| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpvmasum.z |
|- Z = ( Z/nZ ` N ) |
| 2 |
|
rpvmasum.l |
|- L = ( ZRHom ` Z ) |
| 3 |
|
rpvmasum.a |
|- ( ph -> N e. NN ) |
| 4 |
|
rpvmasum2.g |
|- G = ( DChr ` N ) |
| 5 |
|
rpvmasum2.d |
|- D = ( Base ` G ) |
| 6 |
|
rpvmasum2.1 |
|- .1. = ( 0g ` G ) |
| 7 |
|
dchrisum0f.f |
|- F = ( b e. NN |-> sum_ v e. { q e. NN | q || b } ( X ` ( L ` v ) ) ) |
| 8 |
|
dchrisum0f.x |
|- ( ph -> X e. D ) |
| 9 |
|
dchrisum0flb.r |
|- ( ph -> X : ( Base ` Z ) --> RR ) |
| 10 |
|
dchrisum0fno1.a |
|- ( ph -> ( x e. RR+ |-> sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( F ` k ) / ( sqrt ` k ) ) ) e. O(1) ) |
| 11 |
|
logno1 |
|- -. ( x e. RR+ |-> ( log ` x ) ) e. O(1) |
| 12 |
|
relogcl |
|- ( x e. RR+ -> ( log ` x ) e. RR ) |
| 13 |
12
|
adantl |
|- ( ( ph /\ x e. RR+ ) -> ( log ` x ) e. RR ) |
| 14 |
13
|
recnd |
|- ( ( ph /\ x e. RR+ ) -> ( log ` x ) e. CC ) |
| 15 |
|
2cnd |
|- ( ( ph /\ x e. RR+ ) -> 2 e. CC ) |
| 16 |
|
2ne0 |
|- 2 =/= 0 |
| 17 |
16
|
a1i |
|- ( ( ph /\ x e. RR+ ) -> 2 =/= 0 ) |
| 18 |
14 15 17
|
divcan2d |
|- ( ( ph /\ x e. RR+ ) -> ( 2 x. ( ( log ` x ) / 2 ) ) = ( log ` x ) ) |
| 19 |
18
|
mpteq2dva |
|- ( ph -> ( x e. RR+ |-> ( 2 x. ( ( log ` x ) / 2 ) ) ) = ( x e. RR+ |-> ( log ` x ) ) ) |
| 20 |
13
|
rehalfcld |
|- ( ( ph /\ x e. RR+ ) -> ( ( log ` x ) / 2 ) e. RR ) |
| 21 |
20
|
recnd |
|- ( ( ph /\ x e. RR+ ) -> ( ( log ` x ) / 2 ) e. CC ) |
| 22 |
|
rpssre |
|- RR+ C_ RR |
| 23 |
|
2cn |
|- 2 e. CC |
| 24 |
|
o1const |
|- ( ( RR+ C_ RR /\ 2 e. CC ) -> ( x e. RR+ |-> 2 ) e. O(1) ) |
| 25 |
22 23 24
|
mp2an |
|- ( x e. RR+ |-> 2 ) e. O(1) |
| 26 |
25
|
a1i |
|- ( ph -> ( x e. RR+ |-> 2 ) e. O(1) ) |
| 27 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 28 |
|
sumex |
|- sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( F ` k ) / ( sqrt ` k ) ) e. _V |
| 29 |
28
|
a1i |
|- ( ( ph /\ x e. RR+ ) -> sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( F ` k ) / ( sqrt ` k ) ) e. _V ) |
| 30 |
20
|
adantrr |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( log ` x ) / 2 ) e. RR ) |
| 31 |
12
|
ad2antrl |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( log ` x ) e. RR ) |
| 32 |
|
log1 |
|- ( log ` 1 ) = 0 |
| 33 |
|
simprr |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> 1 <_ x ) |
| 34 |
|
1rp |
|- 1 e. RR+ |
| 35 |
|
simprl |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> x e. RR+ ) |
| 36 |
|
logleb |
|- ( ( 1 e. RR+ /\ x e. RR+ ) -> ( 1 <_ x <-> ( log ` 1 ) <_ ( log ` x ) ) ) |
| 37 |
34 35 36
|
sylancr |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( 1 <_ x <-> ( log ` 1 ) <_ ( log ` x ) ) ) |
| 38 |
33 37
|
mpbid |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( log ` 1 ) <_ ( log ` x ) ) |
| 39 |
32 38
|
eqbrtrrid |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> 0 <_ ( log ` x ) ) |
| 40 |
|
2re |
|- 2 e. RR |
| 41 |
40
|
a1i |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> 2 e. RR ) |
| 42 |
|
2pos |
|- 0 < 2 |
| 43 |
42
|
a1i |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> 0 < 2 ) |
| 44 |
|
divge0 |
|- ( ( ( ( log ` x ) e. RR /\ 0 <_ ( log ` x ) ) /\ ( 2 e. RR /\ 0 < 2 ) ) -> 0 <_ ( ( log ` x ) / 2 ) ) |
| 45 |
31 39 41 43 44
|
syl22anc |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> 0 <_ ( ( log ` x ) / 2 ) ) |
| 46 |
30 45
|
absidd |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` ( ( log ` x ) / 2 ) ) = ( ( log ` x ) / 2 ) ) |
| 47 |
|
fzfid |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( 1 ... ( |_ ` x ) ) e. Fin ) |
| 48 |
1 2 3 4 5 6 7 8 9
|
dchrisum0ff |
|- ( ph -> F : NN --> RR ) |
| 49 |
48
|
adantr |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> F : NN --> RR ) |
| 50 |
|
elfznn |
|- ( k e. ( 1 ... ( |_ ` x ) ) -> k e. NN ) |
| 51 |
|
ffvelcdm |
|- ( ( F : NN --> RR /\ k e. NN ) -> ( F ` k ) e. RR ) |
| 52 |
49 50 51
|
syl2an |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ k e. ( 1 ... ( |_ ` x ) ) ) -> ( F ` k ) e. RR ) |
| 53 |
50
|
adantl |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ k e. ( 1 ... ( |_ ` x ) ) ) -> k e. NN ) |
| 54 |
53
|
nnrpd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ k e. ( 1 ... ( |_ ` x ) ) ) -> k e. RR+ ) |
| 55 |
54
|
rpsqrtcld |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ k e. ( 1 ... ( |_ ` x ) ) ) -> ( sqrt ` k ) e. RR+ ) |
| 56 |
52 55
|
rerpdivcld |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ k e. ( 1 ... ( |_ ` x ) ) ) -> ( ( F ` k ) / ( sqrt ` k ) ) e. RR ) |
| 57 |
47 56
|
fsumrecl |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( F ` k ) / ( sqrt ` k ) ) e. RR ) |
| 58 |
57
|
recnd |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( F ` k ) / ( sqrt ` k ) ) e. CC ) |
| 59 |
58
|
abscld |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( F ` k ) / ( sqrt ` k ) ) ) e. RR ) |
| 60 |
|
fzfid |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( 1 ... ( |_ ` ( sqrt ` x ) ) ) e. Fin ) |
| 61 |
|
elfznn |
|- ( i e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) -> i e. NN ) |
| 62 |
61
|
adantl |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ i e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ) -> i e. NN ) |
| 63 |
62
|
nnrecred |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ i e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ) -> ( 1 / i ) e. RR ) |
| 64 |
60 63
|
fsumrecl |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ i e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ( 1 / i ) e. RR ) |
| 65 |
|
logsqrt |
|- ( x e. RR+ -> ( log ` ( sqrt ` x ) ) = ( ( log ` x ) / 2 ) ) |
| 66 |
65
|
ad2antrl |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( log ` ( sqrt ` x ) ) = ( ( log ` x ) / 2 ) ) |
| 67 |
|
rpsqrtcl |
|- ( x e. RR+ -> ( sqrt ` x ) e. RR+ ) |
| 68 |
67
|
ad2antrl |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( sqrt ` x ) e. RR+ ) |
| 69 |
|
harmoniclbnd |
|- ( ( sqrt ` x ) e. RR+ -> ( log ` ( sqrt ` x ) ) <_ sum_ i e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ( 1 / i ) ) |
| 70 |
68 69
|
syl |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( log ` ( sqrt ` x ) ) <_ sum_ i e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ( 1 / i ) ) |
| 71 |
66 70
|
eqbrtrrd |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( log ` x ) / 2 ) <_ sum_ i e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ( 1 / i ) ) |
| 72 |
|
eqid |
|- ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) = ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) |
| 73 |
|
ovex |
|- ( m ^ 2 ) e. _V |
| 74 |
72 73
|
elrnmpti |
|- ( k e. ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) <-> E. m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) k = ( m ^ 2 ) ) |
| 75 |
|
elfznn |
|- ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) -> m e. NN ) |
| 76 |
75
|
adantl |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ) -> m e. NN ) |
| 77 |
76
|
nnrpd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ) -> m e. RR+ ) |
| 78 |
77
|
rprege0d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ) -> ( m e. RR /\ 0 <_ m ) ) |
| 79 |
|
sqrtsq |
|- ( ( m e. RR /\ 0 <_ m ) -> ( sqrt ` ( m ^ 2 ) ) = m ) |
| 80 |
78 79
|
syl |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ) -> ( sqrt ` ( m ^ 2 ) ) = m ) |
| 81 |
80 76
|
eqeltrd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ) -> ( sqrt ` ( m ^ 2 ) ) e. NN ) |
| 82 |
|
fveq2 |
|- ( k = ( m ^ 2 ) -> ( sqrt ` k ) = ( sqrt ` ( m ^ 2 ) ) ) |
| 83 |
82
|
eleq1d |
|- ( k = ( m ^ 2 ) -> ( ( sqrt ` k ) e. NN <-> ( sqrt ` ( m ^ 2 ) ) e. NN ) ) |
| 84 |
81 83
|
syl5ibrcom |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ) -> ( k = ( m ^ 2 ) -> ( sqrt ` k ) e. NN ) ) |
| 85 |
84
|
rexlimdva |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( E. m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) k = ( m ^ 2 ) -> ( sqrt ` k ) e. NN ) ) |
| 86 |
74 85
|
biimtrid |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( k e. ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) -> ( sqrt ` k ) e. NN ) ) |
| 87 |
86
|
imp |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ k e. ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) ) -> ( sqrt ` k ) e. NN ) |
| 88 |
87
|
iftrued |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ k e. ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) ) -> if ( ( sqrt ` k ) e. NN , 1 , 0 ) = 1 ) |
| 89 |
88
|
oveq1d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ k e. ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) ) -> ( if ( ( sqrt ` k ) e. NN , 1 , 0 ) / ( sqrt ` k ) ) = ( 1 / ( sqrt ` k ) ) ) |
| 90 |
89
|
sumeq2dv |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ k e. ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) ( if ( ( sqrt ` k ) e. NN , 1 , 0 ) / ( sqrt ` k ) ) = sum_ k e. ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) ( 1 / ( sqrt ` k ) ) ) |
| 91 |
|
fveq2 |
|- ( k = ( i ^ 2 ) -> ( sqrt ` k ) = ( sqrt ` ( i ^ 2 ) ) ) |
| 92 |
91
|
oveq2d |
|- ( k = ( i ^ 2 ) -> ( 1 / ( sqrt ` k ) ) = ( 1 / ( sqrt ` ( i ^ 2 ) ) ) ) |
| 93 |
76
|
nnsqcld |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ) -> ( m ^ 2 ) e. NN ) |
| 94 |
68
|
rpred |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( sqrt ` x ) e. RR ) |
| 95 |
|
fznnfl |
|- ( ( sqrt ` x ) e. RR -> ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) <-> ( m e. NN /\ m <_ ( sqrt ` x ) ) ) ) |
| 96 |
94 95
|
syl |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) <-> ( m e. NN /\ m <_ ( sqrt ` x ) ) ) ) |
| 97 |
96
|
simplbda |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ) -> m <_ ( sqrt ` x ) ) |
| 98 |
68
|
adantr |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ) -> ( sqrt ` x ) e. RR+ ) |
| 99 |
98
|
rprege0d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ) -> ( ( sqrt ` x ) e. RR /\ 0 <_ ( sqrt ` x ) ) ) |
| 100 |
|
le2sq |
|- ( ( ( m e. RR /\ 0 <_ m ) /\ ( ( sqrt ` x ) e. RR /\ 0 <_ ( sqrt ` x ) ) ) -> ( m <_ ( sqrt ` x ) <-> ( m ^ 2 ) <_ ( ( sqrt ` x ) ^ 2 ) ) ) |
| 101 |
78 99 100
|
syl2anc |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ) -> ( m <_ ( sqrt ` x ) <-> ( m ^ 2 ) <_ ( ( sqrt ` x ) ^ 2 ) ) ) |
| 102 |
97 101
|
mpbid |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ) -> ( m ^ 2 ) <_ ( ( sqrt ` x ) ^ 2 ) ) |
| 103 |
35
|
rpred |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> x e. RR ) |
| 104 |
103
|
adantr |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ) -> x e. RR ) |
| 105 |
104
|
recnd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ) -> x e. CC ) |
| 106 |
105
|
sqsqrtd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ) -> ( ( sqrt ` x ) ^ 2 ) = x ) |
| 107 |
102 106
|
breqtrd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ) -> ( m ^ 2 ) <_ x ) |
| 108 |
|
fznnfl |
|- ( x e. RR -> ( ( m ^ 2 ) e. ( 1 ... ( |_ ` x ) ) <-> ( ( m ^ 2 ) e. NN /\ ( m ^ 2 ) <_ x ) ) ) |
| 109 |
104 108
|
syl |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ) -> ( ( m ^ 2 ) e. ( 1 ... ( |_ ` x ) ) <-> ( ( m ^ 2 ) e. NN /\ ( m ^ 2 ) <_ x ) ) ) |
| 110 |
93 107 109
|
mpbir2and |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ) -> ( m ^ 2 ) e. ( 1 ... ( |_ ` x ) ) ) |
| 111 |
110
|
ex |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) -> ( m ^ 2 ) e. ( 1 ... ( |_ ` x ) ) ) ) |
| 112 |
75
|
nnrpd |
|- ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) -> m e. RR+ ) |
| 113 |
112
|
rprege0d |
|- ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) -> ( m e. RR /\ 0 <_ m ) ) |
| 114 |
61
|
nnrpd |
|- ( i e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) -> i e. RR+ ) |
| 115 |
114
|
rprege0d |
|- ( i e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) -> ( i e. RR /\ 0 <_ i ) ) |
| 116 |
|
sq11 |
|- ( ( ( m e. RR /\ 0 <_ m ) /\ ( i e. RR /\ 0 <_ i ) ) -> ( ( m ^ 2 ) = ( i ^ 2 ) <-> m = i ) ) |
| 117 |
113 115 116
|
syl2an |
|- ( ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) /\ i e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ) -> ( ( m ^ 2 ) = ( i ^ 2 ) <-> m = i ) ) |
| 118 |
117
|
a1i |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) /\ i e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ) -> ( ( m ^ 2 ) = ( i ^ 2 ) <-> m = i ) ) ) |
| 119 |
111 118
|
dom2lem |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) : ( 1 ... ( |_ ` ( sqrt ` x ) ) ) -1-1-> ( 1 ... ( |_ ` x ) ) ) |
| 120 |
|
f1f1orn |
|- ( ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) : ( 1 ... ( |_ ` ( sqrt ` x ) ) ) -1-1-> ( 1 ... ( |_ ` x ) ) -> ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) : ( 1 ... ( |_ ` ( sqrt ` x ) ) ) -1-1-onto-> ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) ) |
| 121 |
119 120
|
syl |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) : ( 1 ... ( |_ ` ( sqrt ` x ) ) ) -1-1-onto-> ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) ) |
| 122 |
|
oveq1 |
|- ( m = i -> ( m ^ 2 ) = ( i ^ 2 ) ) |
| 123 |
122 72 73
|
fvmpt3i |
|- ( i e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) -> ( ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) ` i ) = ( i ^ 2 ) ) |
| 124 |
123
|
adantl |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ i e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ) -> ( ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) ` i ) = ( i ^ 2 ) ) |
| 125 |
|
f1f |
|- ( ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) : ( 1 ... ( |_ ` ( sqrt ` x ) ) ) -1-1-> ( 1 ... ( |_ ` x ) ) -> ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) : ( 1 ... ( |_ ` ( sqrt ` x ) ) ) --> ( 1 ... ( |_ ` x ) ) ) |
| 126 |
|
frn |
|- ( ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) : ( 1 ... ( |_ ` ( sqrt ` x ) ) ) --> ( 1 ... ( |_ ` x ) ) -> ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) C_ ( 1 ... ( |_ ` x ) ) ) |
| 127 |
119 125 126
|
3syl |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) C_ ( 1 ... ( |_ ` x ) ) ) |
| 128 |
127
|
sselda |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ k e. ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) ) -> k e. ( 1 ... ( |_ ` x ) ) ) |
| 129 |
|
1re |
|- 1 e. RR |
| 130 |
|
0re |
|- 0 e. RR |
| 131 |
129 130
|
ifcli |
|- if ( ( sqrt ` k ) e. NN , 1 , 0 ) e. RR |
| 132 |
|
rerpdivcl |
|- ( ( if ( ( sqrt ` k ) e. NN , 1 , 0 ) e. RR /\ ( sqrt ` k ) e. RR+ ) -> ( if ( ( sqrt ` k ) e. NN , 1 , 0 ) / ( sqrt ` k ) ) e. RR ) |
| 133 |
131 55 132
|
sylancr |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ k e. ( 1 ... ( |_ ` x ) ) ) -> ( if ( ( sqrt ` k ) e. NN , 1 , 0 ) / ( sqrt ` k ) ) e. RR ) |
| 134 |
133
|
recnd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ k e. ( 1 ... ( |_ ` x ) ) ) -> ( if ( ( sqrt ` k ) e. NN , 1 , 0 ) / ( sqrt ` k ) ) e. CC ) |
| 135 |
128 134
|
syldan |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ k e. ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) ) -> ( if ( ( sqrt ` k ) e. NN , 1 , 0 ) / ( sqrt ` k ) ) e. CC ) |
| 136 |
89 135
|
eqeltrrd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ k e. ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) ) -> ( 1 / ( sqrt ` k ) ) e. CC ) |
| 137 |
92 60 121 124 136
|
fsumf1o |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ k e. ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) ( 1 / ( sqrt ` k ) ) = sum_ i e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ( 1 / ( sqrt ` ( i ^ 2 ) ) ) ) |
| 138 |
90 137
|
eqtrd |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ k e. ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) ( if ( ( sqrt ` k ) e. NN , 1 , 0 ) / ( sqrt ` k ) ) = sum_ i e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ( 1 / ( sqrt ` ( i ^ 2 ) ) ) ) |
| 139 |
|
eldif |
|- ( k e. ( ( 1 ... ( |_ ` x ) ) \ ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) ) <-> ( k e. ( 1 ... ( |_ ` x ) ) /\ -. k e. ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) ) ) |
| 140 |
50
|
ad2antrl |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ ( sqrt ` k ) e. NN ) ) -> k e. NN ) |
| 141 |
140
|
nncnd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ ( sqrt ` k ) e. NN ) ) -> k e. CC ) |
| 142 |
141
|
sqsqrtd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ ( sqrt ` k ) e. NN ) ) -> ( ( sqrt ` k ) ^ 2 ) = k ) |
| 143 |
|
simprr |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ ( sqrt ` k ) e. NN ) ) -> ( sqrt ` k ) e. NN ) |
| 144 |
|
fznnfl |
|- ( x e. RR -> ( k e. ( 1 ... ( |_ ` x ) ) <-> ( k e. NN /\ k <_ x ) ) ) |
| 145 |
103 144
|
syl |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( k e. ( 1 ... ( |_ ` x ) ) <-> ( k e. NN /\ k <_ x ) ) ) |
| 146 |
145
|
simplbda |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ k e. ( 1 ... ( |_ ` x ) ) ) -> k <_ x ) |
| 147 |
146
|
adantrr |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ ( sqrt ` k ) e. NN ) ) -> k <_ x ) |
| 148 |
140
|
nnrpd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ ( sqrt ` k ) e. NN ) ) -> k e. RR+ ) |
| 149 |
148
|
rprege0d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ ( sqrt ` k ) e. NN ) ) -> ( k e. RR /\ 0 <_ k ) ) |
| 150 |
35
|
adantr |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ ( sqrt ` k ) e. NN ) ) -> x e. RR+ ) |
| 151 |
150
|
rprege0d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ ( sqrt ` k ) e. NN ) ) -> ( x e. RR /\ 0 <_ x ) ) |
| 152 |
|
sqrtle |
|- ( ( ( k e. RR /\ 0 <_ k ) /\ ( x e. RR /\ 0 <_ x ) ) -> ( k <_ x <-> ( sqrt ` k ) <_ ( sqrt ` x ) ) ) |
| 153 |
149 151 152
|
syl2anc |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ ( sqrt ` k ) e. NN ) ) -> ( k <_ x <-> ( sqrt ` k ) <_ ( sqrt ` x ) ) ) |
| 154 |
147 153
|
mpbid |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ ( sqrt ` k ) e. NN ) ) -> ( sqrt ` k ) <_ ( sqrt ` x ) ) |
| 155 |
68
|
adantr |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ ( sqrt ` k ) e. NN ) ) -> ( sqrt ` x ) e. RR+ ) |
| 156 |
155
|
rpred |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ ( sqrt ` k ) e. NN ) ) -> ( sqrt ` x ) e. RR ) |
| 157 |
|
fznnfl |
|- ( ( sqrt ` x ) e. RR -> ( ( sqrt ` k ) e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) <-> ( ( sqrt ` k ) e. NN /\ ( sqrt ` k ) <_ ( sqrt ` x ) ) ) ) |
| 158 |
156 157
|
syl |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ ( sqrt ` k ) e. NN ) ) -> ( ( sqrt ` k ) e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) <-> ( ( sqrt ` k ) e. NN /\ ( sqrt ` k ) <_ ( sqrt ` x ) ) ) ) |
| 159 |
143 154 158
|
mpbir2and |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ ( sqrt ` k ) e. NN ) ) -> ( sqrt ` k ) e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ) |
| 160 |
142 140
|
eqeltrd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ ( sqrt ` k ) e. NN ) ) -> ( ( sqrt ` k ) ^ 2 ) e. NN ) |
| 161 |
|
oveq1 |
|- ( m = ( sqrt ` k ) -> ( m ^ 2 ) = ( ( sqrt ` k ) ^ 2 ) ) |
| 162 |
72 161
|
elrnmpt1s |
|- ( ( ( sqrt ` k ) e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) /\ ( ( sqrt ` k ) ^ 2 ) e. NN ) -> ( ( sqrt ` k ) ^ 2 ) e. ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) ) |
| 163 |
159 160 162
|
syl2anc |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ ( sqrt ` k ) e. NN ) ) -> ( ( sqrt ` k ) ^ 2 ) e. ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) ) |
| 164 |
142 163
|
eqeltrrd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ ( sqrt ` k ) e. NN ) ) -> k e. ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) ) |
| 165 |
164
|
expr |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ k e. ( 1 ... ( |_ ` x ) ) ) -> ( ( sqrt ` k ) e. NN -> k e. ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) ) ) |
| 166 |
165
|
con3d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ k e. ( 1 ... ( |_ ` x ) ) ) -> ( -. k e. ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) -> -. ( sqrt ` k ) e. NN ) ) |
| 167 |
166
|
impr |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ -. k e. ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) ) ) -> -. ( sqrt ` k ) e. NN ) |
| 168 |
139 167
|
sylan2b |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ k e. ( ( 1 ... ( |_ ` x ) ) \ ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) ) ) -> -. ( sqrt ` k ) e. NN ) |
| 169 |
168
|
iffalsed |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ k e. ( ( 1 ... ( |_ ` x ) ) \ ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) ) ) -> if ( ( sqrt ` k ) e. NN , 1 , 0 ) = 0 ) |
| 170 |
169
|
oveq1d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ k e. ( ( 1 ... ( |_ ` x ) ) \ ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) ) ) -> ( if ( ( sqrt ` k ) e. NN , 1 , 0 ) / ( sqrt ` k ) ) = ( 0 / ( sqrt ` k ) ) ) |
| 171 |
|
eldifi |
|- ( k e. ( ( 1 ... ( |_ ` x ) ) \ ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) ) -> k e. ( 1 ... ( |_ ` x ) ) ) |
| 172 |
171 55
|
sylan2 |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ k e. ( ( 1 ... ( |_ ` x ) ) \ ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) ) ) -> ( sqrt ` k ) e. RR+ ) |
| 173 |
172
|
rpcnne0d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ k e. ( ( 1 ... ( |_ ` x ) ) \ ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) ) ) -> ( ( sqrt ` k ) e. CC /\ ( sqrt ` k ) =/= 0 ) ) |
| 174 |
|
div0 |
|- ( ( ( sqrt ` k ) e. CC /\ ( sqrt ` k ) =/= 0 ) -> ( 0 / ( sqrt ` k ) ) = 0 ) |
| 175 |
173 174
|
syl |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ k e. ( ( 1 ... ( |_ ` x ) ) \ ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) ) ) -> ( 0 / ( sqrt ` k ) ) = 0 ) |
| 176 |
170 175
|
eqtrd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ k e. ( ( 1 ... ( |_ ` x ) ) \ ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) ) ) -> ( if ( ( sqrt ` k ) e. NN , 1 , 0 ) / ( sqrt ` k ) ) = 0 ) |
| 177 |
127 135 176 47
|
fsumss |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ k e. ran ( m e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) |-> ( m ^ 2 ) ) ( if ( ( sqrt ` k ) e. NN , 1 , 0 ) / ( sqrt ` k ) ) = sum_ k e. ( 1 ... ( |_ ` x ) ) ( if ( ( sqrt ` k ) e. NN , 1 , 0 ) / ( sqrt ` k ) ) ) |
| 178 |
62
|
nnrpd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ i e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ) -> i e. RR+ ) |
| 179 |
178
|
rprege0d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ i e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ) -> ( i e. RR /\ 0 <_ i ) ) |
| 180 |
|
sqrtsq |
|- ( ( i e. RR /\ 0 <_ i ) -> ( sqrt ` ( i ^ 2 ) ) = i ) |
| 181 |
179 180
|
syl |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ i e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ) -> ( sqrt ` ( i ^ 2 ) ) = i ) |
| 182 |
181
|
oveq2d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ i e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ) -> ( 1 / ( sqrt ` ( i ^ 2 ) ) ) = ( 1 / i ) ) |
| 183 |
182
|
sumeq2dv |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ i e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ( 1 / ( sqrt ` ( i ^ 2 ) ) ) = sum_ i e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ( 1 / i ) ) |
| 184 |
138 177 183
|
3eqtr3d |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ k e. ( 1 ... ( |_ ` x ) ) ( if ( ( sqrt ` k ) e. NN , 1 , 0 ) / ( sqrt ` k ) ) = sum_ i e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ( 1 / i ) ) |
| 185 |
131
|
a1i |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ k e. ( 1 ... ( |_ ` x ) ) ) -> if ( ( sqrt ` k ) e. NN , 1 , 0 ) e. RR ) |
| 186 |
3
|
ad2antrr |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ k e. ( 1 ... ( |_ ` x ) ) ) -> N e. NN ) |
| 187 |
8
|
ad2antrr |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ k e. ( 1 ... ( |_ ` x ) ) ) -> X e. D ) |
| 188 |
9
|
ad2antrr |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ k e. ( 1 ... ( |_ ` x ) ) ) -> X : ( Base ` Z ) --> RR ) |
| 189 |
1 2 186 4 5 6 7 187 188 53
|
dchrisum0flb |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ k e. ( 1 ... ( |_ ` x ) ) ) -> if ( ( sqrt ` k ) e. NN , 1 , 0 ) <_ ( F ` k ) ) |
| 190 |
185 52 55 189
|
lediv1dd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ k e. ( 1 ... ( |_ ` x ) ) ) -> ( if ( ( sqrt ` k ) e. NN , 1 , 0 ) / ( sqrt ` k ) ) <_ ( ( F ` k ) / ( sqrt ` k ) ) ) |
| 191 |
47 133 56 190
|
fsumle |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ k e. ( 1 ... ( |_ ` x ) ) ( if ( ( sqrt ` k ) e. NN , 1 , 0 ) / ( sqrt ` k ) ) <_ sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( F ` k ) / ( sqrt ` k ) ) ) |
| 192 |
184 191
|
eqbrtrrd |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ i e. ( 1 ... ( |_ ` ( sqrt ` x ) ) ) ( 1 / i ) <_ sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( F ` k ) / ( sqrt ` k ) ) ) |
| 193 |
30 64 57 71 192
|
letrd |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( log ` x ) / 2 ) <_ sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( F ` k ) / ( sqrt ` k ) ) ) |
| 194 |
57
|
leabsd |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( F ` k ) / ( sqrt ` k ) ) <_ ( abs ` sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( F ` k ) / ( sqrt ` k ) ) ) ) |
| 195 |
30 57 59 193 194
|
letrd |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( log ` x ) / 2 ) <_ ( abs ` sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( F ` k ) / ( sqrt ` k ) ) ) ) |
| 196 |
46 195
|
eqbrtrd |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` ( ( log ` x ) / 2 ) ) <_ ( abs ` sum_ k e. ( 1 ... ( |_ ` x ) ) ( ( F ` k ) / ( sqrt ` k ) ) ) ) |
| 197 |
27 10 29 21 196
|
o1le |
|- ( ph -> ( x e. RR+ |-> ( ( log ` x ) / 2 ) ) e. O(1) ) |
| 198 |
15 21 26 197
|
o1mul2 |
|- ( ph -> ( x e. RR+ |-> ( 2 x. ( ( log ` x ) / 2 ) ) ) e. O(1) ) |
| 199 |
19 198
|
eqeltrrd |
|- ( ph -> ( x e. RR+ |-> ( log ` x ) ) e. O(1) ) |
| 200 |
11 199
|
mto |
|- -. ph |