Step |
Hyp |
Ref |
Expression |
1 |
|
heicant.c |
|- ( ph -> C e. ( *Met ` X ) ) |
2 |
|
heicant.d |
|- ( ph -> D e. ( *Met ` Y ) ) |
3 |
|
heicant.j |
|- ( ph -> ( MetOpen ` C ) e. Comp ) |
4 |
|
heicant.x |
|- ( ph -> X =/= (/) ) |
5 |
|
heicant.y |
|- ( ph -> Y =/= (/) ) |
6 |
|
breq2 |
|- ( d = y -> ( ( ( f ` x ) D ( f ` w ) ) < d <-> ( ( f ` x ) D ( f ` w ) ) < y ) ) |
7 |
6
|
imbi2d |
|- ( d = y -> ( ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < d ) <-> ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < y ) ) ) |
8 |
7
|
2ralbidv |
|- ( d = y -> ( A. x e. X A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < d ) <-> A. x e. X A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < y ) ) ) |
9 |
8
|
rexbidv |
|- ( d = y -> ( E. z e. RR+ A. x e. X A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < d ) <-> E. z e. RR+ A. x e. X A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < y ) ) ) |
10 |
9
|
cbvralvw |
|- ( A. d e. RR+ E. z e. RR+ A. x e. X A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < d ) <-> A. y e. RR+ E. z e. RR+ A. x e. X A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < y ) ) |
11 |
|
r19.12 |
|- ( E. z e. RR+ A. x e. X A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < y ) -> A. x e. X E. z e. RR+ A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < y ) ) |
12 |
11
|
ralimi |
|- ( A. y e. RR+ E. z e. RR+ A. x e. X A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < y ) -> A. y e. RR+ A. x e. X E. z e. RR+ A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < y ) ) |
13 |
10 12
|
sylbi |
|- ( A. d e. RR+ E. z e. RR+ A. x e. X A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < d ) -> A. y e. RR+ A. x e. X E. z e. RR+ A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < y ) ) |
14 |
|
rphalfcl |
|- ( d e. RR+ -> ( d / 2 ) e. RR+ ) |
15 |
|
breq2 |
|- ( y = ( d / 2 ) -> ( ( ( f ` x ) D ( f ` w ) ) < y <-> ( ( f ` x ) D ( f ` w ) ) < ( d / 2 ) ) ) |
16 |
15
|
imbi2d |
|- ( y = ( d / 2 ) -> ( ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < y ) <-> ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < ( d / 2 ) ) ) ) |
17 |
16
|
ralbidv |
|- ( y = ( d / 2 ) -> ( A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < y ) <-> A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < ( d / 2 ) ) ) ) |
18 |
17
|
rexbidv |
|- ( y = ( d / 2 ) -> ( E. z e. RR+ A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < y ) <-> E. z e. RR+ A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < ( d / 2 ) ) ) ) |
19 |
18
|
ralbidv |
|- ( y = ( d / 2 ) -> ( A. x e. X E. z e. RR+ A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < y ) <-> A. x e. X E. z e. RR+ A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < ( d / 2 ) ) ) ) |
20 |
19
|
rspcva |
|- ( ( ( d / 2 ) e. RR+ /\ A. y e. RR+ A. x e. X E. z e. RR+ A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < y ) ) -> A. x e. X E. z e. RR+ A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < ( d / 2 ) ) ) |
21 |
3
|
ad3antrrr |
|- ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ A. x e. X E. z e. RR+ A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < ( d / 2 ) ) ) -> ( MetOpen ` C ) e. Comp ) |
22 |
1
|
ad2antrr |
|- ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) -> C e. ( *Met ` X ) ) |
23 |
22
|
anim1i |
|- ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ x e. X ) -> ( C e. ( *Met ` X ) /\ x e. X ) ) |
24 |
|
rphalfcl |
|- ( z e. RR+ -> ( z / 2 ) e. RR+ ) |
25 |
24
|
rpxrd |
|- ( z e. RR+ -> ( z / 2 ) e. RR* ) |
26 |
|
eqid |
|- ( MetOpen ` C ) = ( MetOpen ` C ) |
27 |
26
|
blopn |
|- ( ( C e. ( *Met ` X ) /\ x e. X /\ ( z / 2 ) e. RR* ) -> ( x ( ball ` C ) ( z / 2 ) ) e. ( MetOpen ` C ) ) |
28 |
27
|
3expa |
|- ( ( ( C e. ( *Met ` X ) /\ x e. X ) /\ ( z / 2 ) e. RR* ) -> ( x ( ball ` C ) ( z / 2 ) ) e. ( MetOpen ` C ) ) |
29 |
23 25 28
|
syl2an |
|- ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ x e. X ) /\ z e. RR+ ) -> ( x ( ball ` C ) ( z / 2 ) ) e. ( MetOpen ` C ) ) |
30 |
29
|
adantr |
|- ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ x e. X ) /\ z e. RR+ ) /\ A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < ( d / 2 ) ) ) -> ( x ( ball ` C ) ( z / 2 ) ) e. ( MetOpen ` C ) ) |
31 |
24
|
rpgt0d |
|- ( z e. RR+ -> 0 < ( z / 2 ) ) |
32 |
25 31
|
jca |
|- ( z e. RR+ -> ( ( z / 2 ) e. RR* /\ 0 < ( z / 2 ) ) ) |
33 |
|
xblcntr |
|- ( ( C e. ( *Met ` X ) /\ x e. X /\ ( ( z / 2 ) e. RR* /\ 0 < ( z / 2 ) ) ) -> x e. ( x ( ball ` C ) ( z / 2 ) ) ) |
34 |
33
|
3expa |
|- ( ( ( C e. ( *Met ` X ) /\ x e. X ) /\ ( ( z / 2 ) e. RR* /\ 0 < ( z / 2 ) ) ) -> x e. ( x ( ball ` C ) ( z / 2 ) ) ) |
35 |
23 32 34
|
syl2an |
|- ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ x e. X ) /\ z e. RR+ ) -> x e. ( x ( ball ` C ) ( z / 2 ) ) ) |
36 |
35
|
adantr |
|- ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ x e. X ) /\ z e. RR+ ) /\ A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < ( d / 2 ) ) ) -> x e. ( x ( ball ` C ) ( z / 2 ) ) ) |
37 |
|
opelxpi |
|- ( ( x e. X /\ ( z / 2 ) e. RR+ ) -> <. x , ( z / 2 ) >. e. ( X X. RR+ ) ) |
38 |
24 37
|
sylan2 |
|- ( ( x e. X /\ z e. RR+ ) -> <. x , ( z / 2 ) >. e. ( X X. RR+ ) ) |
39 |
38
|
ad4ant23 |
|- ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ x e. X ) /\ z e. RR+ ) /\ A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < ( d / 2 ) ) ) -> <. x , ( z / 2 ) >. e. ( X X. RR+ ) ) |
40 |
|
rpcn |
|- ( z e. RR+ -> z e. CC ) |
41 |
40
|
2halvesd |
|- ( z e. RR+ -> ( ( z / 2 ) + ( z / 2 ) ) = z ) |
42 |
41
|
breq2d |
|- ( z e. RR+ -> ( ( x C c ) < ( ( z / 2 ) + ( z / 2 ) ) <-> ( x C c ) < z ) ) |
43 |
42
|
imbi1d |
|- ( z e. RR+ -> ( ( ( x C c ) < ( ( z / 2 ) + ( z / 2 ) ) -> ( ( f ` x ) D ( f ` c ) ) < ( d / 2 ) ) <-> ( ( x C c ) < z -> ( ( f ` x ) D ( f ` c ) ) < ( d / 2 ) ) ) ) |
44 |
43
|
ralbidv |
|- ( z e. RR+ -> ( A. c e. X ( ( x C c ) < ( ( z / 2 ) + ( z / 2 ) ) -> ( ( f ` x ) D ( f ` c ) ) < ( d / 2 ) ) <-> A. c e. X ( ( x C c ) < z -> ( ( f ` x ) D ( f ` c ) ) < ( d / 2 ) ) ) ) |
45 |
|
oveq2 |
|- ( c = w -> ( x C c ) = ( x C w ) ) |
46 |
45
|
breq1d |
|- ( c = w -> ( ( x C c ) < z <-> ( x C w ) < z ) ) |
47 |
|
fveq2 |
|- ( c = w -> ( f ` c ) = ( f ` w ) ) |
48 |
47
|
oveq2d |
|- ( c = w -> ( ( f ` x ) D ( f ` c ) ) = ( ( f ` x ) D ( f ` w ) ) ) |
49 |
48
|
breq1d |
|- ( c = w -> ( ( ( f ` x ) D ( f ` c ) ) < ( d / 2 ) <-> ( ( f ` x ) D ( f ` w ) ) < ( d / 2 ) ) ) |
50 |
46 49
|
imbi12d |
|- ( c = w -> ( ( ( x C c ) < z -> ( ( f ` x ) D ( f ` c ) ) < ( d / 2 ) ) <-> ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < ( d / 2 ) ) ) ) |
51 |
50
|
cbvralvw |
|- ( A. c e. X ( ( x C c ) < z -> ( ( f ` x ) D ( f ` c ) ) < ( d / 2 ) ) <-> A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < ( d / 2 ) ) ) |
52 |
44 51
|
bitrdi |
|- ( z e. RR+ -> ( A. c e. X ( ( x C c ) < ( ( z / 2 ) + ( z / 2 ) ) -> ( ( f ` x ) D ( f ` c ) ) < ( d / 2 ) ) <-> A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < ( d / 2 ) ) ) ) |
53 |
52
|
biimpar |
|- ( ( z e. RR+ /\ A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < ( d / 2 ) ) ) -> A. c e. X ( ( x C c ) < ( ( z / 2 ) + ( z / 2 ) ) -> ( ( f ` x ) D ( f ` c ) ) < ( d / 2 ) ) ) |
54 |
53
|
adantll |
|- ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ x e. X ) /\ z e. RR+ ) /\ A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < ( d / 2 ) ) ) -> A. c e. X ( ( x C c ) < ( ( z / 2 ) + ( z / 2 ) ) -> ( ( f ` x ) D ( f ` c ) ) < ( d / 2 ) ) ) |
55 |
|
vex |
|- x e. _V |
56 |
|
ovex |
|- ( z / 2 ) e. _V |
57 |
55 56
|
op1std |
|- ( p = <. x , ( z / 2 ) >. -> ( 1st ` p ) = x ) |
58 |
55 56
|
op2ndd |
|- ( p = <. x , ( z / 2 ) >. -> ( 2nd ` p ) = ( z / 2 ) ) |
59 |
57 58
|
oveq12d |
|- ( p = <. x , ( z / 2 ) >. -> ( ( 1st ` p ) ( ball ` C ) ( 2nd ` p ) ) = ( x ( ball ` C ) ( z / 2 ) ) ) |
60 |
59
|
eqcomd |
|- ( p = <. x , ( z / 2 ) >. -> ( x ( ball ` C ) ( z / 2 ) ) = ( ( 1st ` p ) ( ball ` C ) ( 2nd ` p ) ) ) |
61 |
60
|
biantrurd |
|- ( p = <. x , ( z / 2 ) >. -> ( A. c e. X ( ( ( 1st ` p ) C c ) < ( ( 2nd ` p ) + ( 2nd ` p ) ) -> ( ( f ` ( 1st ` p ) ) D ( f ` c ) ) < ( d / 2 ) ) <-> ( ( x ( ball ` C ) ( z / 2 ) ) = ( ( 1st ` p ) ( ball ` C ) ( 2nd ` p ) ) /\ A. c e. X ( ( ( 1st ` p ) C c ) < ( ( 2nd ` p ) + ( 2nd ` p ) ) -> ( ( f ` ( 1st ` p ) ) D ( f ` c ) ) < ( d / 2 ) ) ) ) ) |
62 |
57
|
oveq1d |
|- ( p = <. x , ( z / 2 ) >. -> ( ( 1st ` p ) C c ) = ( x C c ) ) |
63 |
58 58
|
oveq12d |
|- ( p = <. x , ( z / 2 ) >. -> ( ( 2nd ` p ) + ( 2nd ` p ) ) = ( ( z / 2 ) + ( z / 2 ) ) ) |
64 |
62 63
|
breq12d |
|- ( p = <. x , ( z / 2 ) >. -> ( ( ( 1st ` p ) C c ) < ( ( 2nd ` p ) + ( 2nd ` p ) ) <-> ( x C c ) < ( ( z / 2 ) + ( z / 2 ) ) ) ) |
65 |
57
|
fveq2d |
|- ( p = <. x , ( z / 2 ) >. -> ( f ` ( 1st ` p ) ) = ( f ` x ) ) |
66 |
65
|
oveq1d |
|- ( p = <. x , ( z / 2 ) >. -> ( ( f ` ( 1st ` p ) ) D ( f ` c ) ) = ( ( f ` x ) D ( f ` c ) ) ) |
67 |
66
|
breq1d |
|- ( p = <. x , ( z / 2 ) >. -> ( ( ( f ` ( 1st ` p ) ) D ( f ` c ) ) < ( d / 2 ) <-> ( ( f ` x ) D ( f ` c ) ) < ( d / 2 ) ) ) |
68 |
64 67
|
imbi12d |
|- ( p = <. x , ( z / 2 ) >. -> ( ( ( ( 1st ` p ) C c ) < ( ( 2nd ` p ) + ( 2nd ` p ) ) -> ( ( f ` ( 1st ` p ) ) D ( f ` c ) ) < ( d / 2 ) ) <-> ( ( x C c ) < ( ( z / 2 ) + ( z / 2 ) ) -> ( ( f ` x ) D ( f ` c ) ) < ( d / 2 ) ) ) ) |
69 |
68
|
ralbidv |
|- ( p = <. x , ( z / 2 ) >. -> ( A. c e. X ( ( ( 1st ` p ) C c ) < ( ( 2nd ` p ) + ( 2nd ` p ) ) -> ( ( f ` ( 1st ` p ) ) D ( f ` c ) ) < ( d / 2 ) ) <-> A. c e. X ( ( x C c ) < ( ( z / 2 ) + ( z / 2 ) ) -> ( ( f ` x ) D ( f ` c ) ) < ( d / 2 ) ) ) ) |
70 |
61 69
|
bitr3d |
|- ( p = <. x , ( z / 2 ) >. -> ( ( ( x ( ball ` C ) ( z / 2 ) ) = ( ( 1st ` p ) ( ball ` C ) ( 2nd ` p ) ) /\ A. c e. X ( ( ( 1st ` p ) C c ) < ( ( 2nd ` p ) + ( 2nd ` p ) ) -> ( ( f ` ( 1st ` p ) ) D ( f ` c ) ) < ( d / 2 ) ) ) <-> A. c e. X ( ( x C c ) < ( ( z / 2 ) + ( z / 2 ) ) -> ( ( f ` x ) D ( f ` c ) ) < ( d / 2 ) ) ) ) |
71 |
70
|
rspcev |
|- ( ( <. x , ( z / 2 ) >. e. ( X X. RR+ ) /\ A. c e. X ( ( x C c ) < ( ( z / 2 ) + ( z / 2 ) ) -> ( ( f ` x ) D ( f ` c ) ) < ( d / 2 ) ) ) -> E. p e. ( X X. RR+ ) ( ( x ( ball ` C ) ( z / 2 ) ) = ( ( 1st ` p ) ( ball ` C ) ( 2nd ` p ) ) /\ A. c e. X ( ( ( 1st ` p ) C c ) < ( ( 2nd ` p ) + ( 2nd ` p ) ) -> ( ( f ` ( 1st ` p ) ) D ( f ` c ) ) < ( d / 2 ) ) ) ) |
72 |
39 54 71
|
syl2anc |
|- ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ x e. X ) /\ z e. RR+ ) /\ A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < ( d / 2 ) ) ) -> E. p e. ( X X. RR+ ) ( ( x ( ball ` C ) ( z / 2 ) ) = ( ( 1st ` p ) ( ball ` C ) ( 2nd ` p ) ) /\ A. c e. X ( ( ( 1st ` p ) C c ) < ( ( 2nd ` p ) + ( 2nd ` p ) ) -> ( ( f ` ( 1st ` p ) ) D ( f ` c ) ) < ( d / 2 ) ) ) ) |
73 |
|
eleq2 |
|- ( b = ( x ( ball ` C ) ( z / 2 ) ) -> ( x e. b <-> x e. ( x ( ball ` C ) ( z / 2 ) ) ) ) |
74 |
|
eqeq1 |
|- ( b = ( x ( ball ` C ) ( z / 2 ) ) -> ( b = ( ( 1st ` p ) ( ball ` C ) ( 2nd ` p ) ) <-> ( x ( ball ` C ) ( z / 2 ) ) = ( ( 1st ` p ) ( ball ` C ) ( 2nd ` p ) ) ) ) |
75 |
74
|
anbi1d |
|- ( b = ( x ( ball ` C ) ( z / 2 ) ) -> ( ( b = ( ( 1st ` p ) ( ball ` C ) ( 2nd ` p ) ) /\ A. c e. X ( ( ( 1st ` p ) C c ) < ( ( 2nd ` p ) + ( 2nd ` p ) ) -> ( ( f ` ( 1st ` p ) ) D ( f ` c ) ) < ( d / 2 ) ) ) <-> ( ( x ( ball ` C ) ( z / 2 ) ) = ( ( 1st ` p ) ( ball ` C ) ( 2nd ` p ) ) /\ A. c e. X ( ( ( 1st ` p ) C c ) < ( ( 2nd ` p ) + ( 2nd ` p ) ) -> ( ( f ` ( 1st ` p ) ) D ( f ` c ) ) < ( d / 2 ) ) ) ) ) |
76 |
75
|
rexbidv |
|- ( b = ( x ( ball ` C ) ( z / 2 ) ) -> ( E. p e. ( X X. RR+ ) ( b = ( ( 1st ` p ) ( ball ` C ) ( 2nd ` p ) ) /\ A. c e. X ( ( ( 1st ` p ) C c ) < ( ( 2nd ` p ) + ( 2nd ` p ) ) -> ( ( f ` ( 1st ` p ) ) D ( f ` c ) ) < ( d / 2 ) ) ) <-> E. p e. ( X X. RR+ ) ( ( x ( ball ` C ) ( z / 2 ) ) = ( ( 1st ` p ) ( ball ` C ) ( 2nd ` p ) ) /\ A. c e. X ( ( ( 1st ` p ) C c ) < ( ( 2nd ` p ) + ( 2nd ` p ) ) -> ( ( f ` ( 1st ` p ) ) D ( f ` c ) ) < ( d / 2 ) ) ) ) ) |
77 |
73 76
|
anbi12d |
|- ( b = ( x ( ball ` C ) ( z / 2 ) ) -> ( ( x e. b /\ E. p e. ( X X. RR+ ) ( b = ( ( 1st ` p ) ( ball ` C ) ( 2nd ` p ) ) /\ A. c e. X ( ( ( 1st ` p ) C c ) < ( ( 2nd ` p ) + ( 2nd ` p ) ) -> ( ( f ` ( 1st ` p ) ) D ( f ` c ) ) < ( d / 2 ) ) ) ) <-> ( x e. ( x ( ball ` C ) ( z / 2 ) ) /\ E. p e. ( X X. RR+ ) ( ( x ( ball ` C ) ( z / 2 ) ) = ( ( 1st ` p ) ( ball ` C ) ( 2nd ` p ) ) /\ A. c e. X ( ( ( 1st ` p ) C c ) < ( ( 2nd ` p ) + ( 2nd ` p ) ) -> ( ( f ` ( 1st ` p ) ) D ( f ` c ) ) < ( d / 2 ) ) ) ) ) ) |
78 |
77
|
rspcev |
|- ( ( ( x ( ball ` C ) ( z / 2 ) ) e. ( MetOpen ` C ) /\ ( x e. ( x ( ball ` C ) ( z / 2 ) ) /\ E. p e. ( X X. RR+ ) ( ( x ( ball ` C ) ( z / 2 ) ) = ( ( 1st ` p ) ( ball ` C ) ( 2nd ` p ) ) /\ A. c e. X ( ( ( 1st ` p ) C c ) < ( ( 2nd ` p ) + ( 2nd ` p ) ) -> ( ( f ` ( 1st ` p ) ) D ( f ` c ) ) < ( d / 2 ) ) ) ) ) -> E. b e. ( MetOpen ` C ) ( x e. b /\ E. p e. ( X X. RR+ ) ( b = ( ( 1st ` p ) ( ball ` C ) ( 2nd ` p ) ) /\ A. c e. X ( ( ( 1st ` p ) C c ) < ( ( 2nd ` p ) + ( 2nd ` p ) ) -> ( ( f ` ( 1st ` p ) ) D ( f ` c ) ) < ( d / 2 ) ) ) ) ) |
79 |
30 36 72 78
|
syl12anc |
|- ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ x e. X ) /\ z e. RR+ ) /\ A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < ( d / 2 ) ) ) -> E. b e. ( MetOpen ` C ) ( x e. b /\ E. p e. ( X X. RR+ ) ( b = ( ( 1st ` p ) ( ball ` C ) ( 2nd ` p ) ) /\ A. c e. X ( ( ( 1st ` p ) C c ) < ( ( 2nd ` p ) + ( 2nd ` p ) ) -> ( ( f ` ( 1st ` p ) ) D ( f ` c ) ) < ( d / 2 ) ) ) ) ) |
80 |
79
|
rexlimdva2 |
|- ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ x e. X ) -> ( E. z e. RR+ A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < ( d / 2 ) ) -> E. b e. ( MetOpen ` C ) ( x e. b /\ E. p e. ( X X. RR+ ) ( b = ( ( 1st ` p ) ( ball ` C ) ( 2nd ` p ) ) /\ A. c e. X ( ( ( 1st ` p ) C c ) < ( ( 2nd ` p ) + ( 2nd ` p ) ) -> ( ( f ` ( 1st ` p ) ) D ( f ` c ) ) < ( d / 2 ) ) ) ) ) ) |
81 |
80
|
ralimdva |
|- ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) -> ( A. x e. X E. z e. RR+ A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < ( d / 2 ) ) -> A. x e. X E. b e. ( MetOpen ` C ) ( x e. b /\ E. p e. ( X X. RR+ ) ( b = ( ( 1st ` p ) ( ball ` C ) ( 2nd ` p ) ) /\ A. c e. X ( ( ( 1st ` p ) C c ) < ( ( 2nd ` p ) + ( 2nd ` p ) ) -> ( ( f ` ( 1st ` p ) ) D ( f ` c ) ) < ( d / 2 ) ) ) ) ) ) |
82 |
81
|
imp |
|- ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ A. x e. X E. z e. RR+ A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < ( d / 2 ) ) ) -> A. x e. X E. b e. ( MetOpen ` C ) ( x e. b /\ E. p e. ( X X. RR+ ) ( b = ( ( 1st ` p ) ( ball ` C ) ( 2nd ` p ) ) /\ A. c e. X ( ( ( 1st ` p ) C c ) < ( ( 2nd ` p ) + ( 2nd ` p ) ) -> ( ( f ` ( 1st ` p ) ) D ( f ` c ) ) < ( d / 2 ) ) ) ) ) |
83 |
26
|
mopnuni |
|- ( C e. ( *Met ` X ) -> X = U. ( MetOpen ` C ) ) |
84 |
1 83
|
syl |
|- ( ph -> X = U. ( MetOpen ` C ) ) |
85 |
84
|
raleqdv |
|- ( ph -> ( A. x e. X E. b e. ( MetOpen ` C ) ( x e. b /\ E. p e. ( X X. RR+ ) ( b = ( ( 1st ` p ) ( ball ` C ) ( 2nd ` p ) ) /\ A. c e. X ( ( ( 1st ` p ) C c ) < ( ( 2nd ` p ) + ( 2nd ` p ) ) -> ( ( f ` ( 1st ` p ) ) D ( f ` c ) ) < ( d / 2 ) ) ) ) <-> A. x e. U. ( MetOpen ` C ) E. b e. ( MetOpen ` C ) ( x e. b /\ E. p e. ( X X. RR+ ) ( b = ( ( 1st ` p ) ( ball ` C ) ( 2nd ` p ) ) /\ A. c e. X ( ( ( 1st ` p ) C c ) < ( ( 2nd ` p ) + ( 2nd ` p ) ) -> ( ( f ` ( 1st ` p ) ) D ( f ` c ) ) < ( d / 2 ) ) ) ) ) ) |
86 |
85
|
ad3antrrr |
|- ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ A. x e. X E. z e. RR+ A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < ( d / 2 ) ) ) -> ( A. x e. X E. b e. ( MetOpen ` C ) ( x e. b /\ E. p e. ( X X. RR+ ) ( b = ( ( 1st ` p ) ( ball ` C ) ( 2nd ` p ) ) /\ A. c e. X ( ( ( 1st ` p ) C c ) < ( ( 2nd ` p ) + ( 2nd ` p ) ) -> ( ( f ` ( 1st ` p ) ) D ( f ` c ) ) < ( d / 2 ) ) ) ) <-> A. x e. U. ( MetOpen ` C ) E. b e. ( MetOpen ` C ) ( x e. b /\ E. p e. ( X X. RR+ ) ( b = ( ( 1st ` p ) ( ball ` C ) ( 2nd ` p ) ) /\ A. c e. X ( ( ( 1st ` p ) C c ) < ( ( 2nd ` p ) + ( 2nd ` p ) ) -> ( ( f ` ( 1st ` p ) ) D ( f ` c ) ) < ( d / 2 ) ) ) ) ) ) |
87 |
82 86
|
mpbid |
|- ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ A. x e. X E. z e. RR+ A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < ( d / 2 ) ) ) -> A. x e. U. ( MetOpen ` C ) E. b e. ( MetOpen ` C ) ( x e. b /\ E. p e. ( X X. RR+ ) ( b = ( ( 1st ` p ) ( ball ` C ) ( 2nd ` p ) ) /\ A. c e. X ( ( ( 1st ` p ) C c ) < ( ( 2nd ` p ) + ( 2nd ` p ) ) -> ( ( f ` ( 1st ` p ) ) D ( f ` c ) ) < ( d / 2 ) ) ) ) ) |
88 |
|
eqid |
|- U. ( MetOpen ` C ) = U. ( MetOpen ` C ) |
89 |
|
fveq2 |
|- ( p = ( g ` b ) -> ( 1st ` p ) = ( 1st ` ( g ` b ) ) ) |
90 |
|
fveq2 |
|- ( p = ( g ` b ) -> ( 2nd ` p ) = ( 2nd ` ( g ` b ) ) ) |
91 |
89 90
|
oveq12d |
|- ( p = ( g ` b ) -> ( ( 1st ` p ) ( ball ` C ) ( 2nd ` p ) ) = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) |
92 |
91
|
eqeq2d |
|- ( p = ( g ` b ) -> ( b = ( ( 1st ` p ) ( ball ` C ) ( 2nd ` p ) ) <-> b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) ) |
93 |
89
|
oveq1d |
|- ( p = ( g ` b ) -> ( ( 1st ` p ) C c ) = ( ( 1st ` ( g ` b ) ) C c ) ) |
94 |
90 90
|
oveq12d |
|- ( p = ( g ` b ) -> ( ( 2nd ` p ) + ( 2nd ` p ) ) = ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) ) |
95 |
93 94
|
breq12d |
|- ( p = ( g ` b ) -> ( ( ( 1st ` p ) C c ) < ( ( 2nd ` p ) + ( 2nd ` p ) ) <-> ( ( 1st ` ( g ` b ) ) C c ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) ) ) |
96 |
89
|
fveq2d |
|- ( p = ( g ` b ) -> ( f ` ( 1st ` p ) ) = ( f ` ( 1st ` ( g ` b ) ) ) ) |
97 |
96
|
oveq1d |
|- ( p = ( g ` b ) -> ( ( f ` ( 1st ` p ) ) D ( f ` c ) ) = ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` c ) ) ) |
98 |
97
|
breq1d |
|- ( p = ( g ` b ) -> ( ( ( f ` ( 1st ` p ) ) D ( f ` c ) ) < ( d / 2 ) <-> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` c ) ) < ( d / 2 ) ) ) |
99 |
95 98
|
imbi12d |
|- ( p = ( g ` b ) -> ( ( ( ( 1st ` p ) C c ) < ( ( 2nd ` p ) + ( 2nd ` p ) ) -> ( ( f ` ( 1st ` p ) ) D ( f ` c ) ) < ( d / 2 ) ) <-> ( ( ( 1st ` ( g ` b ) ) C c ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` c ) ) < ( d / 2 ) ) ) ) |
100 |
99
|
ralbidv |
|- ( p = ( g ` b ) -> ( A. c e. X ( ( ( 1st ` p ) C c ) < ( ( 2nd ` p ) + ( 2nd ` p ) ) -> ( ( f ` ( 1st ` p ) ) D ( f ` c ) ) < ( d / 2 ) ) <-> A. c e. X ( ( ( 1st ` ( g ` b ) ) C c ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` c ) ) < ( d / 2 ) ) ) ) |
101 |
92 100
|
anbi12d |
|- ( p = ( g ` b ) -> ( ( b = ( ( 1st ` p ) ( ball ` C ) ( 2nd ` p ) ) /\ A. c e. X ( ( ( 1st ` p ) C c ) < ( ( 2nd ` p ) + ( 2nd ` p ) ) -> ( ( f ` ( 1st ` p ) ) D ( f ` c ) ) < ( d / 2 ) ) ) <-> ( b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) /\ A. c e. X ( ( ( 1st ` ( g ` b ) ) C c ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` c ) ) < ( d / 2 ) ) ) ) ) |
102 |
88 101
|
cmpcovf |
|- ( ( ( MetOpen ` C ) e. Comp /\ A. x e. U. ( MetOpen ` C ) E. b e. ( MetOpen ` C ) ( x e. b /\ E. p e. ( X X. RR+ ) ( b = ( ( 1st ` p ) ( ball ` C ) ( 2nd ` p ) ) /\ A. c e. X ( ( ( 1st ` p ) C c ) < ( ( 2nd ` p ) + ( 2nd ` p ) ) -> ( ( f ` ( 1st ` p ) ) D ( f ` c ) ) < ( d / 2 ) ) ) ) ) -> E. s e. ( ~P ( MetOpen ` C ) i^i Fin ) ( U. ( MetOpen ` C ) = U. s /\ E. g ( g : s --> ( X X. RR+ ) /\ A. b e. s ( b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) /\ A. c e. X ( ( ( 1st ` ( g ` b ) ) C c ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` c ) ) < ( d / 2 ) ) ) ) ) ) |
103 |
21 87 102
|
syl2anc |
|- ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ A. x e. X E. z e. RR+ A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < ( d / 2 ) ) ) -> E. s e. ( ~P ( MetOpen ` C ) i^i Fin ) ( U. ( MetOpen ` C ) = U. s /\ E. g ( g : s --> ( X X. RR+ ) /\ A. b e. s ( b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) /\ A. c e. X ( ( ( 1st ` ( g ` b ) ) C c ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` c ) ) < ( d / 2 ) ) ) ) ) ) |
104 |
103
|
ex |
|- ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) -> ( A. x e. X E. z e. RR+ A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < ( d / 2 ) ) -> E. s e. ( ~P ( MetOpen ` C ) i^i Fin ) ( U. ( MetOpen ` C ) = U. s /\ E. g ( g : s --> ( X X. RR+ ) /\ A. b e. s ( b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) /\ A. c e. X ( ( ( 1st ` ( g ` b ) ) C c ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` c ) ) < ( d / 2 ) ) ) ) ) ) ) |
105 |
|
elinel2 |
|- ( s e. ( ~P ( MetOpen ` C ) i^i Fin ) -> s e. Fin ) |
106 |
|
simpll |
|- ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) -> ph ) |
107 |
106
|
anim1i |
|- ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ s e. Fin ) -> ( ph /\ s e. Fin ) ) |
108 |
|
frn |
|- ( g : s --> ( X X. RR+ ) -> ran g C_ ( X X. RR+ ) ) |
109 |
|
rnss |
|- ( ran g C_ ( X X. RR+ ) -> ran ran g C_ ran ( X X. RR+ ) ) |
110 |
108 109
|
syl |
|- ( g : s --> ( X X. RR+ ) -> ran ran g C_ ran ( X X. RR+ ) ) |
111 |
|
rnxpss |
|- ran ( X X. RR+ ) C_ RR+ |
112 |
110 111
|
sstrdi |
|- ( g : s --> ( X X. RR+ ) -> ran ran g C_ RR+ ) |
113 |
112
|
adantl |
|- ( ( ( ( ph /\ s e. Fin ) /\ U. ( MetOpen ` C ) = U. s ) /\ g : s --> ( X X. RR+ ) ) -> ran ran g C_ RR+ ) |
114 |
|
simplr |
|- ( ( ( ph /\ s e. Fin ) /\ U. ( MetOpen ` C ) = U. s ) -> s e. Fin ) |
115 |
|
ffun |
|- ( g : s --> ( X X. RR+ ) -> Fun g ) |
116 |
|
vex |
|- g e. _V |
117 |
116
|
fundmen |
|- ( Fun g -> dom g ~~ g ) |
118 |
117
|
ensymd |
|- ( Fun g -> g ~~ dom g ) |
119 |
115 118
|
syl |
|- ( g : s --> ( X X. RR+ ) -> g ~~ dom g ) |
120 |
|
fdm |
|- ( g : s --> ( X X. RR+ ) -> dom g = s ) |
121 |
119 120
|
breqtrd |
|- ( g : s --> ( X X. RR+ ) -> g ~~ s ) |
122 |
|
enfii |
|- ( ( s e. Fin /\ g ~~ s ) -> g e. Fin ) |
123 |
121 122
|
sylan2 |
|- ( ( s e. Fin /\ g : s --> ( X X. RR+ ) ) -> g e. Fin ) |
124 |
|
rnfi |
|- ( g e. Fin -> ran g e. Fin ) |
125 |
|
rnfi |
|- ( ran g e. Fin -> ran ran g e. Fin ) |
126 |
123 124 125
|
3syl |
|- ( ( s e. Fin /\ g : s --> ( X X. RR+ ) ) -> ran ran g e. Fin ) |
127 |
114 126
|
sylan |
|- ( ( ( ( ph /\ s e. Fin ) /\ U. ( MetOpen ` C ) = U. s ) /\ g : s --> ( X X. RR+ ) ) -> ran ran g e. Fin ) |
128 |
120
|
adantl |
|- ( ( ( ph /\ U. ( MetOpen ` C ) = U. s ) /\ g : s --> ( X X. RR+ ) ) -> dom g = s ) |
129 |
|
eqtr |
|- ( ( X = U. ( MetOpen ` C ) /\ U. ( MetOpen ` C ) = U. s ) -> X = U. s ) |
130 |
84 129
|
sylan |
|- ( ( ph /\ U. ( MetOpen ` C ) = U. s ) -> X = U. s ) |
131 |
4
|
adantr |
|- ( ( ph /\ U. ( MetOpen ` C ) = U. s ) -> X =/= (/) ) |
132 |
130 131
|
eqnetrrd |
|- ( ( ph /\ U. ( MetOpen ` C ) = U. s ) -> U. s =/= (/) ) |
133 |
|
unieq |
|- ( s = (/) -> U. s = U. (/) ) |
134 |
|
uni0 |
|- U. (/) = (/) |
135 |
133 134
|
eqtrdi |
|- ( s = (/) -> U. s = (/) ) |
136 |
135
|
necon3i |
|- ( U. s =/= (/) -> s =/= (/) ) |
137 |
132 136
|
syl |
|- ( ( ph /\ U. ( MetOpen ` C ) = U. s ) -> s =/= (/) ) |
138 |
137
|
adantr |
|- ( ( ( ph /\ U. ( MetOpen ` C ) = U. s ) /\ g : s --> ( X X. RR+ ) ) -> s =/= (/) ) |
139 |
128 138
|
eqnetrd |
|- ( ( ( ph /\ U. ( MetOpen ` C ) = U. s ) /\ g : s --> ( X X. RR+ ) ) -> dom g =/= (/) ) |
140 |
|
dm0rn0 |
|- ( dom g = (/) <-> ran g = (/) ) |
141 |
140
|
necon3bii |
|- ( dom g =/= (/) <-> ran g =/= (/) ) |
142 |
139 141
|
sylib |
|- ( ( ( ph /\ U. ( MetOpen ` C ) = U. s ) /\ g : s --> ( X X. RR+ ) ) -> ran g =/= (/) ) |
143 |
|
relxp |
|- Rel ( X X. RR+ ) |
144 |
|
relss |
|- ( ran g C_ ( X X. RR+ ) -> ( Rel ( X X. RR+ ) -> Rel ran g ) ) |
145 |
108 143 144
|
mpisyl |
|- ( g : s --> ( X X. RR+ ) -> Rel ran g ) |
146 |
|
relrn0 |
|- ( Rel ran g -> ( ran g = (/) <-> ran ran g = (/) ) ) |
147 |
146
|
necon3bid |
|- ( Rel ran g -> ( ran g =/= (/) <-> ran ran g =/= (/) ) ) |
148 |
145 147
|
syl |
|- ( g : s --> ( X X. RR+ ) -> ( ran g =/= (/) <-> ran ran g =/= (/) ) ) |
149 |
148
|
adantl |
|- ( ( ( ph /\ U. ( MetOpen ` C ) = U. s ) /\ g : s --> ( X X. RR+ ) ) -> ( ran g =/= (/) <-> ran ran g =/= (/) ) ) |
150 |
142 149
|
mpbid |
|- ( ( ( ph /\ U. ( MetOpen ` C ) = U. s ) /\ g : s --> ( X X. RR+ ) ) -> ran ran g =/= (/) ) |
151 |
150
|
adantllr |
|- ( ( ( ( ph /\ s e. Fin ) /\ U. ( MetOpen ` C ) = U. s ) /\ g : s --> ( X X. RR+ ) ) -> ran ran g =/= (/) ) |
152 |
|
rpssre |
|- RR+ C_ RR |
153 |
113 152
|
sstrdi |
|- ( ( ( ( ph /\ s e. Fin ) /\ U. ( MetOpen ` C ) = U. s ) /\ g : s --> ( X X. RR+ ) ) -> ran ran g C_ RR ) |
154 |
|
ltso |
|- < Or RR |
155 |
|
fiinfcl |
|- ( ( < Or RR /\ ( ran ran g e. Fin /\ ran ran g =/= (/) /\ ran ran g C_ RR ) ) -> inf ( ran ran g , RR , < ) e. ran ran g ) |
156 |
154 155
|
mpan |
|- ( ( ran ran g e. Fin /\ ran ran g =/= (/) /\ ran ran g C_ RR ) -> inf ( ran ran g , RR , < ) e. ran ran g ) |
157 |
127 151 153 156
|
syl3anc |
|- ( ( ( ( ph /\ s e. Fin ) /\ U. ( MetOpen ` C ) = U. s ) /\ g : s --> ( X X. RR+ ) ) -> inf ( ran ran g , RR , < ) e. ran ran g ) |
158 |
113 157
|
sseldd |
|- ( ( ( ( ph /\ s e. Fin ) /\ U. ( MetOpen ` C ) = U. s ) /\ g : s --> ( X X. RR+ ) ) -> inf ( ran ran g , RR , < ) e. RR+ ) |
159 |
107 158
|
sylanl1 |
|- ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ s e. Fin ) /\ U. ( MetOpen ` C ) = U. s ) /\ g : s --> ( X X. RR+ ) ) -> inf ( ran ran g , RR , < ) e. RR+ ) |
160 |
159
|
adantr |
|- ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ s e. Fin ) /\ U. ( MetOpen ` C ) = U. s ) /\ g : s --> ( X X. RR+ ) ) /\ A. b e. s ( b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) /\ A. c e. X ( ( ( 1st ` ( g ` b ) ) C c ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` c ) ) < ( d / 2 ) ) ) ) -> inf ( ran ran g , RR , < ) e. RR+ ) |
161 |
84
|
ad3antrrr |
|- ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ s e. Fin ) -> X = U. ( MetOpen ` C ) ) |
162 |
161
|
anim1i |
|- ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ s e. Fin ) /\ U. ( MetOpen ` C ) = U. s ) -> ( X = U. ( MetOpen ` C ) /\ U. ( MetOpen ` C ) = U. s ) ) |
163 |
162
|
ad2antrr |
|- ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ s e. Fin ) /\ U. ( MetOpen ` C ) = U. s ) /\ g : s --> ( X X. RR+ ) ) /\ A. b e. s ( b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) /\ A. c e. X ( ( ( 1st ` ( g ` b ) ) C c ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` c ) ) < ( d / 2 ) ) ) ) -> ( X = U. ( MetOpen ` C ) /\ U. ( MetOpen ` C ) = U. s ) ) |
164 |
|
simpl |
|- ( ( x e. X /\ w e. X ) -> x e. X ) |
165 |
129
|
eleq2d |
|- ( ( X = U. ( MetOpen ` C ) /\ U. ( MetOpen ` C ) = U. s ) -> ( x e. X <-> x e. U. s ) ) |
166 |
|
eluni2 |
|- ( x e. U. s <-> E. b e. s x e. b ) |
167 |
165 166
|
bitrdi |
|- ( ( X = U. ( MetOpen ` C ) /\ U. ( MetOpen ` C ) = U. s ) -> ( x e. X <-> E. b e. s x e. b ) ) |
168 |
167
|
biimpa |
|- ( ( ( X = U. ( MetOpen ` C ) /\ U. ( MetOpen ` C ) = U. s ) /\ x e. X ) -> E. b e. s x e. b ) |
169 |
163 164 168
|
syl2an |
|- ( ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ s e. Fin ) /\ U. ( MetOpen ` C ) = U. s ) /\ g : s --> ( X X. RR+ ) ) /\ A. b e. s ( b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) /\ A. c e. X ( ( ( 1st ` ( g ` b ) ) C c ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` c ) ) < ( d / 2 ) ) ) ) /\ ( x e. X /\ w e. X ) ) -> E. b e. s x e. b ) |
170 |
|
nfv |
|- F/ b ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ s e. Fin ) /\ U. ( MetOpen ` C ) = U. s ) /\ g : s --> ( X X. RR+ ) ) |
171 |
|
nfra1 |
|- F/ b A. b e. s ( b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) /\ A. c e. X ( ( ( 1st ` ( g ` b ) ) C c ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` c ) ) < ( d / 2 ) ) ) |
172 |
170 171
|
nfan |
|- F/ b ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ s e. Fin ) /\ U. ( MetOpen ` C ) = U. s ) /\ g : s --> ( X X. RR+ ) ) /\ A. b e. s ( b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) /\ A. c e. X ( ( ( 1st ` ( g ` b ) ) C c ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` c ) ) < ( d / 2 ) ) ) ) |
173 |
|
nfv |
|- F/ b ( x e. X /\ w e. X ) |
174 |
172 173
|
nfan |
|- F/ b ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ s e. Fin ) /\ U. ( MetOpen ` C ) = U. s ) /\ g : s --> ( X X. RR+ ) ) /\ A. b e. s ( b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) /\ A. c e. X ( ( ( 1st ` ( g ` b ) ) C c ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` c ) ) < ( d / 2 ) ) ) ) /\ ( x e. X /\ w e. X ) ) |
175 |
|
nfv |
|- F/ b ( ( x C w ) < inf ( ran ran g , RR , < ) -> ( ( f ` x ) D ( f ` w ) ) < d ) |
176 |
|
rspa |
|- ( ( A. b e. s ( b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) /\ A. c e. X ( ( ( 1st ` ( g ` b ) ) C c ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` c ) ) < ( d / 2 ) ) ) /\ b e. s ) -> ( b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) /\ A. c e. X ( ( ( 1st ` ( g ` b ) ) C c ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` c ) ) < ( d / 2 ) ) ) ) |
177 |
|
oveq2 |
|- ( c = x -> ( ( 1st ` ( g ` b ) ) C c ) = ( ( 1st ` ( g ` b ) ) C x ) ) |
178 |
177
|
breq1d |
|- ( c = x -> ( ( ( 1st ` ( g ` b ) ) C c ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) <-> ( ( 1st ` ( g ` b ) ) C x ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) ) ) |
179 |
|
fveq2 |
|- ( c = x -> ( f ` c ) = ( f ` x ) ) |
180 |
179
|
oveq2d |
|- ( c = x -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` c ) ) = ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) ) |
181 |
180
|
breq1d |
|- ( c = x -> ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` c ) ) < ( d / 2 ) <-> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) < ( d / 2 ) ) ) |
182 |
178 181
|
imbi12d |
|- ( c = x -> ( ( ( ( 1st ` ( g ` b ) ) C c ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` c ) ) < ( d / 2 ) ) <-> ( ( ( 1st ` ( g ` b ) ) C x ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) < ( d / 2 ) ) ) ) |
183 |
182
|
rspcva |
|- ( ( x e. X /\ A. c e. X ( ( ( 1st ` ( g ` b ) ) C c ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` c ) ) < ( d / 2 ) ) ) -> ( ( ( 1st ` ( g ` b ) ) C x ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) < ( d / 2 ) ) ) |
184 |
|
oveq2 |
|- ( c = w -> ( ( 1st ` ( g ` b ) ) C c ) = ( ( 1st ` ( g ` b ) ) C w ) ) |
185 |
184
|
breq1d |
|- ( c = w -> ( ( ( 1st ` ( g ` b ) ) C c ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) <-> ( ( 1st ` ( g ` b ) ) C w ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) ) ) |
186 |
47
|
oveq2d |
|- ( c = w -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` c ) ) = ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) ) |
187 |
186
|
breq1d |
|- ( c = w -> ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` c ) ) < ( d / 2 ) <-> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) < ( d / 2 ) ) ) |
188 |
185 187
|
imbi12d |
|- ( c = w -> ( ( ( ( 1st ` ( g ` b ) ) C c ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` c ) ) < ( d / 2 ) ) <-> ( ( ( 1st ` ( g ` b ) ) C w ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) < ( d / 2 ) ) ) ) |
189 |
188
|
rspcva |
|- ( ( w e. X /\ A. c e. X ( ( ( 1st ` ( g ` b ) ) C c ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` c ) ) < ( d / 2 ) ) ) -> ( ( ( 1st ` ( g ` b ) ) C w ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) < ( d / 2 ) ) ) |
190 |
183 189
|
anim12i |
|- ( ( ( x e. X /\ A. c e. X ( ( ( 1st ` ( g ` b ) ) C c ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` c ) ) < ( d / 2 ) ) ) /\ ( w e. X /\ A. c e. X ( ( ( 1st ` ( g ` b ) ) C c ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` c ) ) < ( d / 2 ) ) ) ) -> ( ( ( ( 1st ` ( g ` b ) ) C x ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) < ( d / 2 ) ) /\ ( ( ( 1st ` ( g ` b ) ) C w ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) < ( d / 2 ) ) ) ) |
191 |
190
|
anandirs |
|- ( ( ( x e. X /\ w e. X ) /\ A. c e. X ( ( ( 1st ` ( g ` b ) ) C c ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` c ) ) < ( d / 2 ) ) ) -> ( ( ( ( 1st ` ( g ` b ) ) C x ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) < ( d / 2 ) ) /\ ( ( ( 1st ` ( g ` b ) ) C w ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) < ( d / 2 ) ) ) ) |
192 |
|
anim12 |
|- ( ( ( ( ( 1st ` ( g ` b ) ) C x ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) < ( d / 2 ) ) /\ ( ( ( 1st ` ( g ` b ) ) C w ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) < ( d / 2 ) ) ) -> ( ( ( ( 1st ` ( g ` b ) ) C x ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) /\ ( ( 1st ` ( g ` b ) ) C w ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) ) -> ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) < ( d / 2 ) /\ ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) < ( d / 2 ) ) ) ) |
193 |
191 192
|
syl |
|- ( ( ( x e. X /\ w e. X ) /\ A. c e. X ( ( ( 1st ` ( g ` b ) ) C c ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` c ) ) < ( d / 2 ) ) ) -> ( ( ( ( 1st ` ( g ` b ) ) C x ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) /\ ( ( 1st ` ( g ` b ) ) C w ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) ) -> ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) < ( d / 2 ) /\ ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) < ( d / 2 ) ) ) ) |
194 |
193
|
adantrl |
|- ( ( ( x e. X /\ w e. X ) /\ ( b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) /\ A. c e. X ( ( ( 1st ` ( g ` b ) ) C c ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` c ) ) < ( d / 2 ) ) ) ) -> ( ( ( ( 1st ` ( g ` b ) ) C x ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) /\ ( ( 1st ` ( g ` b ) ) C w ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) ) -> ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) < ( d / 2 ) /\ ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) < ( d / 2 ) ) ) ) |
195 |
194
|
ad4ant23 |
|- ( ( ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ s e. Fin ) /\ U. ( MetOpen ` C ) = U. s ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ ( b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) /\ A. c e. X ( ( ( 1st ` ( g ` b ) ) C c ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` c ) ) < ( d / 2 ) ) ) ) /\ ( b e. s /\ x e. b ) ) -> ( ( ( ( 1st ` ( g ` b ) ) C x ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) /\ ( ( 1st ` ( g ` b ) ) C w ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) ) -> ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) < ( d / 2 ) /\ ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) < ( d / 2 ) ) ) ) |
196 |
|
simpll |
|- ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ s e. Fin ) /\ U. ( MetOpen ` C ) = U. s ) -> ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) ) |
197 |
196
|
anim1i |
|- ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ s e. Fin ) /\ U. ( MetOpen ` C ) = U. s ) /\ g : s --> ( X X. RR+ ) ) -> ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) ) |
198 |
197
|
anim1i |
|- ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ s e. Fin ) /\ U. ( MetOpen ` C ) = U. s ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) -> ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) ) |
199 |
112 152
|
sstrdi |
|- ( g : s --> ( X X. RR+ ) -> ran ran g C_ RR ) |
200 |
199
|
adantr |
|- ( ( g : s --> ( X X. RR+ ) /\ b e. s ) -> ran ran g C_ RR ) |
201 |
|
0re |
|- 0 e. RR |
202 |
|
rpge0 |
|- ( y e. RR+ -> 0 <_ y ) |
203 |
202
|
rgen |
|- A. y e. RR+ 0 <_ y |
204 |
|
ssralv |
|- ( ran ran g C_ RR+ -> ( A. y e. RR+ 0 <_ y -> A. y e. ran ran g 0 <_ y ) ) |
205 |
112 203 204
|
mpisyl |
|- ( g : s --> ( X X. RR+ ) -> A. y e. ran ran g 0 <_ y ) |
206 |
|
breq1 |
|- ( x = 0 -> ( x <_ y <-> 0 <_ y ) ) |
207 |
206
|
ralbidv |
|- ( x = 0 -> ( A. y e. ran ran g x <_ y <-> A. y e. ran ran g 0 <_ y ) ) |
208 |
207
|
rspcev |
|- ( ( 0 e. RR /\ A. y e. ran ran g 0 <_ y ) -> E. x e. RR A. y e. ran ran g x <_ y ) |
209 |
201 205 208
|
sylancr |
|- ( g : s --> ( X X. RR+ ) -> E. x e. RR A. y e. ran ran g x <_ y ) |
210 |
209
|
adantr |
|- ( ( g : s --> ( X X. RR+ ) /\ b e. s ) -> E. x e. RR A. y e. ran ran g x <_ y ) |
211 |
145
|
adantr |
|- ( ( g : s --> ( X X. RR+ ) /\ b e. s ) -> Rel ran g ) |
212 |
|
ffn |
|- ( g : s --> ( X X. RR+ ) -> g Fn s ) |
213 |
|
fnfvelrn |
|- ( ( g Fn s /\ b e. s ) -> ( g ` b ) e. ran g ) |
214 |
212 213
|
sylan |
|- ( ( g : s --> ( X X. RR+ ) /\ b e. s ) -> ( g ` b ) e. ran g ) |
215 |
|
2ndrn |
|- ( ( Rel ran g /\ ( g ` b ) e. ran g ) -> ( 2nd ` ( g ` b ) ) e. ran ran g ) |
216 |
211 214 215
|
syl2anc |
|- ( ( g : s --> ( X X. RR+ ) /\ b e. s ) -> ( 2nd ` ( g ` b ) ) e. ran ran g ) |
217 |
|
infrelb |
|- ( ( ran ran g C_ RR /\ E. x e. RR A. y e. ran ran g x <_ y /\ ( 2nd ` ( g ` b ) ) e. ran ran g ) -> inf ( ran ran g , RR , < ) <_ ( 2nd ` ( g ` b ) ) ) |
218 |
200 210 216 217
|
syl3anc |
|- ( ( g : s --> ( X X. RR+ ) /\ b e. s ) -> inf ( ran ran g , RR , < ) <_ ( 2nd ` ( g ` b ) ) ) |
219 |
218
|
adantll |
|- ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ b e. s ) -> inf ( ran ran g , RR , < ) <_ ( 2nd ` ( g ` b ) ) ) |
220 |
219
|
ad2ant2r |
|- ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ ( b e. s /\ x e. b ) ) -> inf ( ran ran g , RR , < ) <_ ( 2nd ` ( g ` b ) ) ) |
221 |
1
|
ad3antrrr |
|- ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) -> C e. ( *Met ` X ) ) |
222 |
|
xmetcl |
|- ( ( C e. ( *Met ` X ) /\ x e. X /\ w e. X ) -> ( x C w ) e. RR* ) |
223 |
222
|
3expb |
|- ( ( C e. ( *Met ` X ) /\ ( x e. X /\ w e. X ) ) -> ( x C w ) e. RR* ) |
224 |
221 223
|
sylan |
|- ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) -> ( x C w ) e. RR* ) |
225 |
224
|
adantr |
|- ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ ( b e. s /\ x e. b ) ) -> ( x C w ) e. RR* ) |
226 |
|
simplr |
|- ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) -> g : s --> ( X X. RR+ ) ) |
227 |
|
simpl |
|- ( ( b e. s /\ x e. b ) -> b e. s ) |
228 |
216
|
ne0d |
|- ( ( g : s --> ( X X. RR+ ) /\ b e. s ) -> ran ran g =/= (/) ) |
229 |
|
infrecl |
|- ( ( ran ran g C_ RR /\ ran ran g =/= (/) /\ E. x e. RR A. y e. ran ran g x <_ y ) -> inf ( ran ran g , RR , < ) e. RR ) |
230 |
200 228 210 229
|
syl3anc |
|- ( ( g : s --> ( X X. RR+ ) /\ b e. s ) -> inf ( ran ran g , RR , < ) e. RR ) |
231 |
230
|
rexrd |
|- ( ( g : s --> ( X X. RR+ ) /\ b e. s ) -> inf ( ran ran g , RR , < ) e. RR* ) |
232 |
226 227 231
|
syl2an |
|- ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ ( b e. s /\ x e. b ) ) -> inf ( ran ran g , RR , < ) e. RR* ) |
233 |
|
simpr |
|- ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) -> g : s --> ( X X. RR+ ) ) |
234 |
233
|
ffvelrnda |
|- ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ b e. s ) -> ( g ` b ) e. ( X X. RR+ ) ) |
235 |
|
xp2nd |
|- ( ( g ` b ) e. ( X X. RR+ ) -> ( 2nd ` ( g ` b ) ) e. RR+ ) |
236 |
234 235
|
syl |
|- ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ b e. s ) -> ( 2nd ` ( g ` b ) ) e. RR+ ) |
237 |
236
|
rpxrd |
|- ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ b e. s ) -> ( 2nd ` ( g ` b ) ) e. RR* ) |
238 |
237
|
ad2ant2r |
|- ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ ( b e. s /\ x e. b ) ) -> ( 2nd ` ( g ` b ) ) e. RR* ) |
239 |
|
xrltletr |
|- ( ( ( x C w ) e. RR* /\ inf ( ran ran g , RR , < ) e. RR* /\ ( 2nd ` ( g ` b ) ) e. RR* ) -> ( ( ( x C w ) < inf ( ran ran g , RR , < ) /\ inf ( ran ran g , RR , < ) <_ ( 2nd ` ( g ` b ) ) ) -> ( x C w ) < ( 2nd ` ( g ` b ) ) ) ) |
240 |
225 232 238 239
|
syl3anc |
|- ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ ( b e. s /\ x e. b ) ) -> ( ( ( x C w ) < inf ( ran ran g , RR , < ) /\ inf ( ran ran g , RR , < ) <_ ( 2nd ` ( g ` b ) ) ) -> ( x C w ) < ( 2nd ` ( g ` b ) ) ) ) |
241 |
220 240
|
mpan2d |
|- ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ ( b e. s /\ x e. b ) ) -> ( ( x C w ) < inf ( ran ran g , RR , < ) -> ( x C w ) < ( 2nd ` ( g ` b ) ) ) ) |
242 |
241
|
adantlr |
|- ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) -> ( ( x C w ) < inf ( ran ran g , RR , < ) -> ( x C w ) < ( 2nd ` ( g ` b ) ) ) ) |
243 |
1
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) -> C e. ( *Met ` X ) ) |
244 |
|
simpllr |
|- ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) -> g : s --> ( X X. RR+ ) ) |
245 |
|
ffvelrn |
|- ( ( g : s --> ( X X. RR+ ) /\ b e. s ) -> ( g ` b ) e. ( X X. RR+ ) ) |
246 |
|
xp1st |
|- ( ( g ` b ) e. ( X X. RR+ ) -> ( 1st ` ( g ` b ) ) e. X ) |
247 |
245 246
|
syl |
|- ( ( g : s --> ( X X. RR+ ) /\ b e. s ) -> ( 1st ` ( g ` b ) ) e. X ) |
248 |
244 227 247
|
syl2an |
|- ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) -> ( 1st ` ( g ` b ) ) e. X ) |
249 |
|
simpr |
|- ( ( x e. X /\ w e. X ) -> w e. X ) |
250 |
249
|
ad3antlr |
|- ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) -> w e. X ) |
251 |
|
xmetcl |
|- ( ( C e. ( *Met ` X ) /\ ( 1st ` ( g ` b ) ) e. X /\ w e. X ) -> ( ( 1st ` ( g ` b ) ) C w ) e. RR* ) |
252 |
243 248 250 251
|
syl3anc |
|- ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) -> ( ( 1st ` ( g ` b ) ) C w ) e. RR* ) |
253 |
252
|
adantr |
|- ( ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) /\ ( x C w ) < ( 2nd ` ( g ` b ) ) ) -> ( ( 1st ` ( g ` b ) ) C w ) e. RR* ) |
254 |
245 235
|
syl |
|- ( ( g : s --> ( X X. RR+ ) /\ b e. s ) -> ( 2nd ` ( g ` b ) ) e. RR+ ) |
255 |
226 254
|
sylan |
|- ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b e. s ) -> ( 2nd ` ( g ` b ) ) e. RR+ ) |
256 |
255
|
ad2ant2r |
|- ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) -> ( 2nd ` ( g ` b ) ) e. RR+ ) |
257 |
256
|
rpred |
|- ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) -> ( 2nd ` ( g ` b ) ) e. RR ) |
258 |
164
|
ad3antlr |
|- ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) -> x e. X ) |
259 |
|
xmetcl |
|- ( ( C e. ( *Met ` X ) /\ ( 1st ` ( g ` b ) ) e. X /\ x e. X ) -> ( ( 1st ` ( g ` b ) ) C x ) e. RR* ) |
260 |
243 248 258 259
|
syl3anc |
|- ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) -> ( ( 1st ` ( g ` b ) ) C x ) e. RR* ) |
261 |
254
|
rpxrd |
|- ( ( g : s --> ( X X. RR+ ) /\ b e. s ) -> ( 2nd ` ( g ` b ) ) e. RR* ) |
262 |
244 227 261
|
syl2an |
|- ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) -> ( 2nd ` ( g ` b ) ) e. RR* ) |
263 |
|
eleq2 |
|- ( b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) -> ( x e. b <-> x e. ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) ) |
264 |
1
|
ad5antr |
|- ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b e. s ) -> C e. ( *Met ` X ) ) |
265 |
226 247
|
sylan |
|- ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b e. s ) -> ( 1st ` ( g ` b ) ) e. X ) |
266 |
255
|
rpxrd |
|- ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b e. s ) -> ( 2nd ` ( g ` b ) ) e. RR* ) |
267 |
|
elbl |
|- ( ( C e. ( *Met ` X ) /\ ( 1st ` ( g ` b ) ) e. X /\ ( 2nd ` ( g ` b ) ) e. RR* ) -> ( x e. ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) <-> ( x e. X /\ ( ( 1st ` ( g ` b ) ) C x ) < ( 2nd ` ( g ` b ) ) ) ) ) |
268 |
264 265 266 267
|
syl3anc |
|- ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b e. s ) -> ( x e. ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) <-> ( x e. X /\ ( ( 1st ` ( g ` b ) ) C x ) < ( 2nd ` ( g ` b ) ) ) ) ) |
269 |
263 268
|
sylan9bbr |
|- ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b e. s ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) -> ( x e. b <-> ( x e. X /\ ( ( 1st ` ( g ` b ) ) C x ) < ( 2nd ` ( g ` b ) ) ) ) ) |
270 |
269
|
biimpd |
|- ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b e. s ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) -> ( x e. b -> ( x e. X /\ ( ( 1st ` ( g ` b ) ) C x ) < ( 2nd ` ( g ` b ) ) ) ) ) |
271 |
270
|
an32s |
|- ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ b e. s ) -> ( x e. b -> ( x e. X /\ ( ( 1st ` ( g ` b ) ) C x ) < ( 2nd ` ( g ` b ) ) ) ) ) |
272 |
271
|
impr |
|- ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) -> ( x e. X /\ ( ( 1st ` ( g ` b ) ) C x ) < ( 2nd ` ( g ` b ) ) ) ) |
273 |
272
|
simprd |
|- ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) -> ( ( 1st ` ( g ` b ) ) C x ) < ( 2nd ` ( g ` b ) ) ) |
274 |
260 262 273
|
xrltled |
|- ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) -> ( ( 1st ` ( g ` b ) ) C x ) <_ ( 2nd ` ( g ` b ) ) ) |
275 |
226
|
ffvelrnda |
|- ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b e. s ) -> ( g ` b ) e. ( X X. RR+ ) ) |
276 |
275 246
|
syl |
|- ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b e. s ) -> ( 1st ` ( g ` b ) ) e. X ) |
277 |
|
simplrl |
|- ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b e. s ) -> x e. X ) |
278 |
264 276 277 259
|
syl3anc |
|- ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b e. s ) -> ( ( 1st ` ( g ` b ) ) C x ) e. RR* ) |
279 |
|
xmetge0 |
|- ( ( C e. ( *Met ` X ) /\ ( 1st ` ( g ` b ) ) e. X /\ x e. X ) -> 0 <_ ( ( 1st ` ( g ` b ) ) C x ) ) |
280 |
264 276 277 279
|
syl3anc |
|- ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b e. s ) -> 0 <_ ( ( 1st ` ( g ` b ) ) C x ) ) |
281 |
|
xrrege0 |
|- ( ( ( ( ( 1st ` ( g ` b ) ) C x ) e. RR* /\ ( 2nd ` ( g ` b ) ) e. RR ) /\ ( 0 <_ ( ( 1st ` ( g ` b ) ) C x ) /\ ( ( 1st ` ( g ` b ) ) C x ) <_ ( 2nd ` ( g ` b ) ) ) ) -> ( ( 1st ` ( g ` b ) ) C x ) e. RR ) |
282 |
281
|
an4s |
|- ( ( ( ( ( 1st ` ( g ` b ) ) C x ) e. RR* /\ 0 <_ ( ( 1st ` ( g ` b ) ) C x ) ) /\ ( ( 2nd ` ( g ` b ) ) e. RR /\ ( ( 1st ` ( g ` b ) ) C x ) <_ ( 2nd ` ( g ` b ) ) ) ) -> ( ( 1st ` ( g ` b ) ) C x ) e. RR ) |
283 |
282
|
ex |
|- ( ( ( ( 1st ` ( g ` b ) ) C x ) e. RR* /\ 0 <_ ( ( 1st ` ( g ` b ) ) C x ) ) -> ( ( ( 2nd ` ( g ` b ) ) e. RR /\ ( ( 1st ` ( g ` b ) ) C x ) <_ ( 2nd ` ( g ` b ) ) ) -> ( ( 1st ` ( g ` b ) ) C x ) e. RR ) ) |
284 |
278 280 283
|
syl2anc |
|- ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b e. s ) -> ( ( ( 2nd ` ( g ` b ) ) e. RR /\ ( ( 1st ` ( g ` b ) ) C x ) <_ ( 2nd ` ( g ` b ) ) ) -> ( ( 1st ` ( g ` b ) ) C x ) e. RR ) ) |
285 |
284
|
ad2ant2r |
|- ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) -> ( ( ( 2nd ` ( g ` b ) ) e. RR /\ ( ( 1st ` ( g ` b ) ) C x ) <_ ( 2nd ` ( g ` b ) ) ) -> ( ( 1st ` ( g ` b ) ) C x ) e. RR ) ) |
286 |
257 274 285
|
mp2and |
|- ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) -> ( ( 1st ` ( g ` b ) ) C x ) e. RR ) |
287 |
286
|
adantr |
|- ( ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) /\ ( x C w ) < ( 2nd ` ( g ` b ) ) ) -> ( ( 1st ` ( g ` b ) ) C x ) e. RR ) |
288 |
|
xrltle |
|- ( ( ( x C w ) e. RR* /\ ( 2nd ` ( g ` b ) ) e. RR* ) -> ( ( x C w ) < ( 2nd ` ( g ` b ) ) -> ( x C w ) <_ ( 2nd ` ( g ` b ) ) ) ) |
289 |
225 238 288
|
syl2anc |
|- ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ ( b e. s /\ x e. b ) ) -> ( ( x C w ) < ( 2nd ` ( g ` b ) ) -> ( x C w ) <_ ( 2nd ` ( g ` b ) ) ) ) |
290 |
|
xmetge0 |
|- ( ( C e. ( *Met ` X ) /\ x e. X /\ w e. X ) -> 0 <_ ( x C w ) ) |
291 |
290
|
3expb |
|- ( ( C e. ( *Met ` X ) /\ ( x e. X /\ w e. X ) ) -> 0 <_ ( x C w ) ) |
292 |
221 291
|
sylan |
|- ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) -> 0 <_ ( x C w ) ) |
293 |
292
|
adantr |
|- ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ ( b e. s /\ x e. b ) ) -> 0 <_ ( x C w ) ) |
294 |
236
|
rpred |
|- ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ b e. s ) -> ( 2nd ` ( g ` b ) ) e. RR ) |
295 |
294
|
ad2ant2r |
|- ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ ( b e. s /\ x e. b ) ) -> ( 2nd ` ( g ` b ) ) e. RR ) |
296 |
|
xrrege0 |
|- ( ( ( ( x C w ) e. RR* /\ ( 2nd ` ( g ` b ) ) e. RR ) /\ ( 0 <_ ( x C w ) /\ ( x C w ) <_ ( 2nd ` ( g ` b ) ) ) ) -> ( x C w ) e. RR ) |
297 |
296
|
ex |
|- ( ( ( x C w ) e. RR* /\ ( 2nd ` ( g ` b ) ) e. RR ) -> ( ( 0 <_ ( x C w ) /\ ( x C w ) <_ ( 2nd ` ( g ` b ) ) ) -> ( x C w ) e. RR ) ) |
298 |
225 295 297
|
syl2anc |
|- ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ ( b e. s /\ x e. b ) ) -> ( ( 0 <_ ( x C w ) /\ ( x C w ) <_ ( 2nd ` ( g ` b ) ) ) -> ( x C w ) e. RR ) ) |
299 |
293 298
|
mpand |
|- ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ ( b e. s /\ x e. b ) ) -> ( ( x C w ) <_ ( 2nd ` ( g ` b ) ) -> ( x C w ) e. RR ) ) |
300 |
289 299
|
syld |
|- ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ ( b e. s /\ x e. b ) ) -> ( ( x C w ) < ( 2nd ` ( g ` b ) ) -> ( x C w ) e. RR ) ) |
301 |
300
|
adantlr |
|- ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) -> ( ( x C w ) < ( 2nd ` ( g ` b ) ) -> ( x C w ) e. RR ) ) |
302 |
301
|
imp |
|- ( ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) /\ ( x C w ) < ( 2nd ` ( g ` b ) ) ) -> ( x C w ) e. RR ) |
303 |
287 302
|
readdcld |
|- ( ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) /\ ( x C w ) < ( 2nd ` ( g ` b ) ) ) -> ( ( ( 1st ` ( g ` b ) ) C x ) + ( x C w ) ) e. RR ) |
304 |
303
|
rexrd |
|- ( ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) /\ ( x C w ) < ( 2nd ` ( g ` b ) ) ) -> ( ( ( 1st ` ( g ` b ) ) C x ) + ( x C w ) ) e. RR* ) |
305 |
256 256
|
rpaddcld |
|- ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) -> ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) e. RR+ ) |
306 |
305
|
rpxrd |
|- ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) -> ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) e. RR* ) |
307 |
306
|
adantr |
|- ( ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) /\ ( x C w ) < ( 2nd ` ( g ` b ) ) ) -> ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) e. RR* ) |
308 |
|
xmettri |
|- ( ( C e. ( *Met ` X ) /\ ( ( 1st ` ( g ` b ) ) e. X /\ w e. X /\ x e. X ) ) -> ( ( 1st ` ( g ` b ) ) C w ) <_ ( ( ( 1st ` ( g ` b ) ) C x ) +e ( x C w ) ) ) |
309 |
243 248 250 258 308
|
syl13anc |
|- ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) -> ( ( 1st ` ( g ` b ) ) C w ) <_ ( ( ( 1st ` ( g ` b ) ) C x ) +e ( x C w ) ) ) |
310 |
309
|
adantr |
|- ( ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) /\ ( x C w ) < ( 2nd ` ( g ` b ) ) ) -> ( ( 1st ` ( g ` b ) ) C w ) <_ ( ( ( 1st ` ( g ` b ) ) C x ) +e ( x C w ) ) ) |
311 |
|
rexadd |
|- ( ( ( ( 1st ` ( g ` b ) ) C x ) e. RR /\ ( x C w ) e. RR ) -> ( ( ( 1st ` ( g ` b ) ) C x ) +e ( x C w ) ) = ( ( ( 1st ` ( g ` b ) ) C x ) + ( x C w ) ) ) |
312 |
287 302 311
|
syl2anc |
|- ( ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) /\ ( x C w ) < ( 2nd ` ( g ` b ) ) ) -> ( ( ( 1st ` ( g ` b ) ) C x ) +e ( x C w ) ) = ( ( ( 1st ` ( g ` b ) ) C x ) + ( x C w ) ) ) |
313 |
310 312
|
breqtrd |
|- ( ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) /\ ( x C w ) < ( 2nd ` ( g ` b ) ) ) -> ( ( 1st ` ( g ` b ) ) C w ) <_ ( ( ( 1st ` ( g ` b ) ) C x ) + ( x C w ) ) ) |
314 |
257
|
adantr |
|- ( ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) /\ ( x C w ) < ( 2nd ` ( g ` b ) ) ) -> ( 2nd ` ( g ` b ) ) e. RR ) |
315 |
273
|
adantr |
|- ( ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) /\ ( x C w ) < ( 2nd ` ( g ` b ) ) ) -> ( ( 1st ` ( g ` b ) ) C x ) < ( 2nd ` ( g ` b ) ) ) |
316 |
|
simpr |
|- ( ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) /\ ( x C w ) < ( 2nd ` ( g ` b ) ) ) -> ( x C w ) < ( 2nd ` ( g ` b ) ) ) |
317 |
287 302 314 314 315 316
|
lt2addd |
|- ( ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) /\ ( x C w ) < ( 2nd ` ( g ` b ) ) ) -> ( ( ( 1st ` ( g ` b ) ) C x ) + ( x C w ) ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) ) |
318 |
253 304 307 313 317
|
xrlelttrd |
|- ( ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) /\ ( x C w ) < ( 2nd ` ( g ` b ) ) ) -> ( ( 1st ` ( g ` b ) ) C w ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) ) |
319 |
318
|
ex |
|- ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) -> ( ( x C w ) < ( 2nd ` ( g ` b ) ) -> ( ( 1st ` ( g ` b ) ) C w ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) ) ) |
320 |
254
|
rpred |
|- ( ( g : s --> ( X X. RR+ ) /\ b e. s ) -> ( 2nd ` ( g ` b ) ) e. RR ) |
321 |
320 254
|
ltaddrpd |
|- ( ( g : s --> ( X X. RR+ ) /\ b e. s ) -> ( 2nd ` ( g ` b ) ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) ) |
322 |
244 227 321
|
syl2an |
|- ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) -> ( 2nd ` ( g ` b ) ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) ) |
323 |
260 262 306 273 322
|
xrlttrd |
|- ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) -> ( ( 1st ` ( g ` b ) ) C x ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) ) |
324 |
319 323
|
jctild |
|- ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) -> ( ( x C w ) < ( 2nd ` ( g ` b ) ) -> ( ( ( 1st ` ( g ` b ) ) C x ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) /\ ( ( 1st ` ( g ` b ) ) C w ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) ) ) ) |
325 |
242 324
|
syld |
|- ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) -> ( ( x C w ) < inf ( ran ran g , RR , < ) -> ( ( ( 1st ` ( g ` b ) ) C x ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) /\ ( ( 1st ` ( g ` b ) ) C w ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) ) ) ) |
326 |
|
simpll |
|- ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) -> ( ph /\ f : X --> Y ) ) |
327 |
|
ffvelrn |
|- ( ( f : X --> Y /\ x e. X ) -> ( f ` x ) e. Y ) |
328 |
|
ffvelrn |
|- ( ( f : X --> Y /\ w e. X ) -> ( f ` w ) e. Y ) |
329 |
327 328
|
anim12dan |
|- ( ( f : X --> Y /\ ( x e. X /\ w e. X ) ) -> ( ( f ` x ) e. Y /\ ( f ` w ) e. Y ) ) |
330 |
|
xmetcl |
|- ( ( D e. ( *Met ` Y ) /\ ( f ` x ) e. Y /\ ( f ` w ) e. Y ) -> ( ( f ` x ) D ( f ` w ) ) e. RR* ) |
331 |
330
|
3expb |
|- ( ( D e. ( *Met ` Y ) /\ ( ( f ` x ) e. Y /\ ( f ` w ) e. Y ) ) -> ( ( f ` x ) D ( f ` w ) ) e. RR* ) |
332 |
2 329 331
|
syl2an |
|- ( ( ph /\ ( f : X --> Y /\ ( x e. X /\ w e. X ) ) ) -> ( ( f ` x ) D ( f ` w ) ) e. RR* ) |
333 |
332
|
anassrs |
|- ( ( ( ph /\ f : X --> Y ) /\ ( x e. X /\ w e. X ) ) -> ( ( f ` x ) D ( f ` w ) ) e. RR* ) |
334 |
326 333
|
sylan |
|- ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) -> ( ( f ` x ) D ( f ` w ) ) e. RR* ) |
335 |
334
|
ad3antrrr |
|- ( ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) /\ ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) < ( d / 2 ) /\ ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) < ( d / 2 ) ) ) -> ( ( f ` x ) D ( f ` w ) ) e. RR* ) |
336 |
2
|
ad5antr |
|- ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b e. s ) -> D e. ( *Met ` Y ) ) |
337 |
|
simp-5r |
|- ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b e. s ) -> f : X --> Y ) |
338 |
337 276
|
ffvelrnd |
|- ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b e. s ) -> ( f ` ( 1st ` ( g ` b ) ) ) e. Y ) |
339 |
|
simpllr |
|- ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) -> f : X --> Y ) |
340 |
339
|
ffvelrnda |
|- ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ x e. X ) -> ( f ` x ) e. Y ) |
341 |
340
|
adantrr |
|- ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) -> ( f ` x ) e. Y ) |
342 |
341
|
adantr |
|- ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b e. s ) -> ( f ` x ) e. Y ) |
343 |
|
xmetcl |
|- ( ( D e. ( *Met ` Y ) /\ ( f ` ( 1st ` ( g ` b ) ) ) e. Y /\ ( f ` x ) e. Y ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) e. RR* ) |
344 |
336 338 342 343
|
syl3anc |
|- ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b e. s ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) e. RR* ) |
345 |
14
|
rpxrd |
|- ( d e. RR+ -> ( d / 2 ) e. RR* ) |
346 |
345
|
ad4antlr |
|- ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b e. s ) -> ( d / 2 ) e. RR* ) |
347 |
|
xrltle |
|- ( ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) e. RR* /\ ( d / 2 ) e. RR* ) -> ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) < ( d / 2 ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) <_ ( d / 2 ) ) ) |
348 |
344 346 347
|
syl2anc |
|- ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b e. s ) -> ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) < ( d / 2 ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) <_ ( d / 2 ) ) ) |
349 |
|
xmetge0 |
|- ( ( D e. ( *Met ` Y ) /\ ( f ` ( 1st ` ( g ` b ) ) ) e. Y /\ ( f ` x ) e. Y ) -> 0 <_ ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) ) |
350 |
336 338 342 349
|
syl3anc |
|- ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b e. s ) -> 0 <_ ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) ) |
351 |
14
|
rpred |
|- ( d e. RR+ -> ( d / 2 ) e. RR ) |
352 |
351
|
ad4antlr |
|- ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b e. s ) -> ( d / 2 ) e. RR ) |
353 |
|
xrrege0 |
|- ( ( ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) e. RR* /\ ( d / 2 ) e. RR ) /\ ( 0 <_ ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) /\ ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) <_ ( d / 2 ) ) ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) e. RR ) |
354 |
353
|
ex |
|- ( ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) e. RR* /\ ( d / 2 ) e. RR ) -> ( ( 0 <_ ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) /\ ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) <_ ( d / 2 ) ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) e. RR ) ) |
355 |
344 352 354
|
syl2anc |
|- ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b e. s ) -> ( ( 0 <_ ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) /\ ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) <_ ( d / 2 ) ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) e. RR ) ) |
356 |
350 355
|
mpand |
|- ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b e. s ) -> ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) <_ ( d / 2 ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) e. RR ) ) |
357 |
348 356
|
syld |
|- ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b e. s ) -> ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) < ( d / 2 ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) e. RR ) ) |
358 |
357
|
ad2ant2r |
|- ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) -> ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) < ( d / 2 ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) e. RR ) ) |
359 |
358
|
imp |
|- ( ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) /\ ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) < ( d / 2 ) ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) e. RR ) |
360 |
339
|
ffvelrnda |
|- ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ w e. X ) -> ( f ` w ) e. Y ) |
361 |
360
|
adantrl |
|- ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) -> ( f ` w ) e. Y ) |
362 |
361
|
adantr |
|- ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b e. s ) -> ( f ` w ) e. Y ) |
363 |
|
xmetcl |
|- ( ( D e. ( *Met ` Y ) /\ ( f ` ( 1st ` ( g ` b ) ) ) e. Y /\ ( f ` w ) e. Y ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) e. RR* ) |
364 |
336 338 362 363
|
syl3anc |
|- ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b e. s ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) e. RR* ) |
365 |
|
xrltle |
|- ( ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) e. RR* /\ ( d / 2 ) e. RR* ) -> ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) < ( d / 2 ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) <_ ( d / 2 ) ) ) |
366 |
364 346 365
|
syl2anc |
|- ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b e. s ) -> ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) < ( d / 2 ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) <_ ( d / 2 ) ) ) |
367 |
|
xmetge0 |
|- ( ( D e. ( *Met ` Y ) /\ ( f ` ( 1st ` ( g ` b ) ) ) e. Y /\ ( f ` w ) e. Y ) -> 0 <_ ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) ) |
368 |
336 338 362 367
|
syl3anc |
|- ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b e. s ) -> 0 <_ ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) ) |
369 |
|
xrrege0 |
|- ( ( ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) e. RR* /\ ( d / 2 ) e. RR ) /\ ( 0 <_ ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) /\ ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) <_ ( d / 2 ) ) ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) e. RR ) |
370 |
369
|
ex |
|- ( ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) e. RR* /\ ( d / 2 ) e. RR ) -> ( ( 0 <_ ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) /\ ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) <_ ( d / 2 ) ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) e. RR ) ) |
371 |
364 352 370
|
syl2anc |
|- ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b e. s ) -> ( ( 0 <_ ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) /\ ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) <_ ( d / 2 ) ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) e. RR ) ) |
372 |
368 371
|
mpand |
|- ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b e. s ) -> ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) <_ ( d / 2 ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) e. RR ) ) |
373 |
366 372
|
syld |
|- ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b e. s ) -> ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) < ( d / 2 ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) e. RR ) ) |
374 |
373
|
ad2ant2r |
|- ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) -> ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) < ( d / 2 ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) e. RR ) ) |
375 |
374
|
imp |
|- ( ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) /\ ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) < ( d / 2 ) ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) e. RR ) |
376 |
|
readdcl |
|- ( ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) e. RR /\ ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) e. RR ) -> ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) + ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) ) e. RR ) |
377 |
359 375 376
|
syl2an |
|- ( ( ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) /\ ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) < ( d / 2 ) ) /\ ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) /\ ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) < ( d / 2 ) ) ) -> ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) + ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) ) e. RR ) |
378 |
377
|
anandis |
|- ( ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) /\ ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) < ( d / 2 ) /\ ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) < ( d / 2 ) ) ) -> ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) + ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) ) e. RR ) |
379 |
378
|
rexrd |
|- ( ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) /\ ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) < ( d / 2 ) /\ ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) < ( d / 2 ) ) ) -> ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) + ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) ) e. RR* ) |
380 |
|
rpxr |
|- ( d e. RR+ -> d e. RR* ) |
381 |
380
|
ad6antlr |
|- ( ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) /\ ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) < ( d / 2 ) /\ ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) < ( d / 2 ) ) ) -> d e. RR* ) |
382 |
|
xmettri |
|- ( ( D e. ( *Met ` Y ) /\ ( ( f ` x ) e. Y /\ ( f ` w ) e. Y /\ ( f ` ( 1st ` ( g ` b ) ) ) e. Y ) ) -> ( ( f ` x ) D ( f ` w ) ) <_ ( ( ( f ` x ) D ( f ` ( 1st ` ( g ` b ) ) ) ) +e ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) ) ) |
383 |
336 342 362 338 382
|
syl13anc |
|- ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b e. s ) -> ( ( f ` x ) D ( f ` w ) ) <_ ( ( ( f ` x ) D ( f ` ( 1st ` ( g ` b ) ) ) ) +e ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) ) ) |
384 |
383
|
ad2ant2r |
|- ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) -> ( ( f ` x ) D ( f ` w ) ) <_ ( ( ( f ` x ) D ( f ` ( 1st ` ( g ` b ) ) ) ) +e ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) ) ) |
385 |
384
|
adantr |
|- ( ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) /\ ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) < ( d / 2 ) /\ ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) < ( d / 2 ) ) ) -> ( ( f ` x ) D ( f ` w ) ) <_ ( ( ( f ` x ) D ( f ` ( 1st ` ( g ` b ) ) ) ) +e ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) ) ) |
386 |
|
xmetsym |
|- ( ( D e. ( *Met ` Y ) /\ ( f ` x ) e. Y /\ ( f ` ( 1st ` ( g ` b ) ) ) e. Y ) -> ( ( f ` x ) D ( f ` ( 1st ` ( g ` b ) ) ) ) = ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) ) |
387 |
336 342 338 386
|
syl3anc |
|- ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b e. s ) -> ( ( f ` x ) D ( f ` ( 1st ` ( g ` b ) ) ) ) = ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) ) |
388 |
387
|
ad2ant2r |
|- ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) -> ( ( f ` x ) D ( f ` ( 1st ` ( g ` b ) ) ) ) = ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) ) |
389 |
388
|
adantr |
|- ( ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) /\ ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) < ( d / 2 ) /\ ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) < ( d / 2 ) ) ) -> ( ( f ` x ) D ( f ` ( 1st ` ( g ` b ) ) ) ) = ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) ) |
390 |
389
|
oveq1d |
|- ( ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) /\ ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) < ( d / 2 ) /\ ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) < ( d / 2 ) ) ) -> ( ( ( f ` x ) D ( f ` ( 1st ` ( g ` b ) ) ) ) +e ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) ) = ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) +e ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) ) ) |
391 |
|
rexadd |
|- ( ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) e. RR /\ ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) e. RR ) -> ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) +e ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) ) = ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) + ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) ) ) |
392 |
359 375 391
|
syl2an |
|- ( ( ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) /\ ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) < ( d / 2 ) ) /\ ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) /\ ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) < ( d / 2 ) ) ) -> ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) +e ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) ) = ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) + ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) ) ) |
393 |
392
|
anandis |
|- ( ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) /\ ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) < ( d / 2 ) /\ ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) < ( d / 2 ) ) ) -> ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) +e ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) ) = ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) + ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) ) ) |
394 |
390 393
|
eqtrd |
|- ( ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) /\ ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) < ( d / 2 ) /\ ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) < ( d / 2 ) ) ) -> ( ( ( f ` x ) D ( f ` ( 1st ` ( g ` b ) ) ) ) +e ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) ) = ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) + ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) ) ) |
395 |
385 394
|
breqtrd |
|- ( ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) /\ ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) < ( d / 2 ) /\ ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) < ( d / 2 ) ) ) -> ( ( f ` x ) D ( f ` w ) ) <_ ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) + ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) ) ) |
396 |
|
lt2add |
|- ( ( ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) e. RR /\ ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) e. RR ) /\ ( ( d / 2 ) e. RR /\ ( d / 2 ) e. RR ) ) -> ( ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) < ( d / 2 ) /\ ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) < ( d / 2 ) ) -> ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) + ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) ) < ( ( d / 2 ) + ( d / 2 ) ) ) ) |
397 |
396
|
expcom |
|- ( ( ( d / 2 ) e. RR /\ ( d / 2 ) e. RR ) -> ( ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) e. RR /\ ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) e. RR ) -> ( ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) < ( d / 2 ) /\ ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) < ( d / 2 ) ) -> ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) + ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) ) < ( ( d / 2 ) + ( d / 2 ) ) ) ) ) |
398 |
352 352 397
|
syl2anc |
|- ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b e. s ) -> ( ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) e. RR /\ ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) e. RR ) -> ( ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) < ( d / 2 ) /\ ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) < ( d / 2 ) ) -> ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) + ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) ) < ( ( d / 2 ) + ( d / 2 ) ) ) ) ) |
399 |
357 373 398
|
syl2and |
|- ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b e. s ) -> ( ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) < ( d / 2 ) /\ ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) < ( d / 2 ) ) -> ( ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) < ( d / 2 ) /\ ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) < ( d / 2 ) ) -> ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) + ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) ) < ( ( d / 2 ) + ( d / 2 ) ) ) ) ) |
400 |
399
|
pm2.43d |
|- ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b e. s ) -> ( ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) < ( d / 2 ) /\ ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) < ( d / 2 ) ) -> ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) + ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) ) < ( ( d / 2 ) + ( d / 2 ) ) ) ) |
401 |
400
|
ad2ant2r |
|- ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) -> ( ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) < ( d / 2 ) /\ ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) < ( d / 2 ) ) -> ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) + ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) ) < ( ( d / 2 ) + ( d / 2 ) ) ) ) |
402 |
401
|
imp |
|- ( ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) /\ ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) < ( d / 2 ) /\ ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) < ( d / 2 ) ) ) -> ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) + ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) ) < ( ( d / 2 ) + ( d / 2 ) ) ) |
403 |
|
rpcn |
|- ( d e. RR+ -> d e. CC ) |
404 |
403
|
2halvesd |
|- ( d e. RR+ -> ( ( d / 2 ) + ( d / 2 ) ) = d ) |
405 |
404
|
ad6antlr |
|- ( ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) /\ ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) < ( d / 2 ) /\ ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) < ( d / 2 ) ) ) -> ( ( d / 2 ) + ( d / 2 ) ) = d ) |
406 |
402 405
|
breqtrd |
|- ( ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) /\ ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) < ( d / 2 ) /\ ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) < ( d / 2 ) ) ) -> ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) + ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) ) < d ) |
407 |
335 379 381 395 406
|
xrlelttrd |
|- ( ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) /\ ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) < ( d / 2 ) /\ ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) < ( d / 2 ) ) ) -> ( ( f ` x ) D ( f ` w ) ) < d ) |
408 |
407
|
ex |
|- ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) -> ( ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) < ( d / 2 ) /\ ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) < ( d / 2 ) ) -> ( ( f ` x ) D ( f ` w ) ) < d ) ) |
409 |
325 408
|
imim12d |
|- ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) -> ( ( ( ( ( 1st ` ( g ` b ) ) C x ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) /\ ( ( 1st ` ( g ` b ) ) C w ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) ) -> ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) < ( d / 2 ) /\ ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) < ( d / 2 ) ) ) -> ( ( x C w ) < inf ( ran ran g , RR , < ) -> ( ( f ` x ) D ( f ` w ) ) < d ) ) ) |
410 |
198 409
|
sylanl1 |
|- ( ( ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ s e. Fin ) /\ U. ( MetOpen ` C ) = U. s ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) ) /\ ( b e. s /\ x e. b ) ) -> ( ( ( ( ( 1st ` ( g ` b ) ) C x ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) /\ ( ( 1st ` ( g ` b ) ) C w ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) ) -> ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) < ( d / 2 ) /\ ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) < ( d / 2 ) ) ) -> ( ( x C w ) < inf ( ran ran g , RR , < ) -> ( ( f ` x ) D ( f ` w ) ) < d ) ) ) |
411 |
410
|
adantlrr |
|- ( ( ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ s e. Fin ) /\ U. ( MetOpen ` C ) = U. s ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ ( b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) /\ A. c e. X ( ( ( 1st ` ( g ` b ) ) C c ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` c ) ) < ( d / 2 ) ) ) ) /\ ( b e. s /\ x e. b ) ) -> ( ( ( ( ( 1st ` ( g ` b ) ) C x ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) /\ ( ( 1st ` ( g ` b ) ) C w ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) ) -> ( ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` x ) ) < ( d / 2 ) /\ ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` w ) ) < ( d / 2 ) ) ) -> ( ( x C w ) < inf ( ran ran g , RR , < ) -> ( ( f ` x ) D ( f ` w ) ) < d ) ) ) |
412 |
195 411
|
mpd |
|- ( ( ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ s e. Fin ) /\ U. ( MetOpen ` C ) = U. s ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ ( b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) /\ A. c e. X ( ( ( 1st ` ( g ` b ) ) C c ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` c ) ) < ( d / 2 ) ) ) ) /\ ( b e. s /\ x e. b ) ) -> ( ( x C w ) < inf ( ran ran g , RR , < ) -> ( ( f ` x ) D ( f ` w ) ) < d ) ) |
413 |
412
|
exp32 |
|- ( ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ s e. Fin ) /\ U. ( MetOpen ` C ) = U. s ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ ( b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) /\ A. c e. X ( ( ( 1st ` ( g ` b ) ) C c ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` c ) ) < ( d / 2 ) ) ) ) -> ( b e. s -> ( x e. b -> ( ( x C w ) < inf ( ran ran g , RR , < ) -> ( ( f ` x ) D ( f ` w ) ) < d ) ) ) ) |
414 |
176 413
|
sylan2 |
|- ( ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ s e. Fin ) /\ U. ( MetOpen ` C ) = U. s ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ ( A. b e. s ( b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) /\ A. c e. X ( ( ( 1st ` ( g ` b ) ) C c ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` c ) ) < ( d / 2 ) ) ) /\ b e. s ) ) -> ( b e. s -> ( x e. b -> ( ( x C w ) < inf ( ran ran g , RR , < ) -> ( ( f ` x ) D ( f ` w ) ) < d ) ) ) ) |
415 |
414
|
expr |
|- ( ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ s e. Fin ) /\ U. ( MetOpen ` C ) = U. s ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ A. b e. s ( b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) /\ A. c e. X ( ( ( 1st ` ( g ` b ) ) C c ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` c ) ) < ( d / 2 ) ) ) ) -> ( b e. s -> ( b e. s -> ( x e. b -> ( ( x C w ) < inf ( ran ran g , RR , < ) -> ( ( f ` x ) D ( f ` w ) ) < d ) ) ) ) ) |
416 |
415
|
pm2.43d |
|- ( ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ s e. Fin ) /\ U. ( MetOpen ` C ) = U. s ) /\ g : s --> ( X X. RR+ ) ) /\ ( x e. X /\ w e. X ) ) /\ A. b e. s ( b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) /\ A. c e. X ( ( ( 1st ` ( g ` b ) ) C c ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` c ) ) < ( d / 2 ) ) ) ) -> ( b e. s -> ( x e. b -> ( ( x C w ) < inf ( ran ran g , RR , < ) -> ( ( f ` x ) D ( f ` w ) ) < d ) ) ) ) |
417 |
416
|
an32s |
|- ( ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ s e. Fin ) /\ U. ( MetOpen ` C ) = U. s ) /\ g : s --> ( X X. RR+ ) ) /\ A. b e. s ( b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) /\ A. c e. X ( ( ( 1st ` ( g ` b ) ) C c ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` c ) ) < ( d / 2 ) ) ) ) /\ ( x e. X /\ w e. X ) ) -> ( b e. s -> ( x e. b -> ( ( x C w ) < inf ( ran ran g , RR , < ) -> ( ( f ` x ) D ( f ` w ) ) < d ) ) ) ) |
418 |
174 175 417
|
rexlimd |
|- ( ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ s e. Fin ) /\ U. ( MetOpen ` C ) = U. s ) /\ g : s --> ( X X. RR+ ) ) /\ A. b e. s ( b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) /\ A. c e. X ( ( ( 1st ` ( g ` b ) ) C c ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` c ) ) < ( d / 2 ) ) ) ) /\ ( x e. X /\ w e. X ) ) -> ( E. b e. s x e. b -> ( ( x C w ) < inf ( ran ran g , RR , < ) -> ( ( f ` x ) D ( f ` w ) ) < d ) ) ) |
419 |
169 418
|
mpd |
|- ( ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ s e. Fin ) /\ U. ( MetOpen ` C ) = U. s ) /\ g : s --> ( X X. RR+ ) ) /\ A. b e. s ( b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) /\ A. c e. X ( ( ( 1st ` ( g ` b ) ) C c ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` c ) ) < ( d / 2 ) ) ) ) /\ ( x e. X /\ w e. X ) ) -> ( ( x C w ) < inf ( ran ran g , RR , < ) -> ( ( f ` x ) D ( f ` w ) ) < d ) ) |
420 |
419
|
ralrimivva |
|- ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ s e. Fin ) /\ U. ( MetOpen ` C ) = U. s ) /\ g : s --> ( X X. RR+ ) ) /\ A. b e. s ( b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) /\ A. c e. X ( ( ( 1st ` ( g ` b ) ) C c ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` c ) ) < ( d / 2 ) ) ) ) -> A. x e. X A. w e. X ( ( x C w ) < inf ( ran ran g , RR , < ) -> ( ( f ` x ) D ( f ` w ) ) < d ) ) |
421 |
|
breq2 |
|- ( z = inf ( ran ran g , RR , < ) -> ( ( x C w ) < z <-> ( x C w ) < inf ( ran ran g , RR , < ) ) ) |
422 |
421
|
imbi1d |
|- ( z = inf ( ran ran g , RR , < ) -> ( ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < d ) <-> ( ( x C w ) < inf ( ran ran g , RR , < ) -> ( ( f ` x ) D ( f ` w ) ) < d ) ) ) |
423 |
422
|
2ralbidv |
|- ( z = inf ( ran ran g , RR , < ) -> ( A. x e. X A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < d ) <-> A. x e. X A. w e. X ( ( x C w ) < inf ( ran ran g , RR , < ) -> ( ( f ` x ) D ( f ` w ) ) < d ) ) ) |
424 |
423
|
rspcev |
|- ( ( inf ( ran ran g , RR , < ) e. RR+ /\ A. x e. X A. w e. X ( ( x C w ) < inf ( ran ran g , RR , < ) -> ( ( f ` x ) D ( f ` w ) ) < d ) ) -> E. z e. RR+ A. x e. X A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < d ) ) |
425 |
160 420 424
|
syl2anc |
|- ( ( ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ s e. Fin ) /\ U. ( MetOpen ` C ) = U. s ) /\ g : s --> ( X X. RR+ ) ) /\ A. b e. s ( b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) /\ A. c e. X ( ( ( 1st ` ( g ` b ) ) C c ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` c ) ) < ( d / 2 ) ) ) ) -> E. z e. RR+ A. x e. X A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < d ) ) |
426 |
425
|
expl |
|- ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ s e. Fin ) /\ U. ( MetOpen ` C ) = U. s ) -> ( ( g : s --> ( X X. RR+ ) /\ A. b e. s ( b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) /\ A. c e. X ( ( ( 1st ` ( g ` b ) ) C c ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` c ) ) < ( d / 2 ) ) ) ) -> E. z e. RR+ A. x e. X A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < d ) ) ) |
427 |
426
|
exlimdv |
|- ( ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ s e. Fin ) /\ U. ( MetOpen ` C ) = U. s ) -> ( E. g ( g : s --> ( X X. RR+ ) /\ A. b e. s ( b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) /\ A. c e. X ( ( ( 1st ` ( g ` b ) ) C c ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` c ) ) < ( d / 2 ) ) ) ) -> E. z e. RR+ A. x e. X A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < d ) ) ) |
428 |
427
|
expimpd |
|- ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ s e. Fin ) -> ( ( U. ( MetOpen ` C ) = U. s /\ E. g ( g : s --> ( X X. RR+ ) /\ A. b e. s ( b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) /\ A. c e. X ( ( ( 1st ` ( g ` b ) ) C c ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` c ) ) < ( d / 2 ) ) ) ) ) -> E. z e. RR+ A. x e. X A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < d ) ) ) |
429 |
105 428
|
sylan2 |
|- ( ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) /\ s e. ( ~P ( MetOpen ` C ) i^i Fin ) ) -> ( ( U. ( MetOpen ` C ) = U. s /\ E. g ( g : s --> ( X X. RR+ ) /\ A. b e. s ( b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) /\ A. c e. X ( ( ( 1st ` ( g ` b ) ) C c ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` c ) ) < ( d / 2 ) ) ) ) ) -> E. z e. RR+ A. x e. X A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < d ) ) ) |
430 |
429
|
rexlimdva |
|- ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) -> ( E. s e. ( ~P ( MetOpen ` C ) i^i Fin ) ( U. ( MetOpen ` C ) = U. s /\ E. g ( g : s --> ( X X. RR+ ) /\ A. b e. s ( b = ( ( 1st ` ( g ` b ) ) ( ball ` C ) ( 2nd ` ( g ` b ) ) ) /\ A. c e. X ( ( ( 1st ` ( g ` b ) ) C c ) < ( ( 2nd ` ( g ` b ) ) + ( 2nd ` ( g ` b ) ) ) -> ( ( f ` ( 1st ` ( g ` b ) ) ) D ( f ` c ) ) < ( d / 2 ) ) ) ) ) -> E. z e. RR+ A. x e. X A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < d ) ) ) |
431 |
104 430
|
syld |
|- ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) -> ( A. x e. X E. z e. RR+ A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < ( d / 2 ) ) -> E. z e. RR+ A. x e. X A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < d ) ) ) |
432 |
20 431
|
syl5 |
|- ( ( ( ph /\ f : X --> Y ) /\ d e. RR+ ) -> ( ( ( d / 2 ) e. RR+ /\ A. y e. RR+ A. x e. X E. z e. RR+ A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < y ) ) -> E. z e. RR+ A. x e. X A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < d ) ) ) |
433 |
432
|
exp4b |
|- ( ( ph /\ f : X --> Y ) -> ( d e. RR+ -> ( ( d / 2 ) e. RR+ -> ( A. y e. RR+ A. x e. X E. z e. RR+ A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < y ) -> E. z e. RR+ A. x e. X A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < d ) ) ) ) ) |
434 |
14 433
|
mpdi |
|- ( ( ph /\ f : X --> Y ) -> ( d e. RR+ -> ( A. y e. RR+ A. x e. X E. z e. RR+ A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < y ) -> E. z e. RR+ A. x e. X A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < d ) ) ) ) |
435 |
434
|
ralrimiv |
|- ( ( ph /\ f : X --> Y ) -> A. d e. RR+ ( A. y e. RR+ A. x e. X E. z e. RR+ A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < y ) -> E. z e. RR+ A. x e. X A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < d ) ) ) |
436 |
|
r19.21v |
|- ( A. d e. RR+ ( A. y e. RR+ A. x e. X E. z e. RR+ A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < y ) -> E. z e. RR+ A. x e. X A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < d ) ) <-> ( A. y e. RR+ A. x e. X E. z e. RR+ A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < y ) -> A. d e. RR+ E. z e. RR+ A. x e. X A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < d ) ) ) |
437 |
435 436
|
sylib |
|- ( ( ph /\ f : X --> Y ) -> ( A. y e. RR+ A. x e. X E. z e. RR+ A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < y ) -> A. d e. RR+ E. z e. RR+ A. x e. X A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < d ) ) ) |
438 |
13 437
|
impbid2 |
|- ( ( ph /\ f : X --> Y ) -> ( A. d e. RR+ E. z e. RR+ A. x e. X A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < d ) <-> A. y e. RR+ A. x e. X E. z e. RR+ A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < y ) ) ) |
439 |
|
ralcom |
|- ( A. y e. RR+ A. x e. X E. z e. RR+ A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < y ) <-> A. x e. X A. y e. RR+ E. z e. RR+ A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < y ) ) |
440 |
438 439
|
bitrdi |
|- ( ( ph /\ f : X --> Y ) -> ( A. d e. RR+ E. z e. RR+ A. x e. X A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < d ) <-> A. x e. X A. y e. RR+ E. z e. RR+ A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < y ) ) ) |
441 |
440
|
pm5.32da |
|- ( ph -> ( ( f : X --> Y /\ A. d e. RR+ E. z e. RR+ A. x e. X A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < d ) ) <-> ( f : X --> Y /\ A. x e. X A. y e. RR+ E. z e. RR+ A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < y ) ) ) ) |
442 |
|
eqid |
|- ( metUnif ` C ) = ( metUnif ` C ) |
443 |
|
eqid |
|- ( metUnif ` D ) = ( metUnif ` D ) |
444 |
|
xmetpsmet |
|- ( C e. ( *Met ` X ) -> C e. ( PsMet ` X ) ) |
445 |
1 444
|
syl |
|- ( ph -> C e. ( PsMet ` X ) ) |
446 |
|
xmetpsmet |
|- ( D e. ( *Met ` Y ) -> D e. ( PsMet ` Y ) ) |
447 |
2 446
|
syl |
|- ( ph -> D e. ( PsMet ` Y ) ) |
448 |
442 443 4 5 445 447
|
metucn |
|- ( ph -> ( f e. ( ( metUnif ` C ) uCn ( metUnif ` D ) ) <-> ( f : X --> Y /\ A. d e. RR+ E. z e. RR+ A. x e. X A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < d ) ) ) ) |
449 |
|
eqid |
|- ( MetOpen ` D ) = ( MetOpen ` D ) |
450 |
26 449
|
metcn |
|- ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` Y ) ) -> ( f e. ( ( MetOpen ` C ) Cn ( MetOpen ` D ) ) <-> ( f : X --> Y /\ A. x e. X A. y e. RR+ E. z e. RR+ A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < y ) ) ) ) |
451 |
1 2 450
|
syl2anc |
|- ( ph -> ( f e. ( ( MetOpen ` C ) Cn ( MetOpen ` D ) ) <-> ( f : X --> Y /\ A. x e. X A. y e. RR+ E. z e. RR+ A. w e. X ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < y ) ) ) ) |
452 |
441 448 451
|
3bitr4d |
|- ( ph -> ( f e. ( ( metUnif ` C ) uCn ( metUnif ` D ) ) <-> f e. ( ( MetOpen ` C ) Cn ( MetOpen ` D ) ) ) ) |
453 |
452
|
eqrdv |
|- ( ph -> ( ( metUnif ` C ) uCn ( metUnif ` D ) ) = ( ( MetOpen ` C ) Cn ( MetOpen ` D ) ) ) |