| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgpnabl.g |  |-  G = ( freeGrp ` I ) | 
						
							| 2 |  | frgpnabl.w |  |-  W = ( _I ` Word ( I X. 2o ) ) | 
						
							| 3 |  | frgpnabl.r |  |-  .~ = ( ~FG ` I ) | 
						
							| 4 |  | frgpnabl.p |  |-  .+ = ( +g ` G ) | 
						
							| 5 |  | frgpnabl.m |  |-  M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) | 
						
							| 6 |  | frgpnabl.t |  |-  T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) | 
						
							| 7 |  | frgpnabl.d |  |-  D = ( W \ U_ x e. W ran ( T ` x ) ) | 
						
							| 8 |  | frgpnabl.u |  |-  U = ( varFGrp ` I ) | 
						
							| 9 |  | frgpnabl.i |  |-  ( ph -> I e. V ) | 
						
							| 10 |  | frgpnabl.a |  |-  ( ph -> A e. I ) | 
						
							| 11 |  | frgpnabl.b |  |-  ( ph -> B e. I ) | 
						
							| 12 |  | 0ex |  |-  (/) e. _V | 
						
							| 13 | 12 | prid1 |  |-  (/) e. { (/) , 1o } | 
						
							| 14 |  | df2o3 |  |-  2o = { (/) , 1o } | 
						
							| 15 | 13 14 | eleqtrri |  |-  (/) e. 2o | 
						
							| 16 |  | opelxpi |  |-  ( ( A e. I /\ (/) e. 2o ) -> <. A , (/) >. e. ( I X. 2o ) ) | 
						
							| 17 | 10 15 16 | sylancl |  |-  ( ph -> <. A , (/) >. e. ( I X. 2o ) ) | 
						
							| 18 |  | opelxpi |  |-  ( ( B e. I /\ (/) e. 2o ) -> <. B , (/) >. e. ( I X. 2o ) ) | 
						
							| 19 | 11 15 18 | sylancl |  |-  ( ph -> <. B , (/) >. e. ( I X. 2o ) ) | 
						
							| 20 | 17 19 | s2cld |  |-  ( ph -> <" <. A , (/) >. <. B , (/) >. "> e. Word ( I X. 2o ) ) | 
						
							| 21 |  | 2on |  |-  2o e. On | 
						
							| 22 |  | xpexg |  |-  ( ( I e. V /\ 2o e. On ) -> ( I X. 2o ) e. _V ) | 
						
							| 23 | 9 21 22 | sylancl |  |-  ( ph -> ( I X. 2o ) e. _V ) | 
						
							| 24 |  | wrdexg |  |-  ( ( I X. 2o ) e. _V -> Word ( I X. 2o ) e. _V ) | 
						
							| 25 |  | fvi |  |-  ( Word ( I X. 2o ) e. _V -> ( _I ` Word ( I X. 2o ) ) = Word ( I X. 2o ) ) | 
						
							| 26 | 23 24 25 | 3syl |  |-  ( ph -> ( _I ` Word ( I X. 2o ) ) = Word ( I X. 2o ) ) | 
						
							| 27 | 2 26 | eqtrid |  |-  ( ph -> W = Word ( I X. 2o ) ) | 
						
							| 28 | 20 27 | eleqtrrd |  |-  ( ph -> <" <. A , (/) >. <. B , (/) >. "> e. W ) | 
						
							| 29 |  | 1n0 |  |-  1o =/= (/) | 
						
							| 30 |  | 2cn |  |-  2 e. CC | 
						
							| 31 | 30 | addlidi |  |-  ( 0 + 2 ) = 2 | 
						
							| 32 |  | s2len |  |-  ( # ` <" <. A , (/) >. <. B , (/) >. "> ) = 2 | 
						
							| 33 | 31 32 | eqtr4i |  |-  ( 0 + 2 ) = ( # ` <" <. A , (/) >. <. B , (/) >. "> ) | 
						
							| 34 | 2 3 5 6 | efgtlen |  |-  ( ( x e. W /\ <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` x ) ) -> ( # ` <" <. A , (/) >. <. B , (/) >. "> ) = ( ( # ` x ) + 2 ) ) | 
						
							| 35 | 34 | adantll |  |-  ( ( ( ph /\ x e. W ) /\ <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` x ) ) -> ( # ` <" <. A , (/) >. <. B , (/) >. "> ) = ( ( # ` x ) + 2 ) ) | 
						
							| 36 | 33 35 | eqtrid |  |-  ( ( ( ph /\ x e. W ) /\ <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` x ) ) -> ( 0 + 2 ) = ( ( # ` x ) + 2 ) ) | 
						
							| 37 | 36 | ex |  |-  ( ( ph /\ x e. W ) -> ( <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` x ) -> ( 0 + 2 ) = ( ( # ` x ) + 2 ) ) ) | 
						
							| 38 |  | 0cnd |  |-  ( ( ph /\ x e. W ) -> 0 e. CC ) | 
						
							| 39 |  | simpr |  |-  ( ( ph /\ x e. W ) -> x e. W ) | 
						
							| 40 | 2 | efgrcl |  |-  ( x e. W -> ( I e. _V /\ W = Word ( I X. 2o ) ) ) | 
						
							| 41 | 40 | simprd |  |-  ( x e. W -> W = Word ( I X. 2o ) ) | 
						
							| 42 | 41 | adantl |  |-  ( ( ph /\ x e. W ) -> W = Word ( I X. 2o ) ) | 
						
							| 43 | 39 42 | eleqtrd |  |-  ( ( ph /\ x e. W ) -> x e. Word ( I X. 2o ) ) | 
						
							| 44 |  | lencl |  |-  ( x e. Word ( I X. 2o ) -> ( # ` x ) e. NN0 ) | 
						
							| 45 | 43 44 | syl |  |-  ( ( ph /\ x e. W ) -> ( # ` x ) e. NN0 ) | 
						
							| 46 | 45 | nn0cnd |  |-  ( ( ph /\ x e. W ) -> ( # ` x ) e. CC ) | 
						
							| 47 |  | 2cnd |  |-  ( ( ph /\ x e. W ) -> 2 e. CC ) | 
						
							| 48 | 38 46 47 | addcan2d |  |-  ( ( ph /\ x e. W ) -> ( ( 0 + 2 ) = ( ( # ` x ) + 2 ) <-> 0 = ( # ` x ) ) ) | 
						
							| 49 | 37 48 | sylibd |  |-  ( ( ph /\ x e. W ) -> ( <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` x ) -> 0 = ( # ` x ) ) ) | 
						
							| 50 | 2 3 5 6 | efgtf |  |-  ( (/) e. W -> ( ( T ` (/) ) = ( a e. ( 0 ... ( # ` (/) ) ) , b e. ( I X. 2o ) |-> ( (/) splice <. a , a , <" b ( M ` b ) "> >. ) ) /\ ( T ` (/) ) : ( ( 0 ... ( # ` (/) ) ) X. ( I X. 2o ) ) --> W ) ) | 
						
							| 51 | 50 | adantl |  |-  ( ( ph /\ (/) e. W ) -> ( ( T ` (/) ) = ( a e. ( 0 ... ( # ` (/) ) ) , b e. ( I X. 2o ) |-> ( (/) splice <. a , a , <" b ( M ` b ) "> >. ) ) /\ ( T ` (/) ) : ( ( 0 ... ( # ` (/) ) ) X. ( I X. 2o ) ) --> W ) ) | 
						
							| 52 | 51 | simpld |  |-  ( ( ph /\ (/) e. W ) -> ( T ` (/) ) = ( a e. ( 0 ... ( # ` (/) ) ) , b e. ( I X. 2o ) |-> ( (/) splice <. a , a , <" b ( M ` b ) "> >. ) ) ) | 
						
							| 53 | 52 | rneqd |  |-  ( ( ph /\ (/) e. W ) -> ran ( T ` (/) ) = ran ( a e. ( 0 ... ( # ` (/) ) ) , b e. ( I X. 2o ) |-> ( (/) splice <. a , a , <" b ( M ` b ) "> >. ) ) ) | 
						
							| 54 | 53 | eleq2d |  |-  ( ( ph /\ (/) e. W ) -> ( <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` (/) ) <-> <" <. A , (/) >. <. B , (/) >. "> e. ran ( a e. ( 0 ... ( # ` (/) ) ) , b e. ( I X. 2o ) |-> ( (/) splice <. a , a , <" b ( M ` b ) "> >. ) ) ) ) | 
						
							| 55 |  | eqid |  |-  ( a e. ( 0 ... ( # ` (/) ) ) , b e. ( I X. 2o ) |-> ( (/) splice <. a , a , <" b ( M ` b ) "> >. ) ) = ( a e. ( 0 ... ( # ` (/) ) ) , b e. ( I X. 2o ) |-> ( (/) splice <. a , a , <" b ( M ` b ) "> >. ) ) | 
						
							| 56 |  | ovex |  |-  ( (/) splice <. a , a , <" b ( M ` b ) "> >. ) e. _V | 
						
							| 57 | 55 56 | elrnmpo |  |-  ( <" <. A , (/) >. <. B , (/) >. "> e. ran ( a e. ( 0 ... ( # ` (/) ) ) , b e. ( I X. 2o ) |-> ( (/) splice <. a , a , <" b ( M ` b ) "> >. ) ) <-> E. a e. ( 0 ... ( # ` (/) ) ) E. b e. ( I X. 2o ) <" <. A , (/) >. <. B , (/) >. "> = ( (/) splice <. a , a , <" b ( M ` b ) "> >. ) ) | 
						
							| 58 |  | wrd0 |  |-  (/) e. Word ( I X. 2o ) | 
						
							| 59 | 58 | a1i |  |-  ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) -> (/) e. Word ( I X. 2o ) ) | 
						
							| 60 |  | simprr |  |-  ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) -> b e. ( I X. 2o ) ) | 
						
							| 61 | 5 | efgmf |  |-  M : ( I X. 2o ) --> ( I X. 2o ) | 
						
							| 62 | 61 | ffvelcdmi |  |-  ( b e. ( I X. 2o ) -> ( M ` b ) e. ( I X. 2o ) ) | 
						
							| 63 | 60 62 | syl |  |-  ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) -> ( M ` b ) e. ( I X. 2o ) ) | 
						
							| 64 | 60 63 | s2cld |  |-  ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) -> <" b ( M ` b ) "> e. Word ( I X. 2o ) ) | 
						
							| 65 |  | ccatidid |  |-  ( (/) ++ (/) ) = (/) | 
						
							| 66 | 65 | oveq1i |  |-  ( ( (/) ++ (/) ) ++ (/) ) = ( (/) ++ (/) ) | 
						
							| 67 | 66 65 | eqtr2i |  |-  (/) = ( ( (/) ++ (/) ) ++ (/) ) | 
						
							| 68 | 67 | a1i |  |-  ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) -> (/) = ( ( (/) ++ (/) ) ++ (/) ) ) | 
						
							| 69 |  | simprl |  |-  ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) -> a e. ( 0 ... ( # ` (/) ) ) ) | 
						
							| 70 |  | hash0 |  |-  ( # ` (/) ) = 0 | 
						
							| 71 | 70 | oveq2i |  |-  ( 0 ... ( # ` (/) ) ) = ( 0 ... 0 ) | 
						
							| 72 | 69 71 | eleqtrdi |  |-  ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) -> a e. ( 0 ... 0 ) ) | 
						
							| 73 |  | elfz1eq |  |-  ( a e. ( 0 ... 0 ) -> a = 0 ) | 
						
							| 74 | 72 73 | syl |  |-  ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) -> a = 0 ) | 
						
							| 75 | 74 70 | eqtr4di |  |-  ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) -> a = ( # ` (/) ) ) | 
						
							| 76 | 70 | oveq2i |  |-  ( a + ( # ` (/) ) ) = ( a + 0 ) | 
						
							| 77 |  | 0cn |  |-  0 e. CC | 
						
							| 78 | 74 77 | eqeltrdi |  |-  ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) -> a e. CC ) | 
						
							| 79 | 78 | addridd |  |-  ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) -> ( a + 0 ) = a ) | 
						
							| 80 | 76 79 | eqtr2id |  |-  ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) -> a = ( a + ( # ` (/) ) ) ) | 
						
							| 81 | 59 59 59 64 68 75 80 | splval2 |  |-  ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) -> ( (/) splice <. a , a , <" b ( M ` b ) "> >. ) = ( ( (/) ++ <" b ( M ` b ) "> ) ++ (/) ) ) | 
						
							| 82 |  | ccatlid |  |-  ( <" b ( M ` b ) "> e. Word ( I X. 2o ) -> ( (/) ++ <" b ( M ` b ) "> ) = <" b ( M ` b ) "> ) | 
						
							| 83 | 82 | oveq1d |  |-  ( <" b ( M ` b ) "> e. Word ( I X. 2o ) -> ( ( (/) ++ <" b ( M ` b ) "> ) ++ (/) ) = ( <" b ( M ` b ) "> ++ (/) ) ) | 
						
							| 84 |  | ccatrid |  |-  ( <" b ( M ` b ) "> e. Word ( I X. 2o ) -> ( <" b ( M ` b ) "> ++ (/) ) = <" b ( M ` b ) "> ) | 
						
							| 85 | 83 84 | eqtrd |  |-  ( <" b ( M ` b ) "> e. Word ( I X. 2o ) -> ( ( (/) ++ <" b ( M ` b ) "> ) ++ (/) ) = <" b ( M ` b ) "> ) | 
						
							| 86 | 64 85 | syl |  |-  ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) -> ( ( (/) ++ <" b ( M ` b ) "> ) ++ (/) ) = <" b ( M ` b ) "> ) | 
						
							| 87 | 81 86 | eqtrd |  |-  ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) -> ( (/) splice <. a , a , <" b ( M ` b ) "> >. ) = <" b ( M ` b ) "> ) | 
						
							| 88 | 87 | eqeq2d |  |-  ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) -> ( <" <. A , (/) >. <. B , (/) >. "> = ( (/) splice <. a , a , <" b ( M ` b ) "> >. ) <-> <" <. A , (/) >. <. B , (/) >. "> = <" b ( M ` b ) "> ) ) | 
						
							| 89 | 10 | ad3antrrr |  |-  ( ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) /\ <" <. A , (/) >. <. B , (/) >. "> = <" b ( M ` b ) "> ) -> A e. I ) | 
						
							| 90 |  | 1on |  |-  1o e. On | 
						
							| 91 | 90 | a1i |  |-  ( ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) /\ <" <. A , (/) >. <. B , (/) >. "> = <" b ( M ` b ) "> ) -> 1o e. On ) | 
						
							| 92 |  | simpr |  |-  ( ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) /\ <" <. A , (/) >. <. B , (/) >. "> = <" b ( M ` b ) "> ) -> <" <. A , (/) >. <. B , (/) >. "> = <" b ( M ` b ) "> ) | 
						
							| 93 | 92 | fveq1d |  |-  ( ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) /\ <" <. A , (/) >. <. B , (/) >. "> = <" b ( M ` b ) "> ) -> ( <" <. A , (/) >. <. B , (/) >. "> ` 1 ) = ( <" b ( M ` b ) "> ` 1 ) ) | 
						
							| 94 |  | opex |  |-  <. B , (/) >. e. _V | 
						
							| 95 |  | s2fv1 |  |-  ( <. B , (/) >. e. _V -> ( <" <. A , (/) >. <. B , (/) >. "> ` 1 ) = <. B , (/) >. ) | 
						
							| 96 | 94 95 | ax-mp |  |-  ( <" <. A , (/) >. <. B , (/) >. "> ` 1 ) = <. B , (/) >. | 
						
							| 97 |  | fvex |  |-  ( M ` b ) e. _V | 
						
							| 98 |  | s2fv1 |  |-  ( ( M ` b ) e. _V -> ( <" b ( M ` b ) "> ` 1 ) = ( M ` b ) ) | 
						
							| 99 | 97 98 | ax-mp |  |-  ( <" b ( M ` b ) "> ` 1 ) = ( M ` b ) | 
						
							| 100 | 93 96 99 | 3eqtr3g |  |-  ( ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) /\ <" <. A , (/) >. <. B , (/) >. "> = <" b ( M ` b ) "> ) -> <. B , (/) >. = ( M ` b ) ) | 
						
							| 101 | 92 | fveq1d |  |-  ( ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) /\ <" <. A , (/) >. <. B , (/) >. "> = <" b ( M ` b ) "> ) -> ( <" <. A , (/) >. <. B , (/) >. "> ` 0 ) = ( <" b ( M ` b ) "> ` 0 ) ) | 
						
							| 102 |  | opex |  |-  <. A , (/) >. e. _V | 
						
							| 103 |  | s2fv0 |  |-  ( <. A , (/) >. e. _V -> ( <" <. A , (/) >. <. B , (/) >. "> ` 0 ) = <. A , (/) >. ) | 
						
							| 104 | 102 103 | ax-mp |  |-  ( <" <. A , (/) >. <. B , (/) >. "> ` 0 ) = <. A , (/) >. | 
						
							| 105 |  | s2fv0 |  |-  ( b e. _V -> ( <" b ( M ` b ) "> ` 0 ) = b ) | 
						
							| 106 | 105 | elv |  |-  ( <" b ( M ` b ) "> ` 0 ) = b | 
						
							| 107 | 101 104 106 | 3eqtr3g |  |-  ( ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) /\ <" <. A , (/) >. <. B , (/) >. "> = <" b ( M ` b ) "> ) -> <. A , (/) >. = b ) | 
						
							| 108 | 107 | fveq2d |  |-  ( ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) /\ <" <. A , (/) >. <. B , (/) >. "> = <" b ( M ` b ) "> ) -> ( M ` <. A , (/) >. ) = ( M ` b ) ) | 
						
							| 109 | 5 | efgmval |  |-  ( ( A e. I /\ (/) e. 2o ) -> ( A M (/) ) = <. A , ( 1o \ (/) ) >. ) | 
						
							| 110 | 89 15 109 | sylancl |  |-  ( ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) /\ <" <. A , (/) >. <. B , (/) >. "> = <" b ( M ` b ) "> ) -> ( A M (/) ) = <. A , ( 1o \ (/) ) >. ) | 
						
							| 111 |  | df-ov |  |-  ( A M (/) ) = ( M ` <. A , (/) >. ) | 
						
							| 112 |  | dif0 |  |-  ( 1o \ (/) ) = 1o | 
						
							| 113 | 112 | opeq2i |  |-  <. A , ( 1o \ (/) ) >. = <. A , 1o >. | 
						
							| 114 | 110 111 113 | 3eqtr3g |  |-  ( ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) /\ <" <. A , (/) >. <. B , (/) >. "> = <" b ( M ` b ) "> ) -> ( M ` <. A , (/) >. ) = <. A , 1o >. ) | 
						
							| 115 | 100 108 114 | 3eqtr2rd |  |-  ( ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) /\ <" <. A , (/) >. <. B , (/) >. "> = <" b ( M ` b ) "> ) -> <. A , 1o >. = <. B , (/) >. ) | 
						
							| 116 |  | opthg |  |-  ( ( A e. I /\ 1o e. On ) -> ( <. A , 1o >. = <. B , (/) >. <-> ( A = B /\ 1o = (/) ) ) ) | 
						
							| 117 | 116 | simplbda |  |-  ( ( ( A e. I /\ 1o e. On ) /\ <. A , 1o >. = <. B , (/) >. ) -> 1o = (/) ) | 
						
							| 118 | 89 91 115 117 | syl21anc |  |-  ( ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) /\ <" <. A , (/) >. <. B , (/) >. "> = <" b ( M ` b ) "> ) -> 1o = (/) ) | 
						
							| 119 | 118 | ex |  |-  ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) -> ( <" <. A , (/) >. <. B , (/) >. "> = <" b ( M ` b ) "> -> 1o = (/) ) ) | 
						
							| 120 | 88 119 | sylbid |  |-  ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) -> ( <" <. A , (/) >. <. B , (/) >. "> = ( (/) splice <. a , a , <" b ( M ` b ) "> >. ) -> 1o = (/) ) ) | 
						
							| 121 | 120 | rexlimdvva |  |-  ( ( ph /\ (/) e. W ) -> ( E. a e. ( 0 ... ( # ` (/) ) ) E. b e. ( I X. 2o ) <" <. A , (/) >. <. B , (/) >. "> = ( (/) splice <. a , a , <" b ( M ` b ) "> >. ) -> 1o = (/) ) ) | 
						
							| 122 | 57 121 | biimtrid |  |-  ( ( ph /\ (/) e. W ) -> ( <" <. A , (/) >. <. B , (/) >. "> e. ran ( a e. ( 0 ... ( # ` (/) ) ) , b e. ( I X. 2o ) |-> ( (/) splice <. a , a , <" b ( M ` b ) "> >. ) ) -> 1o = (/) ) ) | 
						
							| 123 | 54 122 | sylbid |  |-  ( ( ph /\ (/) e. W ) -> ( <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` (/) ) -> 1o = (/) ) ) | 
						
							| 124 | 123 | expimpd |  |-  ( ph -> ( ( (/) e. W /\ <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` (/) ) ) -> 1o = (/) ) ) | 
						
							| 125 |  | hasheq0 |  |-  ( x e. _V -> ( ( # ` x ) = 0 <-> x = (/) ) ) | 
						
							| 126 | 125 | elv |  |-  ( ( # ` x ) = 0 <-> x = (/) ) | 
						
							| 127 |  | eleq1 |  |-  ( x = (/) -> ( x e. W <-> (/) e. W ) ) | 
						
							| 128 |  | fveq2 |  |-  ( x = (/) -> ( T ` x ) = ( T ` (/) ) ) | 
						
							| 129 | 128 | rneqd |  |-  ( x = (/) -> ran ( T ` x ) = ran ( T ` (/) ) ) | 
						
							| 130 | 129 | eleq2d |  |-  ( x = (/) -> ( <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` x ) <-> <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` (/) ) ) ) | 
						
							| 131 | 127 130 | anbi12d |  |-  ( x = (/) -> ( ( x e. W /\ <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` x ) ) <-> ( (/) e. W /\ <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` (/) ) ) ) ) | 
						
							| 132 | 126 131 | sylbi |  |-  ( ( # ` x ) = 0 -> ( ( x e. W /\ <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` x ) ) <-> ( (/) e. W /\ <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` (/) ) ) ) ) | 
						
							| 133 | 132 | eqcoms |  |-  ( 0 = ( # ` x ) -> ( ( x e. W /\ <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` x ) ) <-> ( (/) e. W /\ <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` (/) ) ) ) ) | 
						
							| 134 | 133 | imbi1d |  |-  ( 0 = ( # ` x ) -> ( ( ( x e. W /\ <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` x ) ) -> 1o = (/) ) <-> ( ( (/) e. W /\ <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` (/) ) ) -> 1o = (/) ) ) ) | 
						
							| 135 | 124 134 | syl5ibrcom |  |-  ( ph -> ( 0 = ( # ` x ) -> ( ( x e. W /\ <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` x ) ) -> 1o = (/) ) ) ) | 
						
							| 136 | 135 | com23 |  |-  ( ph -> ( ( x e. W /\ <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` x ) ) -> ( 0 = ( # ` x ) -> 1o = (/) ) ) ) | 
						
							| 137 | 136 | expdimp |  |-  ( ( ph /\ x e. W ) -> ( <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` x ) -> ( 0 = ( # ` x ) -> 1o = (/) ) ) ) | 
						
							| 138 | 49 137 | mpdd |  |-  ( ( ph /\ x e. W ) -> ( <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` x ) -> 1o = (/) ) ) | 
						
							| 139 | 138 | necon3ad |  |-  ( ( ph /\ x e. W ) -> ( 1o =/= (/) -> -. <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` x ) ) ) | 
						
							| 140 | 29 139 | mpi |  |-  ( ( ph /\ x e. W ) -> -. <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` x ) ) | 
						
							| 141 | 140 | nrexdv |  |-  ( ph -> -. E. x e. W <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` x ) ) | 
						
							| 142 |  | eliun |  |-  ( <" <. A , (/) >. <. B , (/) >. "> e. U_ x e. W ran ( T ` x ) <-> E. x e. W <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` x ) ) | 
						
							| 143 | 141 142 | sylnibr |  |-  ( ph -> -. <" <. A , (/) >. <. B , (/) >. "> e. U_ x e. W ran ( T ` x ) ) | 
						
							| 144 | 28 143 | eldifd |  |-  ( ph -> <" <. A , (/) >. <. B , (/) >. "> e. ( W \ U_ x e. W ran ( T ` x ) ) ) | 
						
							| 145 | 144 7 | eleqtrrdi |  |-  ( ph -> <" <. A , (/) >. <. B , (/) >. "> e. D ) | 
						
							| 146 |  | df-s2 |  |-  <" <. A , (/) >. <. B , (/) >. "> = ( <" <. A , (/) >. "> ++ <" <. B , (/) >. "> ) | 
						
							| 147 | 2 3 | efger |  |-  .~ Er W | 
						
							| 148 | 147 | a1i |  |-  ( ph -> .~ Er W ) | 
						
							| 149 | 148 28 | erref |  |-  ( ph -> <" <. A , (/) >. <. B , (/) >. "> .~ <" <. A , (/) >. <. B , (/) >. "> ) | 
						
							| 150 | 146 149 | eqbrtrrid |  |-  ( ph -> ( <" <. A , (/) >. "> ++ <" <. B , (/) >. "> ) .~ <" <. A , (/) >. <. B , (/) >. "> ) | 
						
							| 151 | 146 | ovexi |  |-  <" <. A , (/) >. <. B , (/) >. "> e. _V | 
						
							| 152 |  | ovex |  |-  ( <" <. A , (/) >. "> ++ <" <. B , (/) >. "> ) e. _V | 
						
							| 153 | 151 152 | elec |  |-  ( <" <. A , (/) >. <. B , (/) >. "> e. [ ( <" <. A , (/) >. "> ++ <" <. B , (/) >. "> ) ] .~ <-> ( <" <. A , (/) >. "> ++ <" <. B , (/) >. "> ) .~ <" <. A , (/) >. <. B , (/) >. "> ) | 
						
							| 154 | 150 153 | sylibr |  |-  ( ph -> <" <. A , (/) >. <. B , (/) >. "> e. [ ( <" <. A , (/) >. "> ++ <" <. B , (/) >. "> ) ] .~ ) | 
						
							| 155 | 3 8 | vrgpval |  |-  ( ( I e. V /\ A e. I ) -> ( U ` A ) = [ <" <. A , (/) >. "> ] .~ ) | 
						
							| 156 | 9 10 155 | syl2anc |  |-  ( ph -> ( U ` A ) = [ <" <. A , (/) >. "> ] .~ ) | 
						
							| 157 | 3 8 | vrgpval |  |-  ( ( I e. V /\ B e. I ) -> ( U ` B ) = [ <" <. B , (/) >. "> ] .~ ) | 
						
							| 158 | 9 11 157 | syl2anc |  |-  ( ph -> ( U ` B ) = [ <" <. B , (/) >. "> ] .~ ) | 
						
							| 159 | 156 158 | oveq12d |  |-  ( ph -> ( ( U ` A ) .+ ( U ` B ) ) = ( [ <" <. A , (/) >. "> ] .~ .+ [ <" <. B , (/) >. "> ] .~ ) ) | 
						
							| 160 | 17 | s1cld |  |-  ( ph -> <" <. A , (/) >. "> e. Word ( I X. 2o ) ) | 
						
							| 161 | 160 27 | eleqtrrd |  |-  ( ph -> <" <. A , (/) >. "> e. W ) | 
						
							| 162 | 19 | s1cld |  |-  ( ph -> <" <. B , (/) >. "> e. Word ( I X. 2o ) ) | 
						
							| 163 | 162 27 | eleqtrrd |  |-  ( ph -> <" <. B , (/) >. "> e. W ) | 
						
							| 164 | 2 1 3 4 | frgpadd |  |-  ( ( <" <. A , (/) >. "> e. W /\ <" <. B , (/) >. "> e. W ) -> ( [ <" <. A , (/) >. "> ] .~ .+ [ <" <. B , (/) >. "> ] .~ ) = [ ( <" <. A , (/) >. "> ++ <" <. B , (/) >. "> ) ] .~ ) | 
						
							| 165 | 161 163 164 | syl2anc |  |-  ( ph -> ( [ <" <. A , (/) >. "> ] .~ .+ [ <" <. B , (/) >. "> ] .~ ) = [ ( <" <. A , (/) >. "> ++ <" <. B , (/) >. "> ) ] .~ ) | 
						
							| 166 | 159 165 | eqtrd |  |-  ( ph -> ( ( U ` A ) .+ ( U ` B ) ) = [ ( <" <. A , (/) >. "> ++ <" <. B , (/) >. "> ) ] .~ ) | 
						
							| 167 | 154 166 | eleqtrrd |  |-  ( ph -> <" <. A , (/) >. <. B , (/) >. "> e. ( ( U ` A ) .+ ( U ` B ) ) ) | 
						
							| 168 | 145 167 | elind |  |-  ( ph -> <" <. A , (/) >. <. B , (/) >. "> e. ( D i^i ( ( U ` A ) .+ ( U ` B ) ) ) ) |