Metamath Proof Explorer


Theorem metustexhalf

Description: For any element A of the filter base generated by the metric D , the half element (corresponding to half the distance) is also in this base. (Contributed by Thierry Arnoux, 28-Nov-2017) (Revised by Thierry Arnoux, 11-Feb-2018)

Ref Expression
Hypothesis metust.1
|- F = ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) )
Assertion metustexhalf
|- ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) -> E. v e. F ( v o. v ) C_ A )

Proof

Step Hyp Ref Expression
1 metust.1
 |-  F = ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) )
2 simp-4r
 |-  ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> D e. ( PsMet ` X ) )
3 simplr
 |-  ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> a e. RR+ )
4 3 rphalfcld
 |-  ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> ( a / 2 ) e. RR+ )
5 eqidd
 |-  ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> ( `' D " ( 0 [,) ( a / 2 ) ) ) = ( `' D " ( 0 [,) ( a / 2 ) ) ) )
6 oveq2
 |-  ( b = ( a / 2 ) -> ( 0 [,) b ) = ( 0 [,) ( a / 2 ) ) )
7 6 imaeq2d
 |-  ( b = ( a / 2 ) -> ( `' D " ( 0 [,) b ) ) = ( `' D " ( 0 [,) ( a / 2 ) ) ) )
8 7 rspceeqv
 |-  ( ( ( a / 2 ) e. RR+ /\ ( `' D " ( 0 [,) ( a / 2 ) ) ) = ( `' D " ( 0 [,) ( a / 2 ) ) ) ) -> E. b e. RR+ ( `' D " ( 0 [,) ( a / 2 ) ) ) = ( `' D " ( 0 [,) b ) ) )
9 4 5 8 syl2anc
 |-  ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> E. b e. RR+ ( `' D " ( 0 [,) ( a / 2 ) ) ) = ( `' D " ( 0 [,) b ) ) )
10 oveq2
 |-  ( a = b -> ( 0 [,) a ) = ( 0 [,) b ) )
11 10 imaeq2d
 |-  ( a = b -> ( `' D " ( 0 [,) a ) ) = ( `' D " ( 0 [,) b ) ) )
12 11 cbvmptv
 |-  ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) = ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) )
13 12 rneqi
 |-  ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) = ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) )
14 1 13 eqtri
 |-  F = ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) )
15 14 metustel
 |-  ( D e. ( PsMet ` X ) -> ( ( `' D " ( 0 [,) ( a / 2 ) ) ) e. F <-> E. b e. RR+ ( `' D " ( 0 [,) ( a / 2 ) ) ) = ( `' D " ( 0 [,) b ) ) ) )
16 15 biimpar
 |-  ( ( D e. ( PsMet ` X ) /\ E. b e. RR+ ( `' D " ( 0 [,) ( a / 2 ) ) ) = ( `' D " ( 0 [,) b ) ) ) -> ( `' D " ( 0 [,) ( a / 2 ) ) ) e. F )
17 2 9 16 syl2anc
 |-  ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> ( `' D " ( 0 [,) ( a / 2 ) ) ) e. F )
18 relco
 |-  Rel ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) )
19 18 a1i
 |-  ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> Rel ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) )
20 cossxp
 |-  ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) C_ ( dom ( `' D " ( 0 [,) ( a / 2 ) ) ) X. ran ( `' D " ( 0 [,) ( a / 2 ) ) ) )
21 cnvimass
 |-  ( `' D " ( 0 [,) ( a / 2 ) ) ) C_ dom D
22 psmetf
 |-  ( D e. ( PsMet ` X ) -> D : ( X X. X ) --> RR* )
23 21 22 fssdm
 |-  ( D e. ( PsMet ` X ) -> ( `' D " ( 0 [,) ( a / 2 ) ) ) C_ ( X X. X ) )
24 dmss
 |-  ( ( `' D " ( 0 [,) ( a / 2 ) ) ) C_ ( X X. X ) -> dom ( `' D " ( 0 [,) ( a / 2 ) ) ) C_ dom ( X X. X ) )
25 rnss
 |-  ( ( `' D " ( 0 [,) ( a / 2 ) ) ) C_ ( X X. X ) -> ran ( `' D " ( 0 [,) ( a / 2 ) ) ) C_ ran ( X X. X ) )
26 xpss12
 |-  ( ( dom ( `' D " ( 0 [,) ( a / 2 ) ) ) C_ dom ( X X. X ) /\ ran ( `' D " ( 0 [,) ( a / 2 ) ) ) C_ ran ( X X. X ) ) -> ( dom ( `' D " ( 0 [,) ( a / 2 ) ) ) X. ran ( `' D " ( 0 [,) ( a / 2 ) ) ) ) C_ ( dom ( X X. X ) X. ran ( X X. X ) ) )
27 24 25 26 syl2anc
 |-  ( ( `' D " ( 0 [,) ( a / 2 ) ) ) C_ ( X X. X ) -> ( dom ( `' D " ( 0 [,) ( a / 2 ) ) ) X. ran ( `' D " ( 0 [,) ( a / 2 ) ) ) ) C_ ( dom ( X X. X ) X. ran ( X X. X ) ) )
28 23 27 syl
 |-  ( D e. ( PsMet ` X ) -> ( dom ( `' D " ( 0 [,) ( a / 2 ) ) ) X. ran ( `' D " ( 0 [,) ( a / 2 ) ) ) ) C_ ( dom ( X X. X ) X. ran ( X X. X ) ) )
29 28 adantl
 |-  ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( dom ( `' D " ( 0 [,) ( a / 2 ) ) ) X. ran ( `' D " ( 0 [,) ( a / 2 ) ) ) ) C_ ( dom ( X X. X ) X. ran ( X X. X ) ) )
30 dmxp
 |-  ( X =/= (/) -> dom ( X X. X ) = X )
31 rnxp
 |-  ( X =/= (/) -> ran ( X X. X ) = X )
32 30 31 xpeq12d
 |-  ( X =/= (/) -> ( dom ( X X. X ) X. ran ( X X. X ) ) = ( X X. X ) )
33 32 adantr
 |-  ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( dom ( X X. X ) X. ran ( X X. X ) ) = ( X X. X ) )
34 29 33 sseqtrd
 |-  ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( dom ( `' D " ( 0 [,) ( a / 2 ) ) ) X. ran ( `' D " ( 0 [,) ( a / 2 ) ) ) ) C_ ( X X. X ) )
35 20 34 sstrid
 |-  ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) C_ ( X X. X ) )
36 35 ad3antrrr
 |-  ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) C_ ( X X. X ) )
37 36 sselda
 |-  ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) -> <. p , q >. e. ( X X. X ) )
38 opelxp
 |-  ( <. p , q >. e. ( X X. X ) <-> ( p e. X /\ q e. X ) )
39 37 38 sylib
 |-  ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) -> ( p e. X /\ q e. X ) )
40 simpll
 |-  ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) /\ ( p e. X /\ q e. X ) ) -> ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) )
41 simprl
 |-  ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) /\ ( p e. X /\ q e. X ) ) -> p e. X )
42 simprr
 |-  ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) /\ ( p e. X /\ q e. X ) ) -> q e. X )
43 simplr
 |-  ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) /\ ( p e. X /\ q e. X ) ) -> <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) )
44 simplll
 |-  ( ( ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) )
45 44 simp1d
 |-  ( ( ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) )
46 45 2 syl
 |-  ( ( ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> D e. ( PsMet ` X ) )
47 45 3 syl
 |-  ( ( ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> a e. RR+ )
48 46 47 jca
 |-  ( ( ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( D e. ( PsMet ` X ) /\ a e. RR+ ) )
49 44 simp2d
 |-  ( ( ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> p e. X )
50 44 simp3d
 |-  ( ( ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> q e. X )
51 48 49 50 3jca
 |-  ( ( ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) )
52 simplr
 |-  ( ( ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> r e. X )
53 simprl
 |-  ( ( ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> p ( `' D " ( 0 [,) ( a / 2 ) ) ) r )
54 simprr
 |-  ( ( ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> r ( `' D " ( 0 [,) ( a / 2 ) ) ) q )
55 simpll
 |-  ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) )
56 55 simp1d
 |-  ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( D e. ( PsMet ` X ) /\ a e. RR+ ) )
57 56 simpld
 |-  ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> D e. ( PsMet ` X ) )
58 22 ffund
 |-  ( D e. ( PsMet ` X ) -> Fun D )
59 57 58 syl
 |-  ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> Fun D )
60 55 simp2d
 |-  ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> p e. X )
61 55 simp3d
 |-  ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> q e. X )
62 60 61 opelxpd
 |-  ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> <. p , q >. e. ( X X. X ) )
63 22 fdmd
 |-  ( D e. ( PsMet ` X ) -> dom D = ( X X. X ) )
64 57 63 syl
 |-  ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> dom D = ( X X. X ) )
65 62 64 eleqtrrd
 |-  ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> <. p , q >. e. dom D )
66 0xr
 |-  0 e. RR*
67 66 a1i
 |-  ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> 0 e. RR* )
68 56 simprd
 |-  ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> a e. RR+ )
69 68 rpxrd
 |-  ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> a e. RR* )
70 57 22 syl
 |-  ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> D : ( X X. X ) --> RR* )
71 70 62 ffvelrnd
 |-  ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( D ` <. p , q >. ) e. RR* )
72 psmetge0
 |-  ( ( D e. ( PsMet ` X ) /\ p e. X /\ q e. X ) -> 0 <_ ( p D q ) )
73 57 60 61 72 syl3anc
 |-  ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> 0 <_ ( p D q ) )
74 df-ov
 |-  ( p D q ) = ( D ` <. p , q >. )
75 73 74 breqtrdi
 |-  ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> 0 <_ ( D ` <. p , q >. ) )
76 74 71 eqeltrid
 |-  ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( p D q ) e. RR* )
77 0red
 |-  ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> 0 e. RR )
78 68 rpred
 |-  ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> a e. RR )
79 78 rehalfcld
 |-  ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( a / 2 ) e. RR )
80 79 rexrd
 |-  ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( a / 2 ) e. RR* )
81 df-ov
 |-  ( p D r ) = ( D ` <. p , r >. )
82 simplr
 |-  ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> r e. X )
83 60 82 opelxpd
 |-  ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> <. p , r >. e. ( X X. X ) )
84 83 64 eleqtrrd
 |-  ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> <. p , r >. e. dom D )
85 simprl
 |-  ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> p ( `' D " ( 0 [,) ( a / 2 ) ) ) r )
86 df-br
 |-  ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r <-> <. p , r >. e. ( `' D " ( 0 [,) ( a / 2 ) ) ) )
87 85 86 sylib
 |-  ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> <. p , r >. e. ( `' D " ( 0 [,) ( a / 2 ) ) ) )
88 fvimacnv
 |-  ( ( Fun D /\ <. p , r >. e. dom D ) -> ( ( D ` <. p , r >. ) e. ( 0 [,) ( a / 2 ) ) <-> <. p , r >. e. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) )
89 88 biimpar
 |-  ( ( ( Fun D /\ <. p , r >. e. dom D ) /\ <. p , r >. e. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) -> ( D ` <. p , r >. ) e. ( 0 [,) ( a / 2 ) ) )
90 59 84 87 89 syl21anc
 |-  ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( D ` <. p , r >. ) e. ( 0 [,) ( a / 2 ) ) )
91 81 90 eqeltrid
 |-  ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( p D r ) e. ( 0 [,) ( a / 2 ) ) )
92 elico2
 |-  ( ( 0 e. RR /\ ( a / 2 ) e. RR* ) -> ( ( p D r ) e. ( 0 [,) ( a / 2 ) ) <-> ( ( p D r ) e. RR /\ 0 <_ ( p D r ) /\ ( p D r ) < ( a / 2 ) ) ) )
93 92 biimpa
 |-  ( ( ( 0 e. RR /\ ( a / 2 ) e. RR* ) /\ ( p D r ) e. ( 0 [,) ( a / 2 ) ) ) -> ( ( p D r ) e. RR /\ 0 <_ ( p D r ) /\ ( p D r ) < ( a / 2 ) ) )
94 93 simp1d
 |-  ( ( ( 0 e. RR /\ ( a / 2 ) e. RR* ) /\ ( p D r ) e. ( 0 [,) ( a / 2 ) ) ) -> ( p D r ) e. RR )
95 77 80 91 94 syl21anc
 |-  ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( p D r ) e. RR )
96 df-ov
 |-  ( r D q ) = ( D ` <. r , q >. )
97 82 61 opelxpd
 |-  ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> <. r , q >. e. ( X X. X ) )
98 97 64 eleqtrrd
 |-  ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> <. r , q >. e. dom D )
99 simprr
 |-  ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> r ( `' D " ( 0 [,) ( a / 2 ) ) ) q )
100 df-br
 |-  ( r ( `' D " ( 0 [,) ( a / 2 ) ) ) q <-> <. r , q >. e. ( `' D " ( 0 [,) ( a / 2 ) ) ) )
101 99 100 sylib
 |-  ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> <. r , q >. e. ( `' D " ( 0 [,) ( a / 2 ) ) ) )
102 fvimacnv
 |-  ( ( Fun D /\ <. r , q >. e. dom D ) -> ( ( D ` <. r , q >. ) e. ( 0 [,) ( a / 2 ) ) <-> <. r , q >. e. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) )
103 102 biimpar
 |-  ( ( ( Fun D /\ <. r , q >. e. dom D ) /\ <. r , q >. e. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) -> ( D ` <. r , q >. ) e. ( 0 [,) ( a / 2 ) ) )
104 59 98 101 103 syl21anc
 |-  ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( D ` <. r , q >. ) e. ( 0 [,) ( a / 2 ) ) )
105 96 104 eqeltrid
 |-  ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( r D q ) e. ( 0 [,) ( a / 2 ) ) )
106 elico2
 |-  ( ( 0 e. RR /\ ( a / 2 ) e. RR* ) -> ( ( r D q ) e. ( 0 [,) ( a / 2 ) ) <-> ( ( r D q ) e. RR /\ 0 <_ ( r D q ) /\ ( r D q ) < ( a / 2 ) ) ) )
107 106 biimpa
 |-  ( ( ( 0 e. RR /\ ( a / 2 ) e. RR* ) /\ ( r D q ) e. ( 0 [,) ( a / 2 ) ) ) -> ( ( r D q ) e. RR /\ 0 <_ ( r D q ) /\ ( r D q ) < ( a / 2 ) ) )
108 107 simp1d
 |-  ( ( ( 0 e. RR /\ ( a / 2 ) e. RR* ) /\ ( r D q ) e. ( 0 [,) ( a / 2 ) ) ) -> ( r D q ) e. RR )
109 77 80 105 108 syl21anc
 |-  ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( r D q ) e. RR )
110 95 109 rexaddd
 |-  ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( ( p D r ) +e ( r D q ) ) = ( ( p D r ) + ( r D q ) ) )
111 95 109 readdcld
 |-  ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( ( p D r ) + ( r D q ) ) e. RR )
112 110 111 eqeltrd
 |-  ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( ( p D r ) +e ( r D q ) ) e. RR )
113 112 rexrd
 |-  ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( ( p D r ) +e ( r D q ) ) e. RR* )
114 psmettri
 |-  ( ( D e. ( PsMet ` X ) /\ ( p e. X /\ q e. X /\ r e. X ) ) -> ( p D q ) <_ ( ( p D r ) +e ( r D q ) ) )
115 57 60 61 82 114 syl13anc
 |-  ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( p D q ) <_ ( ( p D r ) +e ( r D q ) ) )
116 93 simp3d
 |-  ( ( ( 0 e. RR /\ ( a / 2 ) e. RR* ) /\ ( p D r ) e. ( 0 [,) ( a / 2 ) ) ) -> ( p D r ) < ( a / 2 ) )
117 77 80 91 116 syl21anc
 |-  ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( p D r ) < ( a / 2 ) )
118 107 simp3d
 |-  ( ( ( 0 e. RR /\ ( a / 2 ) e. RR* ) /\ ( r D q ) e. ( 0 [,) ( a / 2 ) ) ) -> ( r D q ) < ( a / 2 ) )
119 77 80 105 118 syl21anc
 |-  ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( r D q ) < ( a / 2 ) )
120 95 109 78 117 119 lt2halvesd
 |-  ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( ( p D r ) + ( r D q ) ) < a )
121 110 120 eqbrtrd
 |-  ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( ( p D r ) +e ( r D q ) ) < a )
122 76 113 69 115 121 xrlelttrd
 |-  ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( p D q ) < a )
123 74 122 eqbrtrrid
 |-  ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( D ` <. p , q >. ) < a )
124 67 69 71 75 123 elicod
 |-  ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( D ` <. p , q >. ) e. ( 0 [,) a ) )
125 fvimacnv
 |-  ( ( Fun D /\ <. p , q >. e. dom D ) -> ( ( D ` <. p , q >. ) e. ( 0 [,) a ) <-> <. p , q >. e. ( `' D " ( 0 [,) a ) ) ) )
126 125 biimpa
 |-  ( ( ( Fun D /\ <. p , q >. e. dom D ) /\ ( D ` <. p , q >. ) e. ( 0 [,) a ) ) -> <. p , q >. e. ( `' D " ( 0 [,) a ) ) )
127 df-br
 |-  ( p ( `' D " ( 0 [,) a ) ) q <-> <. p , q >. e. ( `' D " ( 0 [,) a ) ) )
128 126 127 sylibr
 |-  ( ( ( Fun D /\ <. p , q >. e. dom D ) /\ ( D ` <. p , q >. ) e. ( 0 [,) a ) ) -> p ( `' D " ( 0 [,) a ) ) q )
129 59 65 124 128 syl21anc
 |-  ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> p ( `' D " ( 0 [,) a ) ) q )
130 51 52 53 54 129 syl22anc
 |-  ( ( ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> p ( `' D " ( 0 [,) a ) ) q )
131 45 simprd
 |-  ( ( ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> A = ( `' D " ( 0 [,) a ) ) )
132 131 breqd
 |-  ( ( ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( p A q <-> p ( `' D " ( 0 [,) a ) ) q ) )
133 130 132 mpbird
 |-  ( ( ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> p A q )
134 simpr
 |-  ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) -> <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) )
135 df-br
 |-  ( p ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) q <-> <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) )
136 134 135 sylibr
 |-  ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) -> p ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) q )
137 vex
 |-  p e. _V
138 vex
 |-  q e. _V
139 137 138 brco
 |-  ( p ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) q <-> E. r ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) )
140 136 139 sylib
 |-  ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) -> E. r ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) )
141 23 adantl
 |-  ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( `' D " ( 0 [,) ( a / 2 ) ) ) C_ ( X X. X ) )
142 141 25 syl
 |-  ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ran ( `' D " ( 0 [,) ( a / 2 ) ) ) C_ ran ( X X. X ) )
143 31 adantr
 |-  ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ran ( X X. X ) = X )
144 142 143 sseqtrd
 |-  ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ran ( `' D " ( 0 [,) ( a / 2 ) ) ) C_ X )
145 144 adantr
 |-  ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ p ( `' D " ( 0 [,) ( a / 2 ) ) ) r ) -> ran ( `' D " ( 0 [,) ( a / 2 ) ) ) C_ X )
146 vex
 |-  r e. _V
147 137 146 brelrn
 |-  ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r -> r e. ran ( `' D " ( 0 [,) ( a / 2 ) ) ) )
148 147 adantl
 |-  ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ p ( `' D " ( 0 [,) ( a / 2 ) ) ) r ) -> r e. ran ( `' D " ( 0 [,) ( a / 2 ) ) ) )
149 145 148 sseldd
 |-  ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ p ( `' D " ( 0 [,) ( a / 2 ) ) ) r ) -> r e. X )
150 149 adantrr
 |-  ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> r e. X )
151 150 ex
 |-  ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) -> r e. X ) )
152 151 ancrd
 |-  ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) -> ( r e. X /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) ) )
153 152 eximdv
 |-  ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( E. r ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) -> E. r ( r e. X /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) ) )
154 153 ad3antrrr
 |-  ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> ( E. r ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) -> E. r ( r e. X /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) ) )
155 154 3ad2ant1
 |-  ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) -> ( E. r ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) -> E. r ( r e. X /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) ) )
156 155 adantr
 |-  ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) -> ( E. r ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) -> E. r ( r e. X /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) ) )
157 140 156 mpd
 |-  ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) -> E. r ( r e. X /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) )
158 df-rex
 |-  ( E. r e. X ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) <-> E. r ( r e. X /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) )
159 157 158 sylibr
 |-  ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) -> E. r e. X ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) )
160 133 159 r19.29a
 |-  ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) -> p A q )
161 df-br
 |-  ( p A q <-> <. p , q >. e. A )
162 160 161 sylib
 |-  ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) -> <. p , q >. e. A )
163 40 41 42 43 162 syl31anc
 |-  ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) /\ ( p e. X /\ q e. X ) ) -> <. p , q >. e. A )
164 39 163 mpdan
 |-  ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) -> <. p , q >. e. A )
165 164 ex
 |-  ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> ( <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) -> <. p , q >. e. A ) )
166 19 165 relssdv
 |-  ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) C_ A )
167 id
 |-  ( v = ( `' D " ( 0 [,) ( a / 2 ) ) ) -> v = ( `' D " ( 0 [,) ( a / 2 ) ) ) )
168 167 167 coeq12d
 |-  ( v = ( `' D " ( 0 [,) ( a / 2 ) ) ) -> ( v o. v ) = ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) )
169 168 sseq1d
 |-  ( v = ( `' D " ( 0 [,) ( a / 2 ) ) ) -> ( ( v o. v ) C_ A <-> ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) C_ A ) )
170 169 rspcev
 |-  ( ( ( `' D " ( 0 [,) ( a / 2 ) ) ) e. F /\ ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) C_ A ) -> E. v e. F ( v o. v ) C_ A )
171 17 166 170 syl2anc
 |-  ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> E. v e. F ( v o. v ) C_ A )
172 1 metustel
 |-  ( D e. ( PsMet ` X ) -> ( A e. F <-> E. a e. RR+ A = ( `' D " ( 0 [,) a ) ) ) )
173 172 adantl
 |-  ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( A e. F <-> E. a e. RR+ A = ( `' D " ( 0 [,) a ) ) ) )
174 173 biimpa
 |-  ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) -> E. a e. RR+ A = ( `' D " ( 0 [,) a ) ) )
175 171 174 r19.29a
 |-  ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) -> E. v e. F ( v o. v ) C_ A )