ 𝐴 ) ) |
291 |
288 289 290
|
3sstr4i |
⊢ ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ⊆ ( ∪ ran ( (,) ∘ 𝑔 ) ∖ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) |
292 |
284 130
|
sstri |
⊢ ( ∪ ran ( (,) ∘ 𝑔 ) ∖ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ⊆ ℝ |
293 |
291 292
|
pm3.2i |
⊢ ( ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ⊆ ( ∪ ran ( (,) ∘ 𝑔 ) ∖ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∧ ( ∪ ran ( (,) ∘ 𝑔 ) ∖ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ⊆ ℝ ) |
294 |
|
ovolss |
⊢ ( ( ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ⊆ ( ∪ ran ( (,) ∘ 𝑔 ) ∖ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∧ ( ∪ ran ( (,) ∘ 𝑔 ) ∖ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ⊆ ℝ ) → ( vol* ‘ ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ) ≤ ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑔 ) ∖ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ) |
295 |
293 294
|
mp1i |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( vol* ‘ ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ) ≤ ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑔 ) ∖ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ) |
296 |
|
opnmbl |
⊢ ( ∪ ran ( (,) ∘ 𝑓 ) ∈ ( topGen ‘ ran (,) ) → ∪ ran ( (,) ∘ 𝑓 ) ∈ dom vol ) |
297 |
159 296
|
ax-mp |
⊢ ∪ ran ( (,) ∘ 𝑓 ) ∈ dom vol |
298 |
|
difmbl |
⊢ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∈ dom vol ∧ 𝐴 ∈ dom vol ) → ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∈ dom vol ) |
299 |
297 298
|
mpan |
⊢ ( 𝐴 ∈ dom vol → ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∈ dom vol ) |
300 |
299
|
ad4antlr |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∈ dom vol ) |
301 |
|
mblsplit |
⊢ ( ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∈ dom vol ∧ ∪ ran ( (,) ∘ 𝑔 ) ⊆ ℝ ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ∈ ℝ ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) = ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑔 ) ∩ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) + ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑔 ) ∖ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ) ) |
302 |
130 301
|
mp3an2 |
⊢ ( ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∈ dom vol ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ∈ ℝ ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) = ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑔 ) ∩ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) + ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑔 ) ∖ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ) ) |
303 |
300 283 302
|
syl2anc |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) = ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑔 ) ∩ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) + ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑔 ) ∖ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ) ) |
304 |
|
sseqin2 |
⊢ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ↔ ( ∪ ran ( (,) ∘ 𝑔 ) ∩ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) = ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) |
305 |
304
|
biimpi |
⊢ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) → ( ∪ ran ( (,) ∘ 𝑔 ) ∩ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) = ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) |
306 |
305
|
fveq2d |
⊢ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑔 ) ∩ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) = ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) |
307 |
306
|
oveq1d |
⊢ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) → ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑔 ) ∩ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) + ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑔 ) ∖ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ) = ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑔 ) ∖ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ) ) |
308 |
307
|
ad2antrl |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑔 ) ∩ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) + ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑔 ) ∖ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ) = ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑔 ) ∖ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ) ) |
309 |
303 308
|
eqtr2d |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑔 ) ∖ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ) = ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ) |
310 |
283
|
recnd |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ∈ ℂ ) |
311 |
97
|
adantr |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∈ ℝ ) |
312 |
311
|
recnd |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∈ ℂ ) |
313 |
287
|
recnd |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑔 ) ∖ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ∈ ℂ ) |
314 |
310 312 313
|
subaddd |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) − ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) = ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑔 ) ∖ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ↔ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑔 ) ∖ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ) = ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) |
315 |
309 314
|
mpbird |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) − ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) = ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑔 ) ∖ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ) |
316 |
|
simprr |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) |
317 |
283 311 228
|
lesubadd2d |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) − ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ≤ ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ↔ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) |
318 |
316 317
|
mpbird |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) − ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ≤ ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) |
319 |
315 318
|
eqbrtrrd |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑔 ) ∖ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ≤ ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) |
320 |
276 287 228 295 319
|
letrd |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( vol* ‘ ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ) ≤ ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) |
321 |
320
|
adantr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ) ≤ ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) |
322 |
214 217 229 229 275 321
|
ltleaddd |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( ( vol* ‘ ( 𝐴 ∖ 𝑠 ) ) + ( vol* ‘ ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) < ( ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) |
323 |
98
|
recnd |
⊢ ( ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝑢 ∈ ℝ ) → ( ( vol* ‘ 𝐴 ) − 𝑢 ) ∈ ℂ ) |
324 |
323
|
2halvesd |
⊢ ( ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝑢 ∈ ℝ ) → ( ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) = ( ( vol* ‘ 𝐴 ) − 𝑢 ) ) |
325 |
324
|
adantll |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑢 ∈ ℝ ) → ( ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) = ( ( vol* ‘ 𝐴 ) − 𝑢 ) ) |
326 |
325
|
ad2ant2r |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) → ( ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) = ( ( vol* ‘ 𝐴 ) − 𝑢 ) ) |
327 |
326
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) = ( ( vol* ‘ 𝐴 ) − 𝑢 ) ) |
328 |
322 327
|
breqtrd |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( ( vol* ‘ ( 𝐴 ∖ 𝑠 ) ) + ( vol* ‘ ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) < ( ( vol* ‘ 𝐴 ) − 𝑢 ) ) |
329 |
211 218 220 227 328
|
lelttrd |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ ( ( 𝐴 ∖ 𝑠 ) ∪ ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) < ( ( vol* ‘ 𝐴 ) − 𝑢 ) ) |
330 |
205 329
|
eqbrtrid |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ ( 𝐴 ∖ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) < ( ( vol* ‘ 𝐴 ) − 𝑢 ) ) |
331 |
200 201 203 330
|
ltsub13d |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → 𝑢 < ( ( vol* ‘ 𝐴 ) − ( vol* ‘ ( 𝐴 ∖ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ) ) |
332 |
|
opnmbl |
⊢ ( ∪ ran ( (,) ∘ 𝑔 ) ∈ ( topGen ‘ ran (,) ) → ∪ ran ( (,) ∘ 𝑔 ) ∈ dom vol ) |
333 |
172 332
|
ax-mp |
⊢ ∪ ran ( (,) ∘ 𝑔 ) ∈ dom vol |
334 |
|
difmbl |
⊢ ( ( 𝑠 ∈ dom vol ∧ ∪ ran ( (,) ∘ 𝑔 ) ∈ dom vol ) → ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ∈ dom vol ) |
335 |
245 333 334
|
sylancl |
⊢ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ∈ dom vol ) |
336 |
|
mblvol |
⊢ ( ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ∈ dom vol → ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) = ( vol* ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) |
337 |
335 336
|
syl |
⊢ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) = ( vol* ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) |
338 |
337
|
ad2antrl |
⊢ ( ( ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) = ( vol* ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) |
339 |
|
sseqin2 |
⊢ ( ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ⊆ 𝐴 ↔ ( 𝐴 ∩ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) = ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) |
340 |
184 339
|
sylib |
⊢ ( ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) → ( 𝐴 ∩ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) = ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) |
341 |
340
|
fveq2d |
⊢ ( ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) → ( vol* ‘ ( 𝐴 ∩ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) = ( vol* ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) |
342 |
341
|
adantrr |
⊢ ( ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) → ( vol* ‘ ( 𝐴 ∩ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) = ( vol* ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) |
343 |
342
|
ad2ant2rl |
⊢ ( ( ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ ( 𝐴 ∩ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) = ( vol* ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) |
344 |
338 343
|
eqtr4d |
⊢ ( ( ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) = ( vol* ‘ ( 𝐴 ∩ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ) |
345 |
344
|
adantll |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) = ( vol* ‘ ( 𝐴 ∩ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ) |
346 |
335
|
adantr |
⊢ ( ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) → ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ∈ dom vol ) |
347 |
|
simp-4l |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ) |
348 |
|
mblsplit |
⊢ ( ( ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ∈ dom vol ∧ 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ 𝐴 ) = ( ( vol* ‘ ( 𝐴 ∩ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) + ( vol* ‘ ( 𝐴 ∖ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ) ) |
349 |
348
|
3expb |
⊢ ( ( ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ∈ dom vol ∧ ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ) → ( vol* ‘ 𝐴 ) = ( ( vol* ‘ ( 𝐴 ∩ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) + ( vol* ‘ ( 𝐴 ∖ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ) ) |
350 |
349
|
eqcomd |
⊢ ( ( ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ∈ dom vol ∧ ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ) → ( ( vol* ‘ ( 𝐴 ∩ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) + ( vol* ‘ ( 𝐴 ∖ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ) = ( vol* ‘ 𝐴 ) ) |
351 |
346 347 350
|
syl2anr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( ( vol* ‘ ( 𝐴 ∩ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) + ( vol* ‘ ( 𝐴 ∖ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ) = ( vol* ‘ 𝐴 ) ) |
352 |
|
recn |
⊢ ( ( vol* ‘ 𝐴 ) ∈ ℝ → ( vol* ‘ 𝐴 ) ∈ ℂ ) |
353 |
352
|
adantl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ 𝐴 ) ∈ ℂ ) |
354 |
199
|
recnd |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ ( 𝐴 ∖ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ∈ ℂ ) |
355 |
|
inss1 |
⊢ ( 𝐴 ∩ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ⊆ 𝐴 |
356 |
|
ovolsscl |
⊢ ( ( ( 𝐴 ∩ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ ( 𝐴 ∩ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ∈ ℝ ) |
357 |
355 356
|
mp3an1 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ ( 𝐴 ∩ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ∈ ℝ ) |
358 |
357
|
recnd |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ ( 𝐴 ∩ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ∈ ℂ ) |
359 |
353 354 358
|
subadd2d |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( ( ( vol* ‘ 𝐴 ) − ( vol* ‘ ( 𝐴 ∖ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ) = ( vol* ‘ ( 𝐴 ∩ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ↔ ( ( vol* ‘ ( 𝐴 ∩ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) + ( vol* ‘ ( 𝐴 ∖ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ) = ( vol* ‘ 𝐴 ) ) ) |
360 |
359
|
ad5antr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( ( ( vol* ‘ 𝐴 ) − ( vol* ‘ ( 𝐴 ∖ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ) = ( vol* ‘ ( 𝐴 ∩ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ↔ ( ( vol* ‘ ( 𝐴 ∩ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) + ( vol* ‘ ( 𝐴 ∖ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ) = ( vol* ‘ 𝐴 ) ) ) |
361 |
351 360
|
mpbird |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( ( vol* ‘ 𝐴 ) − ( vol* ‘ ( 𝐴 ∖ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ) = ( vol* ‘ ( 𝐴 ∩ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ) |
362 |
345 361
|
eqtr4d |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) = ( ( vol* ‘ 𝐴 ) − ( vol* ‘ ( 𝐴 ∖ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ) ) |
363 |
331 362
|
breqtrrd |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → 𝑢 < ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) |
364 |
|
fvex |
⊢ ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ∈ V |
365 |
|
eqeq1 |
⊢ ( 𝑣 = ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) → ( 𝑣 = ( vol ‘ 𝑏 ) ↔ ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) = ( vol ‘ 𝑏 ) ) ) |
366 |
365
|
anbi2d |
⊢ ( 𝑣 = ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) → ( ( 𝑏 ⊆ 𝐴 ∧ 𝑣 = ( vol ‘ 𝑏 ) ) ↔ ( 𝑏 ⊆ 𝐴 ∧ ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) = ( vol ‘ 𝑏 ) ) ) ) |
367 |
366
|
rexbidv |
⊢ ( 𝑣 = ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) → ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑣 = ( vol ‘ 𝑏 ) ) ↔ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) = ( vol ‘ 𝑏 ) ) ) ) |
368 |
|
breq2 |
⊢ ( 𝑣 = ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) → ( 𝑢 < 𝑣 ↔ 𝑢 < ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ) |
369 |
367 368
|
anbi12d |
⊢ ( 𝑣 = ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) → ( ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑣 = ( vol ‘ 𝑏 ) ) ∧ 𝑢 < 𝑣 ) ↔ ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) = ( vol ‘ 𝑏 ) ) ∧ 𝑢 < ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ) ) |
370 |
364 369
|
spcev |
⊢ ( ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) = ( vol ‘ 𝑏 ) ) ∧ 𝑢 < ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) → ∃ 𝑣 ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑣 = ( vol ‘ 𝑏 ) ) ∧ 𝑢 < 𝑣 ) ) |
371 |
196 363 370
|
syl2anc |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ∃ 𝑣 ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑣 = ( vol ‘ 𝑏 ) ) ∧ 𝑢 < 𝑣 ) ) |
372 |
163 371
|
rexlimddv |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ∃ 𝑣 ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑣 = ( vol ‘ 𝑏 ) ) ∧ 𝑢 < 𝑣 ) ) |
373 |
142 372
|
exlimddv |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ∃ 𝑣 ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑣 = ( vol ‘ 𝑏 ) ) ∧ 𝑢 < 𝑣 ) ) |
374 |
78 373
|
exlimddv |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) → ∃ 𝑣 ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑣 = ( vol ‘ 𝑏 ) ) ∧ 𝑢 < 𝑣 ) ) |
375 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑣 → ( 𝑦 = ( vol ‘ 𝑏 ) ↔ 𝑣 = ( vol ‘ 𝑏 ) ) ) |
376 |
375
|
anbi2d |
⊢ ( 𝑦 = 𝑣 → ( ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) ↔ ( 𝑏 ⊆ 𝐴 ∧ 𝑣 = ( vol ‘ 𝑏 ) ) ) ) |
377 |
376
|
rexbidv |
⊢ ( 𝑦 = 𝑣 → ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) ↔ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑣 = ( vol ‘ 𝑏 ) ) ) ) |
378 |
377
|
rexab |
⊢ ( ∃ 𝑣 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } 𝑢 < 𝑣 ↔ ∃ 𝑣 ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑣 = ( vol ‘ 𝑏 ) ) ∧ 𝑢 < 𝑣 ) ) |
379 |
374 378
|
sylibr |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) → ∃ 𝑣 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } 𝑢 < 𝑣 ) |
380 |
2 3 42 379
|
eqsupd |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) → sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) = ( vol* ‘ 𝐴 ) ) |
381 |
380
|
eqcomd |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) → ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) |