| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ig1peu.p |
|- P = ( Poly1 ` R ) |
| 2 |
|
ig1peu.u |
|- U = ( LIdeal ` P ) |
| 3 |
|
ig1peu.z |
|- .0. = ( 0g ` P ) |
| 4 |
|
ig1peu.m |
|- M = ( Monic1p ` R ) |
| 5 |
|
ig1peu.d |
|- D = ( deg1 ` R ) |
| 6 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
| 7 |
6 2
|
lidlss |
|- ( I e. U -> I C_ ( Base ` P ) ) |
| 8 |
7
|
3ad2ant2 |
|- ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) -> I C_ ( Base ` P ) ) |
| 9 |
8
|
ssdifd |
|- ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) -> ( I \ { .0. } ) C_ ( ( Base ` P ) \ { .0. } ) ) |
| 10 |
|
imass2 |
|- ( ( I \ { .0. } ) C_ ( ( Base ` P ) \ { .0. } ) -> ( D " ( I \ { .0. } ) ) C_ ( D " ( ( Base ` P ) \ { .0. } ) ) ) |
| 11 |
9 10
|
syl |
|- ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) -> ( D " ( I \ { .0. } ) ) C_ ( D " ( ( Base ` P ) \ { .0. } ) ) ) |
| 12 |
|
drngring |
|- ( R e. DivRing -> R e. Ring ) |
| 13 |
12
|
3ad2ant1 |
|- ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) -> R e. Ring ) |
| 14 |
5 1 3 6
|
deg1n0ima |
|- ( R e. Ring -> ( D " ( ( Base ` P ) \ { .0. } ) ) C_ NN0 ) |
| 15 |
13 14
|
syl |
|- ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) -> ( D " ( ( Base ` P ) \ { .0. } ) ) C_ NN0 ) |
| 16 |
11 15
|
sstrd |
|- ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) -> ( D " ( I \ { .0. } ) ) C_ NN0 ) |
| 17 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 18 |
16 17
|
sseqtrdi |
|- ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) -> ( D " ( I \ { .0. } ) ) C_ ( ZZ>= ` 0 ) ) |
| 19 |
1
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
| 20 |
13 19
|
syl |
|- ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) -> P e. Ring ) |
| 21 |
|
simp2 |
|- ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) -> I e. U ) |
| 22 |
2 3
|
lidl0cl |
|- ( ( P e. Ring /\ I e. U ) -> .0. e. I ) |
| 23 |
20 21 22
|
syl2anc |
|- ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) -> .0. e. I ) |
| 24 |
23
|
snssd |
|- ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) -> { .0. } C_ I ) |
| 25 |
|
simp3 |
|- ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) -> I =/= { .0. } ) |
| 26 |
25
|
necomd |
|- ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) -> { .0. } =/= I ) |
| 27 |
|
pssdifn0 |
|- ( ( { .0. } C_ I /\ { .0. } =/= I ) -> ( I \ { .0. } ) =/= (/) ) |
| 28 |
24 26 27
|
syl2anc |
|- ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) -> ( I \ { .0. } ) =/= (/) ) |
| 29 |
5 1 6
|
deg1xrf |
|- D : ( Base ` P ) --> RR* |
| 30 |
|
ffn |
|- ( D : ( Base ` P ) --> RR* -> D Fn ( Base ` P ) ) |
| 31 |
29 30
|
ax-mp |
|- D Fn ( Base ` P ) |
| 32 |
31
|
a1i |
|- ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) -> D Fn ( Base ` P ) ) |
| 33 |
8
|
ssdifssd |
|- ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) -> ( I \ { .0. } ) C_ ( Base ` P ) ) |
| 34 |
|
fnimaeq0 |
|- ( ( D Fn ( Base ` P ) /\ ( I \ { .0. } ) C_ ( Base ` P ) ) -> ( ( D " ( I \ { .0. } ) ) = (/) <-> ( I \ { .0. } ) = (/) ) ) |
| 35 |
32 33 34
|
syl2anc |
|- ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) -> ( ( D " ( I \ { .0. } ) ) = (/) <-> ( I \ { .0. } ) = (/) ) ) |
| 36 |
35
|
necon3bid |
|- ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) -> ( ( D " ( I \ { .0. } ) ) =/= (/) <-> ( I \ { .0. } ) =/= (/) ) ) |
| 37 |
28 36
|
mpbird |
|- ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) -> ( D " ( I \ { .0. } ) ) =/= (/) ) |
| 38 |
|
infssuzcl |
|- ( ( ( D " ( I \ { .0. } ) ) C_ ( ZZ>= ` 0 ) /\ ( D " ( I \ { .0. } ) ) =/= (/) ) -> inf ( ( D " ( I \ { .0. } ) ) , RR , < ) e. ( D " ( I \ { .0. } ) ) ) |
| 39 |
18 37 38
|
syl2anc |
|- ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) -> inf ( ( D " ( I \ { .0. } ) ) , RR , < ) e. ( D " ( I \ { .0. } ) ) ) |
| 40 |
32 33
|
fvelimabd |
|- ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) -> ( inf ( ( D " ( I \ { .0. } ) ) , RR , < ) e. ( D " ( I \ { .0. } ) ) <-> E. h e. ( I \ { .0. } ) ( D ` h ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) ) ) |
| 41 |
39 40
|
mpbid |
|- ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) -> E. h e. ( I \ { .0. } ) ( D ` h ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) ) |
| 42 |
20
|
adantr |
|- ( ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) /\ h e. ( I \ { .0. } ) ) -> P e. Ring ) |
| 43 |
|
simpl2 |
|- ( ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) /\ h e. ( I \ { .0. } ) ) -> I e. U ) |
| 44 |
13
|
adantr |
|- ( ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) /\ h e. ( I \ { .0. } ) ) -> R e. Ring ) |
| 45 |
|
eqid |
|- ( algSc ` P ) = ( algSc ` P ) |
| 46 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 47 |
1 45 46 6
|
ply1sclf |
|- ( R e. Ring -> ( algSc ` P ) : ( Base ` R ) --> ( Base ` P ) ) |
| 48 |
44 47
|
syl |
|- ( ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) /\ h e. ( I \ { .0. } ) ) -> ( algSc ` P ) : ( Base ` R ) --> ( Base ` P ) ) |
| 49 |
|
simpl1 |
|- ( ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) /\ h e. ( I \ { .0. } ) ) -> R e. DivRing ) |
| 50 |
33
|
sselda |
|- ( ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) /\ h e. ( I \ { .0. } ) ) -> h e. ( Base ` P ) ) |
| 51 |
|
eldifsni |
|- ( h e. ( I \ { .0. } ) -> h =/= .0. ) |
| 52 |
51
|
adantl |
|- ( ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) /\ h e. ( I \ { .0. } ) ) -> h =/= .0. ) |
| 53 |
|
eqid |
|- ( Unic1p ` R ) = ( Unic1p ` R ) |
| 54 |
1 6 3 53
|
drnguc1p |
|- ( ( R e. DivRing /\ h e. ( Base ` P ) /\ h =/= .0. ) -> h e. ( Unic1p ` R ) ) |
| 55 |
49 50 52 54
|
syl3anc |
|- ( ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) /\ h e. ( I \ { .0. } ) ) -> h e. ( Unic1p ` R ) ) |
| 56 |
|
eqid |
|- ( Unit ` R ) = ( Unit ` R ) |
| 57 |
5 56 53
|
uc1pldg |
|- ( h e. ( Unic1p ` R ) -> ( ( coe1 ` h ) ` ( D ` h ) ) e. ( Unit ` R ) ) |
| 58 |
55 57
|
syl |
|- ( ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) /\ h e. ( I \ { .0. } ) ) -> ( ( coe1 ` h ) ` ( D ` h ) ) e. ( Unit ` R ) ) |
| 59 |
|
eqid |
|- ( invr ` R ) = ( invr ` R ) |
| 60 |
56 59
|
unitinvcl |
|- ( ( R e. Ring /\ ( ( coe1 ` h ) ` ( D ` h ) ) e. ( Unit ` R ) ) -> ( ( invr ` R ) ` ( ( coe1 ` h ) ` ( D ` h ) ) ) e. ( Unit ` R ) ) |
| 61 |
44 58 60
|
syl2anc |
|- ( ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) /\ h e. ( I \ { .0. } ) ) -> ( ( invr ` R ) ` ( ( coe1 ` h ) ` ( D ` h ) ) ) e. ( Unit ` R ) ) |
| 62 |
46 56
|
unitcl |
|- ( ( ( invr ` R ) ` ( ( coe1 ` h ) ` ( D ` h ) ) ) e. ( Unit ` R ) -> ( ( invr ` R ) ` ( ( coe1 ` h ) ` ( D ` h ) ) ) e. ( Base ` R ) ) |
| 63 |
61 62
|
syl |
|- ( ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) /\ h e. ( I \ { .0. } ) ) -> ( ( invr ` R ) ` ( ( coe1 ` h ) ` ( D ` h ) ) ) e. ( Base ` R ) ) |
| 64 |
48 63
|
ffvelcdmd |
|- ( ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) /\ h e. ( I \ { .0. } ) ) -> ( ( algSc ` P ) ` ( ( invr ` R ) ` ( ( coe1 ` h ) ` ( D ` h ) ) ) ) e. ( Base ` P ) ) |
| 65 |
|
eldifi |
|- ( h e. ( I \ { .0. } ) -> h e. I ) |
| 66 |
65
|
adantl |
|- ( ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) /\ h e. ( I \ { .0. } ) ) -> h e. I ) |
| 67 |
|
eqid |
|- ( .r ` P ) = ( .r ` P ) |
| 68 |
2 6 67
|
lidlmcl |
|- ( ( ( P e. Ring /\ I e. U ) /\ ( ( ( algSc ` P ) ` ( ( invr ` R ) ` ( ( coe1 ` h ) ` ( D ` h ) ) ) ) e. ( Base ` P ) /\ h e. I ) ) -> ( ( ( algSc ` P ) ` ( ( invr ` R ) ` ( ( coe1 ` h ) ` ( D ` h ) ) ) ) ( .r ` P ) h ) e. I ) |
| 69 |
42 43 64 66 68
|
syl22anc |
|- ( ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) /\ h e. ( I \ { .0. } ) ) -> ( ( ( algSc ` P ) ` ( ( invr ` R ) ` ( ( coe1 ` h ) ` ( D ` h ) ) ) ) ( .r ` P ) h ) e. I ) |
| 70 |
53 4 1 67 45 5 59
|
uc1pmon1p |
|- ( ( R e. Ring /\ h e. ( Unic1p ` R ) ) -> ( ( ( algSc ` P ) ` ( ( invr ` R ) ` ( ( coe1 ` h ) ` ( D ` h ) ) ) ) ( .r ` P ) h ) e. M ) |
| 71 |
44 55 70
|
syl2anc |
|- ( ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) /\ h e. ( I \ { .0. } ) ) -> ( ( ( algSc ` P ) ` ( ( invr ` R ) ` ( ( coe1 ` h ) ` ( D ` h ) ) ) ) ( .r ` P ) h ) e. M ) |
| 72 |
69 71
|
elind |
|- ( ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) /\ h e. ( I \ { .0. } ) ) -> ( ( ( algSc ` P ) ` ( ( invr ` R ) ` ( ( coe1 ` h ) ` ( D ` h ) ) ) ) ( .r ` P ) h ) e. ( I i^i M ) ) |
| 73 |
|
eqid |
|- ( RLReg ` R ) = ( RLReg ` R ) |
| 74 |
73 56
|
unitrrg |
|- ( R e. Ring -> ( Unit ` R ) C_ ( RLReg ` R ) ) |
| 75 |
44 74
|
syl |
|- ( ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) /\ h e. ( I \ { .0. } ) ) -> ( Unit ` R ) C_ ( RLReg ` R ) ) |
| 76 |
75 61
|
sseldd |
|- ( ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) /\ h e. ( I \ { .0. } ) ) -> ( ( invr ` R ) ` ( ( coe1 ` h ) ` ( D ` h ) ) ) e. ( RLReg ` R ) ) |
| 77 |
5 1 73 6 67 45
|
deg1mul3 |
|- ( ( R e. Ring /\ ( ( invr ` R ) ` ( ( coe1 ` h ) ` ( D ` h ) ) ) e. ( RLReg ` R ) /\ h e. ( Base ` P ) ) -> ( D ` ( ( ( algSc ` P ) ` ( ( invr ` R ) ` ( ( coe1 ` h ) ` ( D ` h ) ) ) ) ( .r ` P ) h ) ) = ( D ` h ) ) |
| 78 |
44 76 50 77
|
syl3anc |
|- ( ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) /\ h e. ( I \ { .0. } ) ) -> ( D ` ( ( ( algSc ` P ) ` ( ( invr ` R ) ` ( ( coe1 ` h ) ` ( D ` h ) ) ) ) ( .r ` P ) h ) ) = ( D ` h ) ) |
| 79 |
|
fveqeq2 |
|- ( g = ( ( ( algSc ` P ) ` ( ( invr ` R ) ` ( ( coe1 ` h ) ` ( D ` h ) ) ) ) ( .r ` P ) h ) -> ( ( D ` g ) = ( D ` h ) <-> ( D ` ( ( ( algSc ` P ) ` ( ( invr ` R ) ` ( ( coe1 ` h ) ` ( D ` h ) ) ) ) ( .r ` P ) h ) ) = ( D ` h ) ) ) |
| 80 |
79
|
rspcev |
|- ( ( ( ( ( algSc ` P ) ` ( ( invr ` R ) ` ( ( coe1 ` h ) ` ( D ` h ) ) ) ) ( .r ` P ) h ) e. ( I i^i M ) /\ ( D ` ( ( ( algSc ` P ) ` ( ( invr ` R ) ` ( ( coe1 ` h ) ` ( D ` h ) ) ) ) ( .r ` P ) h ) ) = ( D ` h ) ) -> E. g e. ( I i^i M ) ( D ` g ) = ( D ` h ) ) |
| 81 |
72 78 80
|
syl2anc |
|- ( ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) /\ h e. ( I \ { .0. } ) ) -> E. g e. ( I i^i M ) ( D ` g ) = ( D ` h ) ) |
| 82 |
|
eqeq2 |
|- ( ( D ` h ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) -> ( ( D ` g ) = ( D ` h ) <-> ( D ` g ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) ) ) |
| 83 |
82
|
rexbidv |
|- ( ( D ` h ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) -> ( E. g e. ( I i^i M ) ( D ` g ) = ( D ` h ) <-> E. g e. ( I i^i M ) ( D ` g ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) ) ) |
| 84 |
81 83
|
syl5ibcom |
|- ( ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) /\ h e. ( I \ { .0. } ) ) -> ( ( D ` h ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) -> E. g e. ( I i^i M ) ( D ` g ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) ) ) |
| 85 |
84
|
rexlimdva |
|- ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) -> ( E. h e. ( I \ { .0. } ) ( D ` h ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) -> E. g e. ( I i^i M ) ( D ` g ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) ) ) |
| 86 |
41 85
|
mpd |
|- ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) -> E. g e. ( I i^i M ) ( D ` g ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) ) |
| 87 |
|
eqid |
|- ( -g ` P ) = ( -g ` P ) |
| 88 |
13
|
ad2antrr |
|- ( ( ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) /\ ( g e. ( I i^i M ) /\ h e. ( I i^i M ) ) ) /\ ( ( D ` g ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) /\ ( D ` h ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) ) ) -> R e. Ring ) |
| 89 |
|
simprl |
|- ( ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) /\ ( g e. ( I i^i M ) /\ h e. ( I i^i M ) ) ) -> g e. ( I i^i M ) ) |
| 90 |
89
|
elin2d |
|- ( ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) /\ ( g e. ( I i^i M ) /\ h e. ( I i^i M ) ) ) -> g e. M ) |
| 91 |
90
|
adantr |
|- ( ( ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) /\ ( g e. ( I i^i M ) /\ h e. ( I i^i M ) ) ) /\ ( ( D ` g ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) /\ ( D ` h ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) ) ) -> g e. M ) |
| 92 |
|
simprl |
|- ( ( ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) /\ ( g e. ( I i^i M ) /\ h e. ( I i^i M ) ) ) /\ ( ( D ` g ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) /\ ( D ` h ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) ) ) -> ( D ` g ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) ) |
| 93 |
|
simprr |
|- ( ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) /\ ( g e. ( I i^i M ) /\ h e. ( I i^i M ) ) ) -> h e. ( I i^i M ) ) |
| 94 |
93
|
elin2d |
|- ( ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) /\ ( g e. ( I i^i M ) /\ h e. ( I i^i M ) ) ) -> h e. M ) |
| 95 |
94
|
adantr |
|- ( ( ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) /\ ( g e. ( I i^i M ) /\ h e. ( I i^i M ) ) ) /\ ( ( D ` g ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) /\ ( D ` h ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) ) ) -> h e. M ) |
| 96 |
|
simprr |
|- ( ( ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) /\ ( g e. ( I i^i M ) /\ h e. ( I i^i M ) ) ) /\ ( ( D ` g ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) /\ ( D ` h ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) ) ) -> ( D ` h ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) ) |
| 97 |
5 4 1 87 88 91 92 95 96
|
deg1submon1p |
|- ( ( ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) /\ ( g e. ( I i^i M ) /\ h e. ( I i^i M ) ) ) /\ ( ( D ` g ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) /\ ( D ` h ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) ) ) -> ( D ` ( g ( -g ` P ) h ) ) < inf ( ( D " ( I \ { .0. } ) ) , RR , < ) ) |
| 98 |
97
|
ex |
|- ( ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) /\ ( g e. ( I i^i M ) /\ h e. ( I i^i M ) ) ) -> ( ( ( D ` g ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) /\ ( D ` h ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) ) -> ( D ` ( g ( -g ` P ) h ) ) < inf ( ( D " ( I \ { .0. } ) ) , RR , < ) ) ) |
| 99 |
18
|
ad2antrr |
|- ( ( ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) /\ ( g e. ( I i^i M ) /\ h e. ( I i^i M ) ) ) /\ ( g ( -g ` P ) h ) =/= .0. ) -> ( D " ( I \ { .0. } ) ) C_ ( ZZ>= ` 0 ) ) |
| 100 |
31
|
a1i |
|- ( ( ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) /\ ( g e. ( I i^i M ) /\ h e. ( I i^i M ) ) ) /\ ( g ( -g ` P ) h ) =/= .0. ) -> D Fn ( Base ` P ) ) |
| 101 |
33
|
ad2antrr |
|- ( ( ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) /\ ( g e. ( I i^i M ) /\ h e. ( I i^i M ) ) ) /\ ( g ( -g ` P ) h ) =/= .0. ) -> ( I \ { .0. } ) C_ ( Base ` P ) ) |
| 102 |
20
|
adantr |
|- ( ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) /\ ( g e. ( I i^i M ) /\ h e. ( I i^i M ) ) ) -> P e. Ring ) |
| 103 |
|
simpl2 |
|- ( ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) /\ ( g e. ( I i^i M ) /\ h e. ( I i^i M ) ) ) -> I e. U ) |
| 104 |
89
|
elin1d |
|- ( ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) /\ ( g e. ( I i^i M ) /\ h e. ( I i^i M ) ) ) -> g e. I ) |
| 105 |
93
|
elin1d |
|- ( ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) /\ ( g e. ( I i^i M ) /\ h e. ( I i^i M ) ) ) -> h e. I ) |
| 106 |
2 87
|
lidlsubcl |
|- ( ( ( P e. Ring /\ I e. U ) /\ ( g e. I /\ h e. I ) ) -> ( g ( -g ` P ) h ) e. I ) |
| 107 |
102 103 104 105 106
|
syl22anc |
|- ( ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) /\ ( g e. ( I i^i M ) /\ h e. ( I i^i M ) ) ) -> ( g ( -g ` P ) h ) e. I ) |
| 108 |
107
|
adantr |
|- ( ( ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) /\ ( g e. ( I i^i M ) /\ h e. ( I i^i M ) ) ) /\ ( g ( -g ` P ) h ) =/= .0. ) -> ( g ( -g ` P ) h ) e. I ) |
| 109 |
|
simpr |
|- ( ( ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) /\ ( g e. ( I i^i M ) /\ h e. ( I i^i M ) ) ) /\ ( g ( -g ` P ) h ) =/= .0. ) -> ( g ( -g ` P ) h ) =/= .0. ) |
| 110 |
|
eldifsn |
|- ( ( g ( -g ` P ) h ) e. ( I \ { .0. } ) <-> ( ( g ( -g ` P ) h ) e. I /\ ( g ( -g ` P ) h ) =/= .0. ) ) |
| 111 |
108 109 110
|
sylanbrc |
|- ( ( ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) /\ ( g e. ( I i^i M ) /\ h e. ( I i^i M ) ) ) /\ ( g ( -g ` P ) h ) =/= .0. ) -> ( g ( -g ` P ) h ) e. ( I \ { .0. } ) ) |
| 112 |
|
fnfvima |
|- ( ( D Fn ( Base ` P ) /\ ( I \ { .0. } ) C_ ( Base ` P ) /\ ( g ( -g ` P ) h ) e. ( I \ { .0. } ) ) -> ( D ` ( g ( -g ` P ) h ) ) e. ( D " ( I \ { .0. } ) ) ) |
| 113 |
100 101 111 112
|
syl3anc |
|- ( ( ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) /\ ( g e. ( I i^i M ) /\ h e. ( I i^i M ) ) ) /\ ( g ( -g ` P ) h ) =/= .0. ) -> ( D ` ( g ( -g ` P ) h ) ) e. ( D " ( I \ { .0. } ) ) ) |
| 114 |
|
infssuzle |
|- ( ( ( D " ( I \ { .0. } ) ) C_ ( ZZ>= ` 0 ) /\ ( D ` ( g ( -g ` P ) h ) ) e. ( D " ( I \ { .0. } ) ) ) -> inf ( ( D " ( I \ { .0. } ) ) , RR , < ) <_ ( D ` ( g ( -g ` P ) h ) ) ) |
| 115 |
99 113 114
|
syl2anc |
|- ( ( ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) /\ ( g e. ( I i^i M ) /\ h e. ( I i^i M ) ) ) /\ ( g ( -g ` P ) h ) =/= .0. ) -> inf ( ( D " ( I \ { .0. } ) ) , RR , < ) <_ ( D ` ( g ( -g ` P ) h ) ) ) |
| 116 |
115
|
ex |
|- ( ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) /\ ( g e. ( I i^i M ) /\ h e. ( I i^i M ) ) ) -> ( ( g ( -g ` P ) h ) =/= .0. -> inf ( ( D " ( I \ { .0. } ) ) , RR , < ) <_ ( D ` ( g ( -g ` P ) h ) ) ) ) |
| 117 |
|
imassrn |
|- ( D " ( I \ { .0. } ) ) C_ ran D |
| 118 |
|
frn |
|- ( D : ( Base ` P ) --> RR* -> ran D C_ RR* ) |
| 119 |
29 118
|
ax-mp |
|- ran D C_ RR* |
| 120 |
117 119
|
sstri |
|- ( D " ( I \ { .0. } ) ) C_ RR* |
| 121 |
120 39
|
sselid |
|- ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) -> inf ( ( D " ( I \ { .0. } ) ) , RR , < ) e. RR* ) |
| 122 |
121
|
adantr |
|- ( ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) /\ ( g e. ( I i^i M ) /\ h e. ( I i^i M ) ) ) -> inf ( ( D " ( I \ { .0. } ) ) , RR , < ) e. RR* ) |
| 123 |
|
ringgrp |
|- ( P e. Ring -> P e. Grp ) |
| 124 |
20 123
|
syl |
|- ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) -> P e. Grp ) |
| 125 |
124
|
adantr |
|- ( ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) /\ ( g e. ( I i^i M ) /\ h e. ( I i^i M ) ) ) -> P e. Grp ) |
| 126 |
|
inss1 |
|- ( I i^i M ) C_ I |
| 127 |
126 8
|
sstrid |
|- ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) -> ( I i^i M ) C_ ( Base ` P ) ) |
| 128 |
127
|
adantr |
|- ( ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) /\ ( g e. ( I i^i M ) /\ h e. ( I i^i M ) ) ) -> ( I i^i M ) C_ ( Base ` P ) ) |
| 129 |
128 89
|
sseldd |
|- ( ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) /\ ( g e. ( I i^i M ) /\ h e. ( I i^i M ) ) ) -> g e. ( Base ` P ) ) |
| 130 |
128 93
|
sseldd |
|- ( ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) /\ ( g e. ( I i^i M ) /\ h e. ( I i^i M ) ) ) -> h e. ( Base ` P ) ) |
| 131 |
6 87
|
grpsubcl |
|- ( ( P e. Grp /\ g e. ( Base ` P ) /\ h e. ( Base ` P ) ) -> ( g ( -g ` P ) h ) e. ( Base ` P ) ) |
| 132 |
125 129 130 131
|
syl3anc |
|- ( ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) /\ ( g e. ( I i^i M ) /\ h e. ( I i^i M ) ) ) -> ( g ( -g ` P ) h ) e. ( Base ` P ) ) |
| 133 |
5 1 6
|
deg1xrcl |
|- ( ( g ( -g ` P ) h ) e. ( Base ` P ) -> ( D ` ( g ( -g ` P ) h ) ) e. RR* ) |
| 134 |
132 133
|
syl |
|- ( ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) /\ ( g e. ( I i^i M ) /\ h e. ( I i^i M ) ) ) -> ( D ` ( g ( -g ` P ) h ) ) e. RR* ) |
| 135 |
122 134
|
xrlenltd |
|- ( ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) /\ ( g e. ( I i^i M ) /\ h e. ( I i^i M ) ) ) -> ( inf ( ( D " ( I \ { .0. } ) ) , RR , < ) <_ ( D ` ( g ( -g ` P ) h ) ) <-> -. ( D ` ( g ( -g ` P ) h ) ) < inf ( ( D " ( I \ { .0. } ) ) , RR , < ) ) ) |
| 136 |
116 135
|
sylibd |
|- ( ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) /\ ( g e. ( I i^i M ) /\ h e. ( I i^i M ) ) ) -> ( ( g ( -g ` P ) h ) =/= .0. -> -. ( D ` ( g ( -g ` P ) h ) ) < inf ( ( D " ( I \ { .0. } ) ) , RR , < ) ) ) |
| 137 |
136
|
necon4ad |
|- ( ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) /\ ( g e. ( I i^i M ) /\ h e. ( I i^i M ) ) ) -> ( ( D ` ( g ( -g ` P ) h ) ) < inf ( ( D " ( I \ { .0. } ) ) , RR , < ) -> ( g ( -g ` P ) h ) = .0. ) ) |
| 138 |
98 137
|
syld |
|- ( ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) /\ ( g e. ( I i^i M ) /\ h e. ( I i^i M ) ) ) -> ( ( ( D ` g ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) /\ ( D ` h ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) ) -> ( g ( -g ` P ) h ) = .0. ) ) |
| 139 |
6 3 87
|
grpsubeq0 |
|- ( ( P e. Grp /\ g e. ( Base ` P ) /\ h e. ( Base ` P ) ) -> ( ( g ( -g ` P ) h ) = .0. <-> g = h ) ) |
| 140 |
125 129 130 139
|
syl3anc |
|- ( ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) /\ ( g e. ( I i^i M ) /\ h e. ( I i^i M ) ) ) -> ( ( g ( -g ` P ) h ) = .0. <-> g = h ) ) |
| 141 |
138 140
|
sylibd |
|- ( ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) /\ ( g e. ( I i^i M ) /\ h e. ( I i^i M ) ) ) -> ( ( ( D ` g ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) /\ ( D ` h ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) ) -> g = h ) ) |
| 142 |
141
|
ralrimivva |
|- ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) -> A. g e. ( I i^i M ) A. h e. ( I i^i M ) ( ( ( D ` g ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) /\ ( D ` h ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) ) -> g = h ) ) |
| 143 |
|
fveqeq2 |
|- ( g = h -> ( ( D ` g ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) <-> ( D ` h ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) ) ) |
| 144 |
143
|
reu4 |
|- ( E! g e. ( I i^i M ) ( D ` g ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) <-> ( E. g e. ( I i^i M ) ( D ` g ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) /\ A. g e. ( I i^i M ) A. h e. ( I i^i M ) ( ( ( D ` g ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) /\ ( D ` h ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) ) -> g = h ) ) ) |
| 145 |
86 142 144
|
sylanbrc |
|- ( ( R e. DivRing /\ I e. U /\ I =/= { .0. } ) -> E! g e. ( I i^i M ) ( D ` g ) = inf ( ( D " ( I \ { .0. } ) ) , RR , < ) ) |