| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ltso |
⊢ < Or ℝ |
| 2 |
1
|
a1i |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) → < Or ℝ ) |
| 3 |
|
simplr |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) → ( vol* ‘ 𝐴 ) ∈ ℝ ) |
| 4 |
|
vex |
⊢ 𝑢 ∈ V |
| 5 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑢 → ( 𝑦 = ( vol ‘ 𝑏 ) ↔ 𝑢 = ( vol ‘ 𝑏 ) ) ) |
| 6 |
5
|
anbi2d |
⊢ ( 𝑦 = 𝑢 → ( ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) ↔ ( 𝑏 ⊆ 𝐴 ∧ 𝑢 = ( vol ‘ 𝑏 ) ) ) ) |
| 7 |
6
|
rexbidv |
⊢ ( 𝑦 = 𝑢 → ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) ↔ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑢 = ( vol ‘ 𝑏 ) ) ) ) |
| 8 |
4 7
|
elab |
⊢ ( 𝑢 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ↔ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑢 = ( vol ‘ 𝑏 ) ) ) |
| 9 |
|
simprl |
⊢ ( ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑢 = ( vol ‘ 𝑏 ) ) ) → 𝑏 ⊆ 𝐴 ) |
| 10 |
|
ovolss |
⊢ ( ( 𝑏 ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ ) → ( vol* ‘ 𝑏 ) ≤ ( vol* ‘ 𝐴 ) ) |
| 11 |
|
sstr |
⊢ ( ( 𝑏 ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ ) → 𝑏 ⊆ ℝ ) |
| 12 |
|
ovolcl |
⊢ ( 𝑏 ⊆ ℝ → ( vol* ‘ 𝑏 ) ∈ ℝ* ) |
| 13 |
11 12
|
syl |
⊢ ( ( 𝑏 ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ ) → ( vol* ‘ 𝑏 ) ∈ ℝ* ) |
| 14 |
|
ovolcl |
⊢ ( 𝐴 ⊆ ℝ → ( vol* ‘ 𝐴 ) ∈ ℝ* ) |
| 15 |
14
|
adantl |
⊢ ( ( 𝑏 ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ ) → ( vol* ‘ 𝐴 ) ∈ ℝ* ) |
| 16 |
|
xrlenlt |
⊢ ( ( ( vol* ‘ 𝑏 ) ∈ ℝ* ∧ ( vol* ‘ 𝐴 ) ∈ ℝ* ) → ( ( vol* ‘ 𝑏 ) ≤ ( vol* ‘ 𝐴 ) ↔ ¬ ( vol* ‘ 𝐴 ) < ( vol* ‘ 𝑏 ) ) ) |
| 17 |
13 15 16
|
syl2anc |
⊢ ( ( 𝑏 ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ ) → ( ( vol* ‘ 𝑏 ) ≤ ( vol* ‘ 𝐴 ) ↔ ¬ ( vol* ‘ 𝐴 ) < ( vol* ‘ 𝑏 ) ) ) |
| 18 |
10 17
|
mpbid |
⊢ ( ( 𝑏 ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ ) → ¬ ( vol* ‘ 𝐴 ) < ( vol* ‘ 𝑏 ) ) |
| 19 |
18
|
ancoms |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑏 ⊆ 𝐴 ) → ¬ ( vol* ‘ 𝐴 ) < ( vol* ‘ 𝑏 ) ) |
| 20 |
9 19
|
sylan2 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑢 = ( vol ‘ 𝑏 ) ) ) ) → ¬ ( vol* ‘ 𝐴 ) < ( vol* ‘ 𝑏 ) ) |
| 21 |
|
simprrr |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑢 = ( vol ‘ 𝑏 ) ) ) ) → 𝑢 = ( vol ‘ 𝑏 ) ) |
| 22 |
|
uniretop |
⊢ ℝ = ∪ ( topGen ‘ ran (,) ) |
| 23 |
22
|
cldss |
⊢ ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → 𝑏 ⊆ ℝ ) |
| 24 |
|
dfss4 |
⊢ ( 𝑏 ⊆ ℝ ↔ ( ℝ ∖ ( ℝ ∖ 𝑏 ) ) = 𝑏 ) |
| 25 |
23 24
|
sylib |
⊢ ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → ( ℝ ∖ ( ℝ ∖ 𝑏 ) ) = 𝑏 ) |
| 26 |
|
rembl |
⊢ ℝ ∈ dom vol |
| 27 |
22
|
cldopn |
⊢ ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → ( ℝ ∖ 𝑏 ) ∈ ( topGen ‘ ran (,) ) ) |
| 28 |
|
opnmbl |
⊢ ( ( ℝ ∖ 𝑏 ) ∈ ( topGen ‘ ran (,) ) → ( ℝ ∖ 𝑏 ) ∈ dom vol ) |
| 29 |
27 28
|
syl |
⊢ ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → ( ℝ ∖ 𝑏 ) ∈ dom vol ) |
| 30 |
|
difmbl |
⊢ ( ( ℝ ∈ dom vol ∧ ( ℝ ∖ 𝑏 ) ∈ dom vol ) → ( ℝ ∖ ( ℝ ∖ 𝑏 ) ) ∈ dom vol ) |
| 31 |
26 29 30
|
sylancr |
⊢ ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → ( ℝ ∖ ( ℝ ∖ 𝑏 ) ) ∈ dom vol ) |
| 32 |
25 31
|
eqeltrrd |
⊢ ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → 𝑏 ∈ dom vol ) |
| 33 |
|
mblvol |
⊢ ( 𝑏 ∈ dom vol → ( vol ‘ 𝑏 ) = ( vol* ‘ 𝑏 ) ) |
| 34 |
32 33
|
syl |
⊢ ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → ( vol ‘ 𝑏 ) = ( vol* ‘ 𝑏 ) ) |
| 35 |
34
|
ad2antrl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑢 = ( vol ‘ 𝑏 ) ) ) ) → ( vol ‘ 𝑏 ) = ( vol* ‘ 𝑏 ) ) |
| 36 |
21 35
|
eqtrd |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑢 = ( vol ‘ 𝑏 ) ) ) ) → 𝑢 = ( vol* ‘ 𝑏 ) ) |
| 37 |
36
|
breq2d |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑢 = ( vol ‘ 𝑏 ) ) ) ) → ( ( vol* ‘ 𝐴 ) < 𝑢 ↔ ( vol* ‘ 𝐴 ) < ( vol* ‘ 𝑏 ) ) ) |
| 38 |
20 37
|
mtbird |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑢 = ( vol ‘ 𝑏 ) ) ) ) → ¬ ( vol* ‘ 𝐴 ) < 𝑢 ) |
| 39 |
38
|
rexlimdvaa |
⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑢 = ( vol ‘ 𝑏 ) ) → ¬ ( vol* ‘ 𝐴 ) < 𝑢 ) ) |
| 40 |
8 39
|
biimtrid |
⊢ ( 𝐴 ⊆ ℝ → ( 𝑢 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } → ¬ ( vol* ‘ 𝐴 ) < 𝑢 ) ) |
| 41 |
40
|
ad2antrr |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) → ( 𝑢 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } → ¬ ( vol* ‘ 𝐴 ) < 𝑢 ) ) |
| 42 |
41
|
imp |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ 𝑢 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } ) → ¬ ( vol* ‘ 𝐴 ) < 𝑢 ) |
| 43 |
|
1rp |
⊢ 1 ∈ ℝ+ |
| 44 |
|
eqid |
⊢ seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) |
| 45 |
44
|
ovolgelb |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 1 ∈ ℝ+ ) → ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) |
| 46 |
43 45
|
mp3an3 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) |
| 47 |
|
elmapi |
⊢ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) → 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 48 |
|
ssid |
⊢ ∪ ran ( (,) ∘ 𝑓 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) |
| 49 |
44
|
ovollb |
⊢ ( ( 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ∪ ran ( (,) ∘ 𝑓 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) |
| 50 |
48 49
|
mpan2 |
⊢ ( 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) |
| 51 |
50
|
adantl |
⊢ ( ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) |
| 52 |
|
eqid |
⊢ ( ( abs ∘ − ) ∘ 𝑓 ) = ( ( abs ∘ − ) ∘ 𝑓 ) |
| 53 |
52 44
|
ovolsf |
⊢ ( 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 54 |
|
frn |
⊢ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) : ℕ ⟶ ( 0 [,) +∞ ) → ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ⊆ ( 0 [,) +∞ ) ) |
| 55 |
|
icossxr |
⊢ ( 0 [,) +∞ ) ⊆ ℝ* |
| 56 |
54 55
|
sstrdi |
⊢ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) : ℕ ⟶ ( 0 [,) +∞ ) → ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ⊆ ℝ* ) |
| 57 |
|
supxrcl |
⊢ ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ⊆ ℝ* → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ∈ ℝ* ) |
| 58 |
53 56 57
|
3syl |
⊢ ( 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ∈ ℝ* ) |
| 59 |
|
peano2re |
⊢ ( ( vol* ‘ 𝐴 ) ∈ ℝ → ( ( vol* ‘ 𝐴 ) + 1 ) ∈ ℝ ) |
| 60 |
59
|
rexrd |
⊢ ( ( vol* ‘ 𝐴 ) ∈ ℝ → ( ( vol* ‘ 𝐴 ) + 1 ) ∈ ℝ* ) |
| 61 |
|
rncoss |
⊢ ran ( (,) ∘ 𝑓 ) ⊆ ran (,) |
| 62 |
61
|
unissi |
⊢ ∪ ran ( (,) ∘ 𝑓 ) ⊆ ∪ ran (,) |
| 63 |
|
unirnioo |
⊢ ℝ = ∪ ran (,) |
| 64 |
62 63
|
sseqtrri |
⊢ ∪ ran ( (,) ∘ 𝑓 ) ⊆ ℝ |
| 65 |
|
ovolcl |
⊢ ( ∪ ran ( (,) ∘ 𝑓 ) ⊆ ℝ → ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ* ) |
| 66 |
64 65
|
ax-mp |
⊢ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ* |
| 67 |
|
xrletr |
⊢ ( ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ* ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ∈ ℝ* ∧ ( ( vol* ‘ 𝐴 ) + 1 ) ∈ ℝ* ) → ( ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) |
| 68 |
66 67
|
mp3an1 |
⊢ ( ( sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ∈ ℝ* ∧ ( ( vol* ‘ 𝐴 ) + 1 ) ∈ ℝ* ) → ( ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) |
| 69 |
58 60 68
|
syl2anr |
⊢ ( ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) → ( ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) |
| 70 |
51 69
|
mpand |
⊢ ( ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) → ( sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) |
| 71 |
70
|
adantll |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) → ( sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) |
| 72 |
47 71
|
sylan2 |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) → ( sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) |
| 73 |
72
|
anim2d |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) → ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) → ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ) |
| 74 |
73
|
reximdva |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) → ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ) |
| 75 |
46 74
|
mpd |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) |
| 76 |
|
rexex |
⊢ ( ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) → ∃ 𝑓 ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) |
| 77 |
75 76
|
syl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ∃ 𝑓 ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) |
| 78 |
77
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) → ∃ 𝑓 ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) |
| 79 |
|
difss |
⊢ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) |
| 80 |
79 64
|
sstri |
⊢ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ℝ |
| 81 |
|
ovolcl |
⊢ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ℝ → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∈ ℝ* ) |
| 82 |
80 81
|
ax-mp |
⊢ ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∈ ℝ* |
| 83 |
59 82
|
jctil |
⊢ ( ( vol* ‘ 𝐴 ) ∈ ℝ → ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∈ ℝ* ∧ ( ( vol* ‘ 𝐴 ) + 1 ) ∈ ℝ ) ) |
| 84 |
83
|
ad4antlr |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∈ ℝ* ∧ ( ( vol* ‘ 𝐴 ) + 1 ) ∈ ℝ ) ) |
| 85 |
|
ovolss |
⊢ ( ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ∪ ran ( (,) ∘ 𝑓 ) ⊆ ℝ ) → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ) |
| 86 |
79 64 85
|
mp2an |
⊢ ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) |
| 87 |
|
xrletr |
⊢ ( ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∈ ℝ* ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ* ∧ ( ( vol* ‘ 𝐴 ) + 1 ) ∈ ℝ* ) → ( ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) |
| 88 |
82 66 87
|
mp3an12 |
⊢ ( ( ( vol* ‘ 𝐴 ) + 1 ) ∈ ℝ* → ( ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) |
| 89 |
60 88
|
syl |
⊢ ( ( vol* ‘ 𝐴 ) ∈ ℝ → ( ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) |
| 90 |
86 89
|
mpani |
⊢ ( ( vol* ‘ 𝐴 ) ∈ ℝ → ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) |
| 91 |
90
|
ad4antlr |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) → ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) |
| 92 |
91
|
impr |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) |
| 93 |
|
ovolge0 |
⊢ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ℝ → 0 ≤ ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) |
| 94 |
80 93
|
ax-mp |
⊢ 0 ≤ ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) |
| 95 |
92 94
|
jctil |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ( 0 ≤ ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∧ ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) |
| 96 |
|
xrrege0 |
⊢ ( ( ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∈ ℝ* ∧ ( ( vol* ‘ 𝐴 ) + 1 ) ∈ ℝ ) ∧ ( 0 ≤ ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∧ ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∈ ℝ ) |
| 97 |
84 95 96
|
syl2anc |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∈ ℝ ) |
| 98 |
|
resubcl |
⊢ ( ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝑢 ∈ ℝ ) → ( ( vol* ‘ 𝐴 ) − 𝑢 ) ∈ ℝ ) |
| 99 |
98
|
adantrr |
⊢ ( ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) → ( ( vol* ‘ 𝐴 ) − 𝑢 ) ∈ ℝ ) |
| 100 |
|
posdif |
⊢ ( ( 𝑢 ∈ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( 𝑢 < ( vol* ‘ 𝐴 ) ↔ 0 < ( ( vol* ‘ 𝐴 ) − 𝑢 ) ) ) |
| 101 |
100
|
ancoms |
⊢ ( ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝑢 ∈ ℝ ) → ( 𝑢 < ( vol* ‘ 𝐴 ) ↔ 0 < ( ( vol* ‘ 𝐴 ) − 𝑢 ) ) ) |
| 102 |
101
|
biimpd |
⊢ ( ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝑢 ∈ ℝ ) → ( 𝑢 < ( vol* ‘ 𝐴 ) → 0 < ( ( vol* ‘ 𝐴 ) − 𝑢 ) ) ) |
| 103 |
102
|
impr |
⊢ ( ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) → 0 < ( ( vol* ‘ 𝐴 ) − 𝑢 ) ) |
| 104 |
99 103
|
elrpd |
⊢ ( ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) → ( ( vol* ‘ 𝐴 ) − 𝑢 ) ∈ ℝ+ ) |
| 105 |
104
|
rphalfcld |
⊢ ( ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) → ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ∈ ℝ+ ) |
| 106 |
3 105
|
sylan |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) → ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ∈ ℝ+ ) |
| 107 |
106
|
adantr |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ∈ ℝ+ ) |
| 108 |
|
eqid |
⊢ seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) |
| 109 |
108
|
ovolgelb |
⊢ ( ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ℝ ∧ ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∈ ℝ ∧ ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ∈ ℝ+ ) → ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) |
| 110 |
80 109
|
mp3an1 |
⊢ ( ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∈ ℝ ∧ ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ∈ ℝ+ ) → ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) |
| 111 |
97 107 110
|
syl2anc |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) |
| 112 |
|
elmapi |
⊢ ( 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) → 𝑔 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 113 |
|
ssid |
⊢ ∪ ran ( (,) ∘ 𝑔 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) |
| 114 |
108
|
ovollb |
⊢ ( ( 𝑔 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ∪ ran ( (,) ∘ 𝑔 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) |
| 115 |
113 114
|
mpan2 |
⊢ ( 𝑔 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) |
| 116 |
115
|
adantl |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ 𝑔 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) |
| 117 |
|
eqid |
⊢ ( ( abs ∘ − ) ∘ 𝑔 ) = ( ( abs ∘ − ) ∘ 𝑔 ) |
| 118 |
117 108
|
ovolsf |
⊢ ( 𝑔 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 119 |
|
frn |
⊢ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) : ℕ ⟶ ( 0 [,) +∞ ) → ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) ⊆ ( 0 [,) +∞ ) ) |
| 120 |
119 55
|
sstrdi |
⊢ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) : ℕ ⟶ ( 0 [,) +∞ ) → ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) ⊆ ℝ* ) |
| 121 |
|
supxrcl |
⊢ ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) ⊆ ℝ* → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ∈ ℝ* ) |
| 122 |
118 120 121
|
3syl |
⊢ ( 𝑔 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ∈ ℝ* ) |
| 123 |
99
|
rehalfcld |
⊢ ( ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) → ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ∈ ℝ ) |
| 124 |
3 123
|
sylan |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) → ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ∈ ℝ ) |
| 125 |
124
|
adantr |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ∈ ℝ ) |
| 126 |
97 125
|
readdcld |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ∈ ℝ ) |
| 127 |
126
|
rexrd |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ∈ ℝ* ) |
| 128 |
|
rncoss |
⊢ ran ( (,) ∘ 𝑔 ) ⊆ ran (,) |
| 129 |
128
|
unissi |
⊢ ∪ ran ( (,) ∘ 𝑔 ) ⊆ ∪ ran (,) |
| 130 |
129 63
|
sseqtrri |
⊢ ∪ ran ( (,) ∘ 𝑔 ) ⊆ ℝ |
| 131 |
|
ovolcl |
⊢ ( ∪ ran ( (,) ∘ 𝑔 ) ⊆ ℝ → ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ∈ ℝ* ) |
| 132 |
130 131
|
ax-mp |
⊢ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ∈ ℝ* |
| 133 |
|
xrletr |
⊢ ( ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ∈ ℝ* ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ∈ ℝ* ∧ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ∈ ℝ* ) → ( ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) |
| 134 |
132 133
|
mp3an1 |
⊢ ( ( sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ∈ ℝ* ∧ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ∈ ℝ* ) → ( ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) |
| 135 |
122 127 134
|
syl2anr |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ 𝑔 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) → ( ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) |
| 136 |
116 135
|
mpand |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ 𝑔 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) → ( sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) |
| 137 |
112 136
|
sylan2 |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) → ( sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) |
| 138 |
137
|
anim2d |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) → ( ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) → ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ) |
| 139 |
138
|
reximdva |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ( ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) → ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ) |
| 140 |
111 139
|
mpd |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) |
| 141 |
|
rexex |
⊢ ( ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) → ∃ 𝑔 ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) |
| 142 |
140 141
|
syl |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ∃ 𝑔 ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) |
| 143 |
59 66
|
jctil |
⊢ ( ( vol* ‘ 𝐴 ) ∈ ℝ → ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ* ∧ ( ( vol* ‘ 𝐴 ) + 1 ) ∈ ℝ ) ) |
| 144 |
143
|
ad3antlr |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) → ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ* ∧ ( ( vol* ‘ 𝐴 ) + 1 ) ∈ ℝ ) ) |
| 145 |
|
ovolge0 |
⊢ ( ∪ ran ( (,) ∘ 𝑓 ) ⊆ ℝ → 0 ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ) |
| 146 |
64 145
|
ax-mp |
⊢ 0 ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) |
| 147 |
146
|
jctl |
⊢ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) → ( 0 ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) |
| 148 |
147
|
adantl |
⊢ ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) → ( 0 ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) |
| 149 |
|
xrrege0 |
⊢ ( ( ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ* ∧ ( ( vol* ‘ 𝐴 ) + 1 ) ∈ ℝ ) ∧ ( 0 ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) |
| 150 |
144 148 149
|
syl2an |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) |
| 151 |
150 125
|
resubcld |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ∈ ℝ ) |
| 152 |
150 107
|
ltsubrpd |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ) |
| 153 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
| 154 |
|
retopbas |
⊢ ran (,) ∈ TopBases |
| 155 |
|
bastg |
⊢ ( ran (,) ∈ TopBases → ran (,) ⊆ ( topGen ‘ ran (,) ) ) |
| 156 |
154 155
|
ax-mp |
⊢ ran (,) ⊆ ( topGen ‘ ran (,) ) |
| 157 |
61 156
|
sstri |
⊢ ran ( (,) ∘ 𝑓 ) ⊆ ( topGen ‘ ran (,) ) |
| 158 |
|
uniopn |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ran ( (,) ∘ 𝑓 ) ⊆ ( topGen ‘ ran (,) ) ) → ∪ ran ( (,) ∘ 𝑓 ) ∈ ( topGen ‘ ran (,) ) ) |
| 159 |
153 157 158
|
mp2an |
⊢ ∪ ran ( (,) ∘ 𝑓 ) ∈ ( topGen ‘ ran (,) ) |
| 160 |
|
mblfinlem2 |
⊢ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∈ ( topGen ‘ ran (,) ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ∈ ℝ ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ) → ∃ 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) |
| 161 |
159 160
|
mp3an1 |
⊢ ( ( ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ∈ ℝ ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ) → ∃ 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) |
| 162 |
151 152 161
|
syl2anc |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ∃ 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) |
| 163 |
162
|
adantr |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ∃ 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) |
| 164 |
|
indif2 |
⊢ ( 𝑠 ∩ ( ℝ ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) = ( ( 𝑠 ∩ ℝ ) ∖ ∪ ran ( (,) ∘ 𝑔 ) ) |
| 165 |
22
|
cldss |
⊢ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → 𝑠 ⊆ ℝ ) |
| 166 |
|
dfss2 |
⊢ ( 𝑠 ⊆ ℝ ↔ ( 𝑠 ∩ ℝ ) = 𝑠 ) |
| 167 |
165 166
|
sylib |
⊢ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → ( 𝑠 ∩ ℝ ) = 𝑠 ) |
| 168 |
167
|
difeq1d |
⊢ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → ( ( 𝑠 ∩ ℝ ) ∖ ∪ ran ( (,) ∘ 𝑔 ) ) = ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) |
| 169 |
164 168
|
eqtrid |
⊢ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → ( 𝑠 ∩ ( ℝ ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) = ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) |
| 170 |
128 156
|
sstri |
⊢ ran ( (,) ∘ 𝑔 ) ⊆ ( topGen ‘ ran (,) ) |
| 171 |
|
uniopn |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ran ( (,) ∘ 𝑔 ) ⊆ ( topGen ‘ ran (,) ) ) → ∪ ran ( (,) ∘ 𝑔 ) ∈ ( topGen ‘ ran (,) ) ) |
| 172 |
153 170 171
|
mp2an |
⊢ ∪ ran ( (,) ∘ 𝑔 ) ∈ ( topGen ‘ ran (,) ) |
| 173 |
22
|
opncld |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ∪ ran ( (,) ∘ 𝑔 ) ∈ ( topGen ‘ ran (,) ) ) → ( ℝ ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
| 174 |
153 172 173
|
mp2an |
⊢ ( ℝ ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) |
| 175 |
|
incld |
⊢ ( ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( ℝ ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) → ( 𝑠 ∩ ( ℝ ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
| 176 |
174 175
|
mpan2 |
⊢ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → ( 𝑠 ∩ ( ℝ ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
| 177 |
169 176
|
eqeltrrd |
⊢ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
| 178 |
|
simpr |
⊢ ( ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) → 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) |
| 179 |
|
simpl |
⊢ ( ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) → ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ) |
| 180 |
178 179
|
ssdif2d |
⊢ ( ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) → ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ⊆ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) |
| 181 |
|
dfin4 |
⊢ ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) = ( ∪ ran ( (,) ∘ 𝑓 ) ∖ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) |
| 182 |
|
inss2 |
⊢ ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝐴 ) ⊆ 𝐴 |
| 183 |
181 182
|
eqsstrri |
⊢ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ⊆ 𝐴 |
| 184 |
180 183
|
sstrdi |
⊢ ( ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) → ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ⊆ 𝐴 ) |
| 185 |
|
sseq1 |
⊢ ( 𝑏 = ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) → ( 𝑏 ⊆ 𝐴 ↔ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ⊆ 𝐴 ) ) |
| 186 |
185
|
anbi1d |
⊢ ( 𝑏 = ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) → ( ( 𝑏 ⊆ 𝐴 ∧ ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) = ( vol ‘ 𝑏 ) ) ↔ ( ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ⊆ 𝐴 ∧ ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) = ( vol ‘ 𝑏 ) ) ) ) |
| 187 |
|
fveq2 |
⊢ ( ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) = 𝑏 → ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) = ( vol ‘ 𝑏 ) ) |
| 188 |
187
|
eqcoms |
⊢ ( 𝑏 = ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) → ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) = ( vol ‘ 𝑏 ) ) |
| 189 |
188
|
biantrud |
⊢ ( 𝑏 = ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) → ( ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ⊆ 𝐴 ↔ ( ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ⊆ 𝐴 ∧ ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) = ( vol ‘ 𝑏 ) ) ) ) |
| 190 |
186 189
|
bitr4d |
⊢ ( 𝑏 = ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) → ( ( 𝑏 ⊆ 𝐴 ∧ ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) = ( vol ‘ 𝑏 ) ) ↔ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ⊆ 𝐴 ) ) |
| 191 |
190
|
rspcev |
⊢ ( ( ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ⊆ 𝐴 ) → ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) = ( vol ‘ 𝑏 ) ) ) |
| 192 |
177 184 191
|
syl2an |
⊢ ( ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) ) → ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) = ( vol ‘ 𝑏 ) ) ) |
| 193 |
192
|
an12s |
⊢ ( ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) ) → ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) = ( vol ‘ 𝑏 ) ) ) |
| 194 |
193
|
adantrrr |
⊢ ( ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) = ( vol ‘ 𝑏 ) ) ) |
| 195 |
194
|
adantlr |
⊢ ( ( ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) = ( vol ‘ 𝑏 ) ) ) |
| 196 |
195
|
adantll |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) = ( vol ‘ 𝑏 ) ) ) |
| 197 |
|
difss |
⊢ ( 𝐴 ∖ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ⊆ 𝐴 |
| 198 |
|
ovolsscl |
⊢ ( ( ( 𝐴 ∖ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ ( 𝐴 ∖ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ∈ ℝ ) |
| 199 |
197 198
|
mp3an1 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ ( 𝐴 ∖ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ∈ ℝ ) |
| 200 |
199
|
ad5antr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ ( 𝐴 ∖ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ∈ ℝ ) |
| 201 |
|
simp-6r |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ 𝐴 ) ∈ ℝ ) |
| 202 |
|
simpl |
⊢ ( ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) → 𝑢 ∈ ℝ ) |
| 203 |
202
|
ad4antlr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → 𝑢 ∈ ℝ ) |
| 204 |
|
difdif2 |
⊢ ( 𝐴 ∖ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) = ( ( 𝐴 ∖ 𝑠 ) ∪ ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ) |
| 205 |
204
|
fveq2i |
⊢ ( vol* ‘ ( 𝐴 ∖ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) = ( vol* ‘ ( ( 𝐴 ∖ 𝑠 ) ∪ ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) |
| 206 |
|
difss |
⊢ ( 𝐴 ∖ 𝑠 ) ⊆ 𝐴 |
| 207 |
|
inss1 |
⊢ ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ⊆ 𝐴 |
| 208 |
206 207
|
unssi |
⊢ ( ( 𝐴 ∖ 𝑠 ) ∪ ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ) ⊆ 𝐴 |
| 209 |
|
ovolsscl |
⊢ ( ( ( ( 𝐴 ∖ 𝑠 ) ∪ ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ ( ( 𝐴 ∖ 𝑠 ) ∪ ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ∈ ℝ ) |
| 210 |
208 209
|
mp3an1 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ ( ( 𝐴 ∖ 𝑠 ) ∪ ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ∈ ℝ ) |
| 211 |
210
|
ad5antr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ ( ( 𝐴 ∖ 𝑠 ) ∪ ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ∈ ℝ ) |
| 212 |
|
ovolsscl |
⊢ ( ( ( 𝐴 ∖ 𝑠 ) ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ ( 𝐴 ∖ 𝑠 ) ) ∈ ℝ ) |
| 213 |
206 212
|
mp3an1 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ ( 𝐴 ∖ 𝑠 ) ) ∈ ℝ ) |
| 214 |
213
|
ad5antr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ ( 𝐴 ∖ 𝑠 ) ) ∈ ℝ ) |
| 215 |
|
ovolsscl |
⊢ ( ( ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ) ∈ ℝ ) |
| 216 |
207 215
|
mp3an1 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ) ∈ ℝ ) |
| 217 |
216
|
ad5antr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ) ∈ ℝ ) |
| 218 |
214 217
|
readdcld |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( ( vol* ‘ ( 𝐴 ∖ 𝑠 ) ) + ( vol* ‘ ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ∈ ℝ ) |
| 219 |
3 202 98
|
syl2an |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) → ( ( vol* ‘ 𝐴 ) − 𝑢 ) ∈ ℝ ) |
| 220 |
219
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( ( vol* ‘ 𝐴 ) − 𝑢 ) ∈ ℝ ) |
| 221 |
|
ssdifss |
⊢ ( 𝐴 ⊆ ℝ → ( 𝐴 ∖ 𝑠 ) ⊆ ℝ ) |
| 222 |
221
|
adantr |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( 𝐴 ∖ 𝑠 ) ⊆ ℝ ) |
| 223 |
|
ssinss1 |
⊢ ( 𝐴 ⊆ ℝ → ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ⊆ ℝ ) |
| 224 |
223
|
adantr |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ⊆ ℝ ) |
| 225 |
|
ovolun |
⊢ ( ( ( ( 𝐴 ∖ 𝑠 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝐴 ∖ 𝑠 ) ) ∈ ℝ ) ∧ ( ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ⊆ ℝ ∧ ( vol* ‘ ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ) ∈ ℝ ) ) → ( vol* ‘ ( ( 𝐴 ∖ 𝑠 ) ∪ ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ≤ ( ( vol* ‘ ( 𝐴 ∖ 𝑠 ) ) + ( vol* ‘ ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ) |
| 226 |
222 213 224 216 225
|
syl22anc |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ ( ( 𝐴 ∖ 𝑠 ) ∪ ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ≤ ( ( vol* ‘ ( 𝐴 ∖ 𝑠 ) ) + ( vol* ‘ ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ) |
| 227 |
226
|
ad5antr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ ( ( 𝐴 ∖ 𝑠 ) ∪ ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ≤ ( ( vol* ‘ ( 𝐴 ∖ 𝑠 ) ) + ( vol* ‘ ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ) |
| 228 |
124
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ∈ ℝ ) |
| 229 |
228
|
adantr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ∈ ℝ ) |
| 230 |
150
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) |
| 231 |
|
simprl |
⊢ ( ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) → 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) |
| 232 |
150
|
adantr |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) |
| 233 |
|
ovolsscl |
⊢ ( ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ∪ ran ( (,) ∘ 𝑓 ) ⊆ ℝ ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) → ( vol* ‘ 𝑠 ) ∈ ℝ ) |
| 234 |
64 233
|
mp3an2 |
⊢ ( ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) → ( vol* ‘ 𝑠 ) ∈ ℝ ) |
| 235 |
231 232 234
|
syl2anr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ 𝑠 ) ∈ ℝ ) |
| 236 |
230 235
|
resubcld |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( vol* ‘ 𝑠 ) ) ∈ ℝ ) |
| 237 |
|
ssdif |
⊢ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) → ( 𝐴 ∖ 𝑠 ) ⊆ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ) |
| 238 |
|
difss |
⊢ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) |
| 239 |
238 64
|
sstri |
⊢ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ⊆ ℝ |
| 240 |
|
ovolss |
⊢ ( ( ( 𝐴 ∖ 𝑠 ) ⊆ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ∧ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ⊆ ℝ ) → ( vol* ‘ ( 𝐴 ∖ 𝑠 ) ) ≤ ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ) ) |
| 241 |
237 239 240
|
sylancl |
⊢ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) → ( vol* ‘ ( 𝐴 ∖ 𝑠 ) ) ≤ ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ) ) |
| 242 |
241
|
adantr |
⊢ ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) → ( vol* ‘ ( 𝐴 ∖ 𝑠 ) ) ≤ ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ) ) |
| 243 |
242
|
ad3antlr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ ( 𝐴 ∖ 𝑠 ) ) ≤ ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ) ) |
| 244 |
|
eleq1w |
⊢ ( 𝑏 = 𝑠 → ( 𝑏 ∈ dom vol ↔ 𝑠 ∈ dom vol ) ) |
| 245 |
244 32
|
vtoclga |
⊢ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → 𝑠 ∈ dom vol ) |
| 246 |
245
|
adantr |
⊢ ( ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) → 𝑠 ∈ dom vol ) |
| 247 |
|
mblsplit |
⊢ ( ( 𝑠 ∈ dom vol ∧ ∪ ran ( (,) ∘ 𝑓 ) ⊆ ℝ ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) = ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝑠 ) ) + ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ) ) ) |
| 248 |
64 247
|
mp3an2 |
⊢ ( ( 𝑠 ∈ dom vol ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) = ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝑠 ) ) + ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ) ) ) |
| 249 |
246 232 248
|
syl2anr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) = ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝑠 ) ) + ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ) ) ) |
| 250 |
249
|
eqcomd |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝑠 ) ) + ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ) ) = ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ) |
| 251 |
230
|
recnd |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ℂ ) |
| 252 |
|
inss1 |
⊢ ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝑠 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) |
| 253 |
|
ovolsscl |
⊢ ( ( ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝑠 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ∪ ran ( (,) ∘ 𝑓 ) ⊆ ℝ ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝑠 ) ) ∈ ℝ ) |
| 254 |
252 64 253
|
mp3an12 |
⊢ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝑠 ) ) ∈ ℝ ) |
| 255 |
150 254
|
syl |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝑠 ) ) ∈ ℝ ) |
| 256 |
255
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝑠 ) ) ∈ ℝ ) |
| 257 |
256
|
recnd |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝑠 ) ) ∈ ℂ ) |
| 258 |
|
ovolsscl |
⊢ ( ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ∪ ran ( (,) ∘ 𝑓 ) ⊆ ℝ ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ ) → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ) ∈ ℝ ) |
| 259 |
238 64 258
|
mp3an12 |
⊢ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ∈ ℝ → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ) ∈ ℝ ) |
| 260 |
150 259
|
syl |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ) ∈ ℝ ) |
| 261 |
260
|
recnd |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ) ∈ ℂ ) |
| 262 |
261
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ) ∈ ℂ ) |
| 263 |
251 257 262
|
subaddd |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝑠 ) ) ) = ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ) ↔ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝑠 ) ) + ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ) ) = ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ) ) |
| 264 |
250 263
|
mpbird |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝑠 ) ) ) = ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ) ) |
| 265 |
|
sseqin2 |
⊢ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ↔ ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝑠 ) = 𝑠 ) |
| 266 |
265
|
biimpi |
⊢ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) → ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝑠 ) = 𝑠 ) |
| 267 |
266
|
fveq2d |
⊢ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝑠 ) ) = ( vol* ‘ 𝑠 ) ) |
| 268 |
267
|
oveq2d |
⊢ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) → ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝑠 ) ) ) = ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( vol* ‘ 𝑠 ) ) ) |
| 269 |
268
|
adantr |
⊢ ( ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) → ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝑠 ) ) ) = ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( vol* ‘ 𝑠 ) ) ) |
| 270 |
269
|
ad2antll |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∩ 𝑠 ) ) ) = ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( vol* ‘ 𝑠 ) ) ) |
| 271 |
264 270
|
eqtr3d |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝑠 ) ) = ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( vol* ‘ 𝑠 ) ) ) |
| 272 |
243 271
|
breqtrd |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ ( 𝐴 ∖ 𝑠 ) ) ≤ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( vol* ‘ 𝑠 ) ) ) |
| 273 |
|
simprrr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) |
| 274 |
230 229 235 273
|
ltsub23d |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( vol* ‘ 𝑠 ) ) < ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) |
| 275 |
214 236 229 272 274
|
lelttrd |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ ( 𝐴 ∖ 𝑠 ) ) < ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) |
| 276 |
216
|
ad4antr |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( vol* ‘ ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ) ∈ ℝ ) |
| 277 |
126 132
|
jctil |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ∈ ℝ* ∧ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ∈ ℝ ) ) |
| 278 |
|
simpr |
⊢ ( ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) |
| 279 |
|
ovolge0 |
⊢ ( ∪ ran ( (,) ∘ 𝑔 ) ⊆ ℝ → 0 ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ) |
| 280 |
130 279
|
ax-mp |
⊢ 0 ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) |
| 281 |
278 280
|
jctil |
⊢ ( ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) → ( 0 ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) |
| 282 |
|
xrrege0 |
⊢ ( ( ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ∈ ℝ* ∧ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ∈ ℝ ) ∧ ( 0 ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ∈ ℝ ) |
| 283 |
277 281 282
|
syl2an |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ∈ ℝ ) |
| 284 |
|
difss |
⊢ ( ∪ ran ( (,) ∘ 𝑔 ) ∖ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) |
| 285 |
|
ovolsscl |
⊢ ( ( ( ∪ ran ( (,) ∘ 𝑔 ) ∖ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ∪ ran ( (,) ∘ 𝑔 ) ⊆ ℝ ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ∈ ℝ ) → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑔 ) ∖ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ∈ ℝ ) |
| 286 |
284 130 285
|
mp3an12 |
⊢ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ∈ ℝ → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑔 ) ∖ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ∈ ℝ ) |
| 287 |
283 286
|
syl |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑔 ) ∖ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ∈ ℝ ) |
| 288 |
|
ssun2 |
⊢ ( ∪ ran ( (,) ∘ 𝑔 ) ∩ 𝐴 ) ⊆ ( ( ∪ ran ( (,) ∘ 𝑔 ) ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ∪ ( ∪ ran ( (,) ∘ 𝑔 ) ∩ 𝐴 ) ) |
| 289 |
|
incom |
⊢ ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) = ( ∪ ran ( (,) ∘ 𝑔 ) ∩ 𝐴 ) |
| 290 |
|
difdif2 |
⊢ ( ∪ ran ( (,) ∘ 𝑔 ) ∖ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) = ( ( ∪ ran ( (,) ∘ 𝑔 ) ∖ ∪ ran ( (,) ∘ 𝑓 ) ) ∪ ( ∪ ran ( (,) ∘ 𝑔 ) ∩ 𝐴 ) ) |
| 291 |
288 289 290
|
3sstr4i |
⊢ ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ⊆ ( ∪ ran ( (,) ∘ 𝑔 ) ∖ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) |
| 292 |
284 130
|
sstri |
⊢ ( ∪ ran ( (,) ∘ 𝑔 ) ∖ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ⊆ ℝ |
| 293 |
291 292
|
pm3.2i |
⊢ ( ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ⊆ ( ∪ ran ( (,) ∘ 𝑔 ) ∖ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∧ ( ∪ ran ( (,) ∘ 𝑔 ) ∖ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ⊆ ℝ ) |
| 294 |
|
ovolss |
⊢ ( ( ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ⊆ ( ∪ ran ( (,) ∘ 𝑔 ) ∖ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∧ ( ∪ ran ( (,) ∘ 𝑔 ) ∖ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ⊆ ℝ ) → ( vol* ‘ ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ) ≤ ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑔 ) ∖ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ) |
| 295 |
293 294
|
mp1i |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( vol* ‘ ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ) ≤ ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑔 ) ∖ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ) |
| 296 |
|
opnmbl |
⊢ ( ∪ ran ( (,) ∘ 𝑓 ) ∈ ( topGen ‘ ran (,) ) → ∪ ran ( (,) ∘ 𝑓 ) ∈ dom vol ) |
| 297 |
159 296
|
ax-mp |
⊢ ∪ ran ( (,) ∘ 𝑓 ) ∈ dom vol |
| 298 |
|
difmbl |
⊢ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∈ dom vol ∧ 𝐴 ∈ dom vol ) → ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∈ dom vol ) |
| 299 |
297 298
|
mpan |
⊢ ( 𝐴 ∈ dom vol → ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∈ dom vol ) |
| 300 |
299
|
ad4antlr |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∈ dom vol ) |
| 301 |
|
mblsplit |
⊢ ( ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∈ dom vol ∧ ∪ ran ( (,) ∘ 𝑔 ) ⊆ ℝ ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ∈ ℝ ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) = ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑔 ) ∩ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) + ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑔 ) ∖ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ) ) |
| 302 |
130 301
|
mp3an2 |
⊢ ( ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ∈ dom vol ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ∈ ℝ ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) = ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑔 ) ∩ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) + ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑔 ) ∖ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ) ) |
| 303 |
300 283 302
|
syl2anc |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) = ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑔 ) ∩ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) + ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑔 ) ∖ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ) ) |
| 304 |
|
sseqin2 |
⊢ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ↔ ( ∪ ran ( (,) ∘ 𝑔 ) ∩ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) = ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) |
| 305 |
304
|
biimpi |
⊢ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) → ( ∪ ran ( (,) ∘ 𝑔 ) ∩ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) = ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) |
| 306 |
305
|
fveq2d |
⊢ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑔 ) ∩ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) = ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) |
| 307 |
306
|
oveq1d |
⊢ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) → ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑔 ) ∩ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) + ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑔 ) ∖ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ) = ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑔 ) ∖ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ) ) |
| 308 |
307
|
ad2antrl |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑔 ) ∩ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) + ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑔 ) ∖ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ) = ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑔 ) ∖ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ) ) |
| 309 |
303 308
|
eqtr2d |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑔 ) ∖ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ) = ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ) |
| 310 |
283
|
recnd |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ∈ ℂ ) |
| 311 |
97
|
adantr |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∈ ℝ ) |
| 312 |
311
|
recnd |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ∈ ℂ ) |
| 313 |
287
|
recnd |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑔 ) ∖ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ∈ ℂ ) |
| 314 |
310 312 313
|
subaddd |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) − ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) = ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑔 ) ∖ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ↔ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑔 ) ∖ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ) = ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) |
| 315 |
309 314
|
mpbird |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) − ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) = ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑔 ) ∖ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ) |
| 316 |
|
simprr |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) |
| 317 |
283 311 228
|
lesubadd2d |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) − ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ≤ ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ↔ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) |
| 318 |
316 317
|
mpbird |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) − ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ≤ ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) |
| 319 |
315 318
|
eqbrtrrd |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑔 ) ∖ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) ) ≤ ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) |
| 320 |
276 287 228 295 319
|
letrd |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( vol* ‘ ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ) ≤ ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) |
| 321 |
320
|
adantr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ) ≤ ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) |
| 322 |
214 217 229 229 275 321
|
ltleaddd |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( ( vol* ‘ ( 𝐴 ∖ 𝑠 ) ) + ( vol* ‘ ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) < ( ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) |
| 323 |
98
|
recnd |
⊢ ( ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝑢 ∈ ℝ ) → ( ( vol* ‘ 𝐴 ) − 𝑢 ) ∈ ℂ ) |
| 324 |
323
|
2halvesd |
⊢ ( ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝑢 ∈ ℝ ) → ( ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) = ( ( vol* ‘ 𝐴 ) − 𝑢 ) ) |
| 325 |
324
|
adantll |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑢 ∈ ℝ ) → ( ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) = ( ( vol* ‘ 𝐴 ) − 𝑢 ) ) |
| 326 |
325
|
ad2ant2r |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) → ( ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) = ( ( vol* ‘ 𝐴 ) − 𝑢 ) ) |
| 327 |
326
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) = ( ( vol* ‘ 𝐴 ) − 𝑢 ) ) |
| 328 |
322 327
|
breqtrd |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( ( vol* ‘ ( 𝐴 ∖ 𝑠 ) ) + ( vol* ‘ ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) < ( ( vol* ‘ 𝐴 ) − 𝑢 ) ) |
| 329 |
211 218 220 227 328
|
lelttrd |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ ( ( 𝐴 ∖ 𝑠 ) ∪ ( 𝐴 ∩ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) < ( ( vol* ‘ 𝐴 ) − 𝑢 ) ) |
| 330 |
205 329
|
eqbrtrid |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ ( 𝐴 ∖ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) < ( ( vol* ‘ 𝐴 ) − 𝑢 ) ) |
| 331 |
200 201 203 330
|
ltsub13d |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → 𝑢 < ( ( vol* ‘ 𝐴 ) − ( vol* ‘ ( 𝐴 ∖ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ) ) |
| 332 |
|
opnmbl |
⊢ ( ∪ ran ( (,) ∘ 𝑔 ) ∈ ( topGen ‘ ran (,) ) → ∪ ran ( (,) ∘ 𝑔 ) ∈ dom vol ) |
| 333 |
172 332
|
ax-mp |
⊢ ∪ ran ( (,) ∘ 𝑔 ) ∈ dom vol |
| 334 |
|
difmbl |
⊢ ( ( 𝑠 ∈ dom vol ∧ ∪ ran ( (,) ∘ 𝑔 ) ∈ dom vol ) → ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ∈ dom vol ) |
| 335 |
245 333 334
|
sylancl |
⊢ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ∈ dom vol ) |
| 336 |
|
mblvol |
⊢ ( ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ∈ dom vol → ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) = ( vol* ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) |
| 337 |
335 336
|
syl |
⊢ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) → ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) = ( vol* ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) |
| 338 |
337
|
ad2antrl |
⊢ ( ( ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) = ( vol* ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) |
| 339 |
|
sseqin2 |
⊢ ( ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ⊆ 𝐴 ↔ ( 𝐴 ∩ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) = ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) |
| 340 |
184 339
|
sylib |
⊢ ( ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) → ( 𝐴 ∩ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) = ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) |
| 341 |
340
|
fveq2d |
⊢ ( ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) → ( vol* ‘ ( 𝐴 ∩ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) = ( vol* ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) |
| 342 |
341
|
adantrr |
⊢ ( ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) → ( vol* ‘ ( 𝐴 ∩ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) = ( vol* ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) |
| 343 |
342
|
ad2ant2rl |
⊢ ( ( ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol* ‘ ( 𝐴 ∩ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) = ( vol* ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) |
| 344 |
338 343
|
eqtr4d |
⊢ ( ( ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) = ( vol* ‘ ( 𝐴 ∩ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ) |
| 345 |
344
|
adantll |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) = ( vol* ‘ ( 𝐴 ∩ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ) |
| 346 |
335
|
adantr |
⊢ ( ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) → ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ∈ dom vol ) |
| 347 |
|
simp-4l |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ) |
| 348 |
|
mblsplit |
⊢ ( ( ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ∈ dom vol ∧ 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ 𝐴 ) = ( ( vol* ‘ ( 𝐴 ∩ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) + ( vol* ‘ ( 𝐴 ∖ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ) ) |
| 349 |
348
|
3expb |
⊢ ( ( ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ∈ dom vol ∧ ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ) → ( vol* ‘ 𝐴 ) = ( ( vol* ‘ ( 𝐴 ∩ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) + ( vol* ‘ ( 𝐴 ∖ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ) ) |
| 350 |
349
|
eqcomd |
⊢ ( ( ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ∈ dom vol ∧ ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ) → ( ( vol* ‘ ( 𝐴 ∩ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) + ( vol* ‘ ( 𝐴 ∖ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ) = ( vol* ‘ 𝐴 ) ) |
| 351 |
346 347 350
|
syl2anr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( ( vol* ‘ ( 𝐴 ∩ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) + ( vol* ‘ ( 𝐴 ∖ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ) = ( vol* ‘ 𝐴 ) ) |
| 352 |
|
recn |
⊢ ( ( vol* ‘ 𝐴 ) ∈ ℝ → ( vol* ‘ 𝐴 ) ∈ ℂ ) |
| 353 |
352
|
adantl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ 𝐴 ) ∈ ℂ ) |
| 354 |
199
|
recnd |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ ( 𝐴 ∖ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ∈ ℂ ) |
| 355 |
|
inss1 |
⊢ ( 𝐴 ∩ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ⊆ 𝐴 |
| 356 |
|
ovolsscl |
⊢ ( ( ( 𝐴 ∩ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ ( 𝐴 ∩ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ∈ ℝ ) |
| 357 |
355 356
|
mp3an1 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ ( 𝐴 ∩ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ∈ ℝ ) |
| 358 |
357
|
recnd |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ ( 𝐴 ∩ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ∈ ℂ ) |
| 359 |
353 354 358
|
subadd2d |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( ( ( vol* ‘ 𝐴 ) − ( vol* ‘ ( 𝐴 ∖ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ) = ( vol* ‘ ( 𝐴 ∩ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ↔ ( ( vol* ‘ ( 𝐴 ∩ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) + ( vol* ‘ ( 𝐴 ∖ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ) = ( vol* ‘ 𝐴 ) ) ) |
| 360 |
359
|
ad5antr |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( ( ( vol* ‘ 𝐴 ) − ( vol* ‘ ( 𝐴 ∖ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ) = ( vol* ‘ ( 𝐴 ∩ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ↔ ( ( vol* ‘ ( 𝐴 ∩ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) + ( vol* ‘ ( 𝐴 ∖ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ) = ( vol* ‘ 𝐴 ) ) ) |
| 361 |
351 360
|
mpbird |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( ( vol* ‘ 𝐴 ) − ( vol* ‘ ( 𝐴 ∖ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ) = ( vol* ‘ ( 𝐴 ∩ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ) |
| 362 |
345 361
|
eqtr4d |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) = ( ( vol* ‘ 𝐴 ) − ( vol* ‘ ( 𝐴 ∖ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ) ) |
| 363 |
331 362
|
breqtrrd |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → 𝑢 < ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) |
| 364 |
|
fvex |
⊢ ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ∈ V |
| 365 |
|
eqeq1 |
⊢ ( 𝑣 = ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) → ( 𝑣 = ( vol ‘ 𝑏 ) ↔ ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) = ( vol ‘ 𝑏 ) ) ) |
| 366 |
365
|
anbi2d |
⊢ ( 𝑣 = ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) → ( ( 𝑏 ⊆ 𝐴 ∧ 𝑣 = ( vol ‘ 𝑏 ) ) ↔ ( 𝑏 ⊆ 𝐴 ∧ ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) = ( vol ‘ 𝑏 ) ) ) ) |
| 367 |
366
|
rexbidv |
⊢ ( 𝑣 = ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) → ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑣 = ( vol ‘ 𝑏 ) ) ↔ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) = ( vol ‘ 𝑏 ) ) ) ) |
| 368 |
|
breq2 |
⊢ ( 𝑣 = ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) → ( 𝑢 < 𝑣 ↔ 𝑢 < ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ) |
| 369 |
367 368
|
anbi12d |
⊢ ( 𝑣 = ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) → ( ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑣 = ( vol ‘ 𝑏 ) ) ∧ 𝑢 < 𝑣 ) ↔ ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) = ( vol ‘ 𝑏 ) ) ∧ 𝑢 < ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) ) ) |
| 370 |
364 369
|
spcev |
⊢ ( ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) = ( vol ‘ 𝑏 ) ) ∧ 𝑢 < ( vol ‘ ( 𝑠 ∖ ∪ ran ( (,) ∘ 𝑔 ) ) ) ) → ∃ 𝑣 ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑣 = ( vol ‘ 𝑏 ) ) ∧ 𝑢 < 𝑣 ) ) |
| 371 |
196 363 370
|
syl2anc |
⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) ∧ ( 𝑠 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ∧ ( 𝑠 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) − ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) < ( vol* ‘ 𝑠 ) ) ) ) → ∃ 𝑣 ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑣 = ( vol ‘ 𝑏 ) ) ∧ 𝑢 < 𝑣 ) ) |
| 372 |
163 371
|
rexlimddv |
⊢ ( ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) ∧ ( ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑔 ) ) ≤ ( ( vol* ‘ ( ∪ ran ( (,) ∘ 𝑓 ) ∖ 𝐴 ) ) + ( ( ( vol* ‘ 𝐴 ) − 𝑢 ) / 2 ) ) ) ) → ∃ 𝑣 ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑣 = ( vol ‘ 𝑏 ) ) ∧ 𝑢 < 𝑣 ) ) |
| 373 |
142 372
|
exlimddv |
⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝑓 ) ) ≤ ( ( vol* ‘ 𝐴 ) + 1 ) ) ) → ∃ 𝑣 ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑣 = ( vol ‘ 𝑏 ) ) ∧ 𝑢 < 𝑣 ) ) |
| 374 |
78 373
|
exlimddv |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) → ∃ 𝑣 ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑣 = ( vol ‘ 𝑏 ) ) ∧ 𝑢 < 𝑣 ) ) |
| 375 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑣 → ( 𝑦 = ( vol ‘ 𝑏 ) ↔ 𝑣 = ( vol ‘ 𝑏 ) ) ) |
| 376 |
375
|
anbi2d |
⊢ ( 𝑦 = 𝑣 → ( ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) ↔ ( 𝑏 ⊆ 𝐴 ∧ 𝑣 = ( vol ‘ 𝑏 ) ) ) ) |
| 377 |
376
|
rexbidv |
⊢ ( 𝑦 = 𝑣 → ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) ↔ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑣 = ( vol ‘ 𝑏 ) ) ) ) |
| 378 |
377
|
rexab |
⊢ ( ∃ 𝑣 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } 𝑢 < 𝑣 ↔ ∃ 𝑣 ( ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑣 = ( vol ‘ 𝑏 ) ) ∧ 𝑢 < 𝑣 ) ) |
| 379 |
374 378
|
sylibr |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑢 ∈ ℝ ∧ 𝑢 < ( vol* ‘ 𝐴 ) ) ) → ∃ 𝑣 ∈ { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } 𝑢 < 𝑣 ) |
| 380 |
2 3 42 379
|
eqsupd |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) → sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) = ( vol* ‘ 𝐴 ) ) |
| 381 |
380
|
eqcomd |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ∈ dom vol ) → ( vol* ‘ 𝐴 ) = sup ( { 𝑦 ∣ ∃ 𝑏 ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ( 𝑏 ⊆ 𝐴 ∧ 𝑦 = ( vol ‘ 𝑏 ) ) } , ℝ , < ) ) |