| Step |
Hyp |
Ref |
Expression |
| 1 |
|
upgr4cycl4dv4e.v |
|- V = ( Vtx ` G ) |
| 2 |
|
upgr4cycl4dv4e.e |
|- E = ( Edg ` G ) |
| 3 |
|
cyclprop |
|- ( F ( Cycles ` G ) P -> ( F ( Paths ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) |
| 4 |
|
pthiswlk |
|- ( F ( Paths ` G ) P -> F ( Walks ` G ) P ) |
| 5 |
2
|
upgrwlkvtxedg |
|- ( ( G e. UPGraph /\ F ( Walks ` G ) P ) -> A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E ) |
| 6 |
|
fveq2 |
|- ( ( # ` F ) = 4 -> ( P ` ( # ` F ) ) = ( P ` 4 ) ) |
| 7 |
6
|
eqeq2d |
|- ( ( # ` F ) = 4 -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) <-> ( P ` 0 ) = ( P ` 4 ) ) ) |
| 8 |
7
|
anbi2d |
|- ( ( # ` F ) = 4 -> ( ( F ( Paths ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) <-> ( F ( Paths ` G ) P /\ ( P ` 0 ) = ( P ` 4 ) ) ) ) |
| 9 |
|
oveq2 |
|- ( ( # ` F ) = 4 -> ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) ) |
| 10 |
|
fzo0to42pr |
|- ( 0 ..^ 4 ) = ( { 0 , 1 } u. { 2 , 3 } ) |
| 11 |
9 10
|
eqtrdi |
|- ( ( # ` F ) = 4 -> ( 0 ..^ ( # ` F ) ) = ( { 0 , 1 } u. { 2 , 3 } ) ) |
| 12 |
11
|
raleqdv |
|- ( ( # ` F ) = 4 -> ( A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E <-> A. k e. ( { 0 , 1 } u. { 2 , 3 } ) { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E ) ) |
| 13 |
|
ralunb |
|- ( A. k e. ( { 0 , 1 } u. { 2 , 3 } ) { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E <-> ( A. k e. { 0 , 1 } { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E /\ A. k e. { 2 , 3 } { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E ) ) |
| 14 |
|
c0ex |
|- 0 e. _V |
| 15 |
|
1ex |
|- 1 e. _V |
| 16 |
|
fveq2 |
|- ( k = 0 -> ( P ` k ) = ( P ` 0 ) ) |
| 17 |
|
fv0p1e1 |
|- ( k = 0 -> ( P ` ( k + 1 ) ) = ( P ` 1 ) ) |
| 18 |
16 17
|
preq12d |
|- ( k = 0 -> { ( P ` k ) , ( P ` ( k + 1 ) ) } = { ( P ` 0 ) , ( P ` 1 ) } ) |
| 19 |
18
|
eleq1d |
|- ( k = 0 -> ( { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E <-> { ( P ` 0 ) , ( P ` 1 ) } e. E ) ) |
| 20 |
|
fveq2 |
|- ( k = 1 -> ( P ` k ) = ( P ` 1 ) ) |
| 21 |
|
oveq1 |
|- ( k = 1 -> ( k + 1 ) = ( 1 + 1 ) ) |
| 22 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
| 23 |
21 22
|
eqtrdi |
|- ( k = 1 -> ( k + 1 ) = 2 ) |
| 24 |
23
|
fveq2d |
|- ( k = 1 -> ( P ` ( k + 1 ) ) = ( P ` 2 ) ) |
| 25 |
20 24
|
preq12d |
|- ( k = 1 -> { ( P ` k ) , ( P ` ( k + 1 ) ) } = { ( P ` 1 ) , ( P ` 2 ) } ) |
| 26 |
25
|
eleq1d |
|- ( k = 1 -> ( { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E <-> { ( P ` 1 ) , ( P ` 2 ) } e. E ) ) |
| 27 |
14 15 19 26
|
ralpr |
|- ( A. k e. { 0 , 1 } { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E <-> ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) ) |
| 28 |
|
2ex |
|- 2 e. _V |
| 29 |
|
3ex |
|- 3 e. _V |
| 30 |
|
fveq2 |
|- ( k = 2 -> ( P ` k ) = ( P ` 2 ) ) |
| 31 |
|
oveq1 |
|- ( k = 2 -> ( k + 1 ) = ( 2 + 1 ) ) |
| 32 |
|
2p1e3 |
|- ( 2 + 1 ) = 3 |
| 33 |
31 32
|
eqtrdi |
|- ( k = 2 -> ( k + 1 ) = 3 ) |
| 34 |
33
|
fveq2d |
|- ( k = 2 -> ( P ` ( k + 1 ) ) = ( P ` 3 ) ) |
| 35 |
30 34
|
preq12d |
|- ( k = 2 -> { ( P ` k ) , ( P ` ( k + 1 ) ) } = { ( P ` 2 ) , ( P ` 3 ) } ) |
| 36 |
35
|
eleq1d |
|- ( k = 2 -> ( { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E <-> { ( P ` 2 ) , ( P ` 3 ) } e. E ) ) |
| 37 |
|
fveq2 |
|- ( k = 3 -> ( P ` k ) = ( P ` 3 ) ) |
| 38 |
|
oveq1 |
|- ( k = 3 -> ( k + 1 ) = ( 3 + 1 ) ) |
| 39 |
|
3p1e4 |
|- ( 3 + 1 ) = 4 |
| 40 |
38 39
|
eqtrdi |
|- ( k = 3 -> ( k + 1 ) = 4 ) |
| 41 |
40
|
fveq2d |
|- ( k = 3 -> ( P ` ( k + 1 ) ) = ( P ` 4 ) ) |
| 42 |
37 41
|
preq12d |
|- ( k = 3 -> { ( P ` k ) , ( P ` ( k + 1 ) ) } = { ( P ` 3 ) , ( P ` 4 ) } ) |
| 43 |
42
|
eleq1d |
|- ( k = 3 -> ( { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E <-> { ( P ` 3 ) , ( P ` 4 ) } e. E ) ) |
| 44 |
28 29 36 43
|
ralpr |
|- ( A. k e. { 2 , 3 } { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E <-> ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 4 ) } e. E ) ) |
| 45 |
27 44
|
anbi12i |
|- ( ( A. k e. { 0 , 1 } { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E /\ A. k e. { 2 , 3 } { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E ) <-> ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 4 ) } e. E ) ) ) |
| 46 |
13 45
|
bitri |
|- ( A. k e. ( { 0 , 1 } u. { 2 , 3 } ) { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E <-> ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 4 ) } e. E ) ) ) |
| 47 |
12 46
|
bitrdi |
|- ( ( # ` F ) = 4 -> ( A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E <-> ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 4 ) } e. E ) ) ) ) |
| 48 |
8 47
|
anbi12d |
|- ( ( # ` F ) = 4 -> ( ( ( F ( Paths ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) /\ A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E ) <-> ( ( F ( Paths ` G ) P /\ ( P ` 0 ) = ( P ` 4 ) ) /\ ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 4 ) } e. E ) ) ) ) ) |
| 49 |
|
preq2 |
|- ( ( P ` 4 ) = ( P ` 0 ) -> { ( P ` 3 ) , ( P ` 4 ) } = { ( P ` 3 ) , ( P ` 0 ) } ) |
| 50 |
49
|
eleq1d |
|- ( ( P ` 4 ) = ( P ` 0 ) -> ( { ( P ` 3 ) , ( P ` 4 ) } e. E <-> { ( P ` 3 ) , ( P ` 0 ) } e. E ) ) |
| 51 |
50
|
eqcoms |
|- ( ( P ` 0 ) = ( P ` 4 ) -> ( { ( P ` 3 ) , ( P ` 4 ) } e. E <-> { ( P ` 3 ) , ( P ` 0 ) } e. E ) ) |
| 52 |
51
|
anbi2d |
|- ( ( P ` 0 ) = ( P ` 4 ) -> ( ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 4 ) } e. E ) <-> ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 0 ) } e. E ) ) ) |
| 53 |
52
|
anbi2d |
|- ( ( P ` 0 ) = ( P ` 4 ) -> ( ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 4 ) } e. E ) ) <-> ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 0 ) } e. E ) ) ) ) |
| 54 |
53
|
adantl |
|- ( ( ( ( # ` F ) = 4 /\ F ( Paths ` G ) P ) /\ ( P ` 0 ) = ( P ` 4 ) ) -> ( ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 4 ) } e. E ) ) <-> ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 0 ) } e. E ) ) ) ) |
| 55 |
|
4nn0 |
|- 4 e. NN0 |
| 56 |
55
|
a1i |
|- ( ( ( # ` F ) = 4 /\ F ( Paths ` G ) P ) -> 4 e. NN0 ) |
| 57 |
1
|
wlkp |
|- ( F ( Walks ` G ) P -> P : ( 0 ... ( # ` F ) ) --> V ) |
| 58 |
|
oveq2 |
|- ( ( # ` F ) = 4 -> ( 0 ... ( # ` F ) ) = ( 0 ... 4 ) ) |
| 59 |
58
|
feq2d |
|- ( ( # ` F ) = 4 -> ( P : ( 0 ... ( # ` F ) ) --> V <-> P : ( 0 ... 4 ) --> V ) ) |
| 60 |
59
|
biimpcd |
|- ( P : ( 0 ... ( # ` F ) ) --> V -> ( ( # ` F ) = 4 -> P : ( 0 ... 4 ) --> V ) ) |
| 61 |
4 57 60
|
3syl |
|- ( F ( Paths ` G ) P -> ( ( # ` F ) = 4 -> P : ( 0 ... 4 ) --> V ) ) |
| 62 |
61
|
impcom |
|- ( ( ( # ` F ) = 4 /\ F ( Paths ` G ) P ) -> P : ( 0 ... 4 ) --> V ) |
| 63 |
|
id |
|- ( 4 e. NN0 -> 4 e. NN0 ) |
| 64 |
|
0nn0 |
|- 0 e. NN0 |
| 65 |
64
|
a1i |
|- ( 4 e. NN0 -> 0 e. NN0 ) |
| 66 |
|
4pos |
|- 0 < 4 |
| 67 |
66
|
a1i |
|- ( 4 e. NN0 -> 0 < 4 ) |
| 68 |
63 65 67
|
3jca |
|- ( 4 e. NN0 -> ( 4 e. NN0 /\ 0 e. NN0 /\ 0 < 4 ) ) |
| 69 |
|
fvffz0 |
|- ( ( ( 4 e. NN0 /\ 0 e. NN0 /\ 0 < 4 ) /\ P : ( 0 ... 4 ) --> V ) -> ( P ` 0 ) e. V ) |
| 70 |
68 69
|
sylan |
|- ( ( 4 e. NN0 /\ P : ( 0 ... 4 ) --> V ) -> ( P ` 0 ) e. V ) |
| 71 |
70
|
ad2antlr |
|- ( ( ( ( ( # ` F ) = 4 /\ F ( Paths ` G ) P ) /\ ( 4 e. NN0 /\ P : ( 0 ... 4 ) --> V ) ) /\ ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 0 ) } e. E ) ) ) -> ( P ` 0 ) e. V ) |
| 72 |
|
1nn0 |
|- 1 e. NN0 |
| 73 |
72
|
a1i |
|- ( 4 e. NN0 -> 1 e. NN0 ) |
| 74 |
|
1lt4 |
|- 1 < 4 |
| 75 |
74
|
a1i |
|- ( 4 e. NN0 -> 1 < 4 ) |
| 76 |
63 73 75
|
3jca |
|- ( 4 e. NN0 -> ( 4 e. NN0 /\ 1 e. NN0 /\ 1 < 4 ) ) |
| 77 |
|
fvffz0 |
|- ( ( ( 4 e. NN0 /\ 1 e. NN0 /\ 1 < 4 ) /\ P : ( 0 ... 4 ) --> V ) -> ( P ` 1 ) e. V ) |
| 78 |
76 77
|
sylan |
|- ( ( 4 e. NN0 /\ P : ( 0 ... 4 ) --> V ) -> ( P ` 1 ) e. V ) |
| 79 |
78
|
ad2antlr |
|- ( ( ( ( ( # ` F ) = 4 /\ F ( Paths ` G ) P ) /\ ( 4 e. NN0 /\ P : ( 0 ... 4 ) --> V ) ) /\ ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 0 ) } e. E ) ) ) -> ( P ` 1 ) e. V ) |
| 80 |
|
2nn0 |
|- 2 e. NN0 |
| 81 |
80
|
a1i |
|- ( 4 e. NN0 -> 2 e. NN0 ) |
| 82 |
|
2lt4 |
|- 2 < 4 |
| 83 |
82
|
a1i |
|- ( 4 e. NN0 -> 2 < 4 ) |
| 84 |
63 81 83
|
3jca |
|- ( 4 e. NN0 -> ( 4 e. NN0 /\ 2 e. NN0 /\ 2 < 4 ) ) |
| 85 |
|
fvffz0 |
|- ( ( ( 4 e. NN0 /\ 2 e. NN0 /\ 2 < 4 ) /\ P : ( 0 ... 4 ) --> V ) -> ( P ` 2 ) e. V ) |
| 86 |
84 85
|
sylan |
|- ( ( 4 e. NN0 /\ P : ( 0 ... 4 ) --> V ) -> ( P ` 2 ) e. V ) |
| 87 |
86
|
ad2antlr |
|- ( ( ( ( ( # ` F ) = 4 /\ F ( Paths ` G ) P ) /\ ( 4 e. NN0 /\ P : ( 0 ... 4 ) --> V ) ) /\ ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 0 ) } e. E ) ) ) -> ( P ` 2 ) e. V ) |
| 88 |
|
3nn0 |
|- 3 e. NN0 |
| 89 |
88
|
a1i |
|- ( 4 e. NN0 -> 3 e. NN0 ) |
| 90 |
|
3lt4 |
|- 3 < 4 |
| 91 |
90
|
a1i |
|- ( 4 e. NN0 -> 3 < 4 ) |
| 92 |
63 89 91
|
3jca |
|- ( 4 e. NN0 -> ( 4 e. NN0 /\ 3 e. NN0 /\ 3 < 4 ) ) |
| 93 |
|
fvffz0 |
|- ( ( ( 4 e. NN0 /\ 3 e. NN0 /\ 3 < 4 ) /\ P : ( 0 ... 4 ) --> V ) -> ( P ` 3 ) e. V ) |
| 94 |
92 93
|
sylan |
|- ( ( 4 e. NN0 /\ P : ( 0 ... 4 ) --> V ) -> ( P ` 3 ) e. V ) |
| 95 |
94
|
ad2antlr |
|- ( ( ( ( ( # ` F ) = 4 /\ F ( Paths ` G ) P ) /\ ( 4 e. NN0 /\ P : ( 0 ... 4 ) --> V ) ) /\ ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 0 ) } e. E ) ) ) -> ( P ` 3 ) e. V ) |
| 96 |
|
simpr |
|- ( ( ( ( ( # ` F ) = 4 /\ F ( Paths ` G ) P ) /\ ( 4 e. NN0 /\ P : ( 0 ... 4 ) --> V ) ) /\ ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 0 ) } e. E ) ) ) -> ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 0 ) } e. E ) ) ) |
| 97 |
|
simplr |
|- ( ( ( ( # ` F ) = 4 /\ F ( Paths ` G ) P ) /\ ( 4 e. NN0 /\ P : ( 0 ... 4 ) --> V ) ) -> F ( Paths ` G ) P ) |
| 98 |
|
breq2 |
|- ( ( # ` F ) = 4 -> ( 1 < ( # ` F ) <-> 1 < 4 ) ) |
| 99 |
74 98
|
mpbiri |
|- ( ( # ` F ) = 4 -> 1 < ( # ` F ) ) |
| 100 |
99
|
ad2antrr |
|- ( ( ( ( # ` F ) = 4 /\ F ( Paths ` G ) P ) /\ ( 4 e. NN0 /\ P : ( 0 ... 4 ) --> V ) ) -> 1 < ( # ` F ) ) |
| 101 |
|
simpll |
|- ( ( ( ( # ` F ) = 4 /\ F ( Paths ` G ) P ) /\ ( 4 e. NN0 /\ P : ( 0 ... 4 ) --> V ) ) -> ( # ` F ) = 4 ) |
| 102 |
9
|
ad2antrr |
|- ( ( ( ( # ` F ) = 4 /\ F ( Paths ` G ) P ) /\ ( 4 e. NN0 /\ P : ( 0 ... 4 ) --> V ) ) -> ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) ) |
| 103 |
|
4nn |
|- 4 e. NN |
| 104 |
|
lbfzo0 |
|- ( 0 e. ( 0 ..^ 4 ) <-> 4 e. NN ) |
| 105 |
103 104
|
mpbir |
|- 0 e. ( 0 ..^ 4 ) |
| 106 |
|
eleq2 |
|- ( ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) -> ( 0 e. ( 0 ..^ ( # ` F ) ) <-> 0 e. ( 0 ..^ 4 ) ) ) |
| 107 |
105 106
|
mpbiri |
|- ( ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) -> 0 e. ( 0 ..^ ( # ` F ) ) ) |
| 108 |
107
|
adantl |
|- ( ( ( # ` F ) = 4 /\ ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) ) -> 0 e. ( 0 ..^ ( # ` F ) ) ) |
| 109 |
|
pthdadjvtx |
|- ( ( F ( Paths ` G ) P /\ 1 < ( # ` F ) /\ 0 e. ( 0 ..^ ( # ` F ) ) ) -> ( P ` 0 ) =/= ( P ` ( 0 + 1 ) ) ) |
| 110 |
108 109
|
syl3an3 |
|- ( ( F ( Paths ` G ) P /\ 1 < ( # ` F ) /\ ( ( # ` F ) = 4 /\ ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) ) ) -> ( P ` 0 ) =/= ( P ` ( 0 + 1 ) ) ) |
| 111 |
|
1e0p1 |
|- 1 = ( 0 + 1 ) |
| 112 |
111
|
fveq2i |
|- ( P ` 1 ) = ( P ` ( 0 + 1 ) ) |
| 113 |
112
|
neeq2i |
|- ( ( P ` 0 ) =/= ( P ` 1 ) <-> ( P ` 0 ) =/= ( P ` ( 0 + 1 ) ) ) |
| 114 |
110 113
|
sylibr |
|- ( ( F ( Paths ` G ) P /\ 1 < ( # ` F ) /\ ( ( # ` F ) = 4 /\ ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) ) ) -> ( P ` 0 ) =/= ( P ` 1 ) ) |
| 115 |
|
simp1 |
|- ( ( F ( Paths ` G ) P /\ 1 < ( # ` F ) /\ ( ( # ` F ) = 4 /\ ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) ) ) -> F ( Paths ` G ) P ) |
| 116 |
|
elfzo0 |
|- ( 2 e. ( 0 ..^ 4 ) <-> ( 2 e. NN0 /\ 4 e. NN /\ 2 < 4 ) ) |
| 117 |
80 103 82 116
|
mpbir3an |
|- 2 e. ( 0 ..^ 4 ) |
| 118 |
|
2ne0 |
|- 2 =/= 0 |
| 119 |
|
fzo1fzo0n0 |
|- ( 2 e. ( 1 ..^ 4 ) <-> ( 2 e. ( 0 ..^ 4 ) /\ 2 =/= 0 ) ) |
| 120 |
117 118 119
|
mpbir2an |
|- 2 e. ( 1 ..^ 4 ) |
| 121 |
|
oveq2 |
|- ( ( # ` F ) = 4 -> ( 1 ..^ ( # ` F ) ) = ( 1 ..^ 4 ) ) |
| 122 |
120 121
|
eleqtrrid |
|- ( ( # ` F ) = 4 -> 2 e. ( 1 ..^ ( # ` F ) ) ) |
| 123 |
|
0elfz |
|- ( 4 e. NN0 -> 0 e. ( 0 ... 4 ) ) |
| 124 |
55 123
|
ax-mp |
|- 0 e. ( 0 ... 4 ) |
| 125 |
124 58
|
eleqtrrid |
|- ( ( # ` F ) = 4 -> 0 e. ( 0 ... ( # ` F ) ) ) |
| 126 |
118
|
a1i |
|- ( ( # ` F ) = 4 -> 2 =/= 0 ) |
| 127 |
122 125 126
|
3jca |
|- ( ( # ` F ) = 4 -> ( 2 e. ( 1 ..^ ( # ` F ) ) /\ 0 e. ( 0 ... ( # ` F ) ) /\ 2 =/= 0 ) ) |
| 128 |
127
|
adantr |
|- ( ( ( # ` F ) = 4 /\ ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) ) -> ( 2 e. ( 1 ..^ ( # ` F ) ) /\ 0 e. ( 0 ... ( # ` F ) ) /\ 2 =/= 0 ) ) |
| 129 |
128
|
3ad2ant3 |
|- ( ( F ( Paths ` G ) P /\ 1 < ( # ` F ) /\ ( ( # ` F ) = 4 /\ ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) ) ) -> ( 2 e. ( 1 ..^ ( # ` F ) ) /\ 0 e. ( 0 ... ( # ` F ) ) /\ 2 =/= 0 ) ) |
| 130 |
|
pthdivtx |
|- ( ( F ( Paths ` G ) P /\ ( 2 e. ( 1 ..^ ( # ` F ) ) /\ 0 e. ( 0 ... ( # ` F ) ) /\ 2 =/= 0 ) ) -> ( P ` 2 ) =/= ( P ` 0 ) ) |
| 131 |
115 129 130
|
syl2anc |
|- ( ( F ( Paths ` G ) P /\ 1 < ( # ` F ) /\ ( ( # ` F ) = 4 /\ ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) ) ) -> ( P ` 2 ) =/= ( P ` 0 ) ) |
| 132 |
131
|
necomd |
|- ( ( F ( Paths ` G ) P /\ 1 < ( # ` F ) /\ ( ( # ` F ) = 4 /\ ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) ) ) -> ( P ` 0 ) =/= ( P ` 2 ) ) |
| 133 |
|
elfzo0 |
|- ( 3 e. ( 0 ..^ 4 ) <-> ( 3 e. NN0 /\ 4 e. NN /\ 3 < 4 ) ) |
| 134 |
88 103 90 133
|
mpbir3an |
|- 3 e. ( 0 ..^ 4 ) |
| 135 |
|
3ne0 |
|- 3 =/= 0 |
| 136 |
|
fzo1fzo0n0 |
|- ( 3 e. ( 1 ..^ 4 ) <-> ( 3 e. ( 0 ..^ 4 ) /\ 3 =/= 0 ) ) |
| 137 |
134 135 136
|
mpbir2an |
|- 3 e. ( 1 ..^ 4 ) |
| 138 |
137 121
|
eleqtrrid |
|- ( ( # ` F ) = 4 -> 3 e. ( 1 ..^ ( # ` F ) ) ) |
| 139 |
135
|
a1i |
|- ( ( # ` F ) = 4 -> 3 =/= 0 ) |
| 140 |
138 125 139
|
3jca |
|- ( ( # ` F ) = 4 -> ( 3 e. ( 1 ..^ ( # ` F ) ) /\ 0 e. ( 0 ... ( # ` F ) ) /\ 3 =/= 0 ) ) |
| 141 |
140
|
adantr |
|- ( ( ( # ` F ) = 4 /\ ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) ) -> ( 3 e. ( 1 ..^ ( # ` F ) ) /\ 0 e. ( 0 ... ( # ` F ) ) /\ 3 =/= 0 ) ) |
| 142 |
141
|
3ad2ant3 |
|- ( ( F ( Paths ` G ) P /\ 1 < ( # ` F ) /\ ( ( # ` F ) = 4 /\ ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) ) ) -> ( 3 e. ( 1 ..^ ( # ` F ) ) /\ 0 e. ( 0 ... ( # ` F ) ) /\ 3 =/= 0 ) ) |
| 143 |
|
pthdivtx |
|- ( ( F ( Paths ` G ) P /\ ( 3 e. ( 1 ..^ ( # ` F ) ) /\ 0 e. ( 0 ... ( # ` F ) ) /\ 3 =/= 0 ) ) -> ( P ` 3 ) =/= ( P ` 0 ) ) |
| 144 |
115 142 143
|
syl2anc |
|- ( ( F ( Paths ` G ) P /\ 1 < ( # ` F ) /\ ( ( # ` F ) = 4 /\ ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) ) ) -> ( P ` 3 ) =/= ( P ` 0 ) ) |
| 145 |
144
|
necomd |
|- ( ( F ( Paths ` G ) P /\ 1 < ( # ` F ) /\ ( ( # ` F ) = 4 /\ ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) ) ) -> ( P ` 0 ) =/= ( P ` 3 ) ) |
| 146 |
114 132 145
|
3jca |
|- ( ( F ( Paths ` G ) P /\ 1 < ( # ` F ) /\ ( ( # ` F ) = 4 /\ ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) ) ) -> ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 0 ) =/= ( P ` 3 ) ) ) |
| 147 |
|
elfzo0 |
|- ( 1 e. ( 0 ..^ 4 ) <-> ( 1 e. NN0 /\ 4 e. NN /\ 1 < 4 ) ) |
| 148 |
72 103 74 147
|
mpbir3an |
|- 1 e. ( 0 ..^ 4 ) |
| 149 |
|
eleq2 |
|- ( ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) -> ( 1 e. ( 0 ..^ ( # ` F ) ) <-> 1 e. ( 0 ..^ 4 ) ) ) |
| 150 |
148 149
|
mpbiri |
|- ( ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) -> 1 e. ( 0 ..^ ( # ` F ) ) ) |
| 151 |
150
|
adantl |
|- ( ( ( # ` F ) = 4 /\ ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) ) -> 1 e. ( 0 ..^ ( # ` F ) ) ) |
| 152 |
|
pthdadjvtx |
|- ( ( F ( Paths ` G ) P /\ 1 < ( # ` F ) /\ 1 e. ( 0 ..^ ( # ` F ) ) ) -> ( P ` 1 ) =/= ( P ` ( 1 + 1 ) ) ) |
| 153 |
151 152
|
syl3an3 |
|- ( ( F ( Paths ` G ) P /\ 1 < ( # ` F ) /\ ( ( # ` F ) = 4 /\ ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) ) ) -> ( P ` 1 ) =/= ( P ` ( 1 + 1 ) ) ) |
| 154 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
| 155 |
154
|
fveq2i |
|- ( P ` 2 ) = ( P ` ( 1 + 1 ) ) |
| 156 |
155
|
neeq2i |
|- ( ( P ` 1 ) =/= ( P ` 2 ) <-> ( P ` 1 ) =/= ( P ` ( 1 + 1 ) ) ) |
| 157 |
153 156
|
sylibr |
|- ( ( F ( Paths ` G ) P /\ 1 < ( # ` F ) /\ ( ( # ` F ) = 4 /\ ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) ) ) -> ( P ` 1 ) =/= ( P ` 2 ) ) |
| 158 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 159 |
|
fzo1fzo0n0 |
|- ( 1 e. ( 1 ..^ 4 ) <-> ( 1 e. ( 0 ..^ 4 ) /\ 1 =/= 0 ) ) |
| 160 |
148 158 159
|
mpbir2an |
|- 1 e. ( 1 ..^ 4 ) |
| 161 |
160 121
|
eleqtrrid |
|- ( ( # ` F ) = 4 -> 1 e. ( 1 ..^ ( # ` F ) ) ) |
| 162 |
|
3re |
|- 3 e. RR |
| 163 |
|
4re |
|- 4 e. RR |
| 164 |
162 163 90
|
ltleii |
|- 3 <_ 4 |
| 165 |
|
elfz2nn0 |
|- ( 3 e. ( 0 ... 4 ) <-> ( 3 e. NN0 /\ 4 e. NN0 /\ 3 <_ 4 ) ) |
| 166 |
88 55 164 165
|
mpbir3an |
|- 3 e. ( 0 ... 4 ) |
| 167 |
166 58
|
eleqtrrid |
|- ( ( # ` F ) = 4 -> 3 e. ( 0 ... ( # ` F ) ) ) |
| 168 |
|
1re |
|- 1 e. RR |
| 169 |
|
1lt3 |
|- 1 < 3 |
| 170 |
168 169
|
ltneii |
|- 1 =/= 3 |
| 171 |
170
|
a1i |
|- ( ( # ` F ) = 4 -> 1 =/= 3 ) |
| 172 |
161 167 171
|
3jca |
|- ( ( # ` F ) = 4 -> ( 1 e. ( 1 ..^ ( # ` F ) ) /\ 3 e. ( 0 ... ( # ` F ) ) /\ 1 =/= 3 ) ) |
| 173 |
172
|
adantr |
|- ( ( ( # ` F ) = 4 /\ ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) ) -> ( 1 e. ( 1 ..^ ( # ` F ) ) /\ 3 e. ( 0 ... ( # ` F ) ) /\ 1 =/= 3 ) ) |
| 174 |
173
|
3ad2ant3 |
|- ( ( F ( Paths ` G ) P /\ 1 < ( # ` F ) /\ ( ( # ` F ) = 4 /\ ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) ) ) -> ( 1 e. ( 1 ..^ ( # ` F ) ) /\ 3 e. ( 0 ... ( # ` F ) ) /\ 1 =/= 3 ) ) |
| 175 |
|
pthdivtx |
|- ( ( F ( Paths ` G ) P /\ ( 1 e. ( 1 ..^ ( # ` F ) ) /\ 3 e. ( 0 ... ( # ` F ) ) /\ 1 =/= 3 ) ) -> ( P ` 1 ) =/= ( P ` 3 ) ) |
| 176 |
115 174 175
|
syl2anc |
|- ( ( F ( Paths ` G ) P /\ 1 < ( # ` F ) /\ ( ( # ` F ) = 4 /\ ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) ) ) -> ( P ` 1 ) =/= ( P ` 3 ) ) |
| 177 |
|
eleq2 |
|- ( ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) -> ( 2 e. ( 0 ..^ ( # ` F ) ) <-> 2 e. ( 0 ..^ 4 ) ) ) |
| 178 |
117 177
|
mpbiri |
|- ( ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) -> 2 e. ( 0 ..^ ( # ` F ) ) ) |
| 179 |
178
|
adantl |
|- ( ( ( # ` F ) = 4 /\ ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) ) -> 2 e. ( 0 ..^ ( # ` F ) ) ) |
| 180 |
|
pthdadjvtx |
|- ( ( F ( Paths ` G ) P /\ 1 < ( # ` F ) /\ 2 e. ( 0 ..^ ( # ` F ) ) ) -> ( P ` 2 ) =/= ( P ` ( 2 + 1 ) ) ) |
| 181 |
179 180
|
syl3an3 |
|- ( ( F ( Paths ` G ) P /\ 1 < ( # ` F ) /\ ( ( # ` F ) = 4 /\ ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) ) ) -> ( P ` 2 ) =/= ( P ` ( 2 + 1 ) ) ) |
| 182 |
|
df-3 |
|- 3 = ( 2 + 1 ) |
| 183 |
182
|
fveq2i |
|- ( P ` 3 ) = ( P ` ( 2 + 1 ) ) |
| 184 |
183
|
neeq2i |
|- ( ( P ` 2 ) =/= ( P ` 3 ) <-> ( P ` 2 ) =/= ( P ` ( 2 + 1 ) ) ) |
| 185 |
181 184
|
sylibr |
|- ( ( F ( Paths ` G ) P /\ 1 < ( # ` F ) /\ ( ( # ` F ) = 4 /\ ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) ) ) -> ( P ` 2 ) =/= ( P ` 3 ) ) |
| 186 |
157 176 185
|
3jca |
|- ( ( F ( Paths ` G ) P /\ 1 < ( # ` F ) /\ ( ( # ` F ) = 4 /\ ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) ) ) -> ( ( P ` 1 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 3 ) /\ ( P ` 2 ) =/= ( P ` 3 ) ) ) |
| 187 |
146 186
|
jca |
|- ( ( F ( Paths ` G ) P /\ 1 < ( # ` F ) /\ ( ( # ` F ) = 4 /\ ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) ) ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 0 ) =/= ( P ` 3 ) ) /\ ( ( P ` 1 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 3 ) /\ ( P ` 2 ) =/= ( P ` 3 ) ) ) ) |
| 188 |
97 100 101 102 187
|
syl112anc |
|- ( ( ( ( # ` F ) = 4 /\ F ( Paths ` G ) P ) /\ ( 4 e. NN0 /\ P : ( 0 ... 4 ) --> V ) ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 0 ) =/= ( P ` 3 ) ) /\ ( ( P ` 1 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 3 ) /\ ( P ` 2 ) =/= ( P ` 3 ) ) ) ) |
| 189 |
188
|
adantr |
|- ( ( ( ( ( # ` F ) = 4 /\ F ( Paths ` G ) P ) /\ ( 4 e. NN0 /\ P : ( 0 ... 4 ) --> V ) ) /\ ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 0 ) } e. E ) ) ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 0 ) =/= ( P ` 3 ) ) /\ ( ( P ` 1 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 3 ) /\ ( P ` 2 ) =/= ( P ` 3 ) ) ) ) |
| 190 |
|
preq2 |
|- ( c = ( P ` 2 ) -> { ( P ` 1 ) , c } = { ( P ` 1 ) , ( P ` 2 ) } ) |
| 191 |
190
|
eleq1d |
|- ( c = ( P ` 2 ) -> ( { ( P ` 1 ) , c } e. E <-> { ( P ` 1 ) , ( P ` 2 ) } e. E ) ) |
| 192 |
191
|
anbi2d |
|- ( c = ( P ` 2 ) -> ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , c } e. E ) <-> ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) ) ) |
| 193 |
|
preq1 |
|- ( c = ( P ` 2 ) -> { c , d } = { ( P ` 2 ) , d } ) |
| 194 |
193
|
eleq1d |
|- ( c = ( P ` 2 ) -> ( { c , d } e. E <-> { ( P ` 2 ) , d } e. E ) ) |
| 195 |
194
|
anbi1d |
|- ( c = ( P ` 2 ) -> ( ( { c , d } e. E /\ { d , ( P ` 0 ) } e. E ) <-> ( { ( P ` 2 ) , d } e. E /\ { d , ( P ` 0 ) } e. E ) ) ) |
| 196 |
192 195
|
anbi12d |
|- ( c = ( P ` 2 ) -> ( ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , c } e. E ) /\ ( { c , d } e. E /\ { d , ( P ` 0 ) } e. E ) ) <-> ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , d } e. E /\ { d , ( P ` 0 ) } e. E ) ) ) ) |
| 197 |
|
neeq2 |
|- ( c = ( P ` 2 ) -> ( ( P ` 0 ) =/= c <-> ( P ` 0 ) =/= ( P ` 2 ) ) ) |
| 198 |
197
|
3anbi2d |
|- ( c = ( P ` 2 ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= c /\ ( P ` 0 ) =/= d ) <-> ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 0 ) =/= d ) ) ) |
| 199 |
|
neeq2 |
|- ( c = ( P ` 2 ) -> ( ( P ` 1 ) =/= c <-> ( P ` 1 ) =/= ( P ` 2 ) ) ) |
| 200 |
|
neeq1 |
|- ( c = ( P ` 2 ) -> ( c =/= d <-> ( P ` 2 ) =/= d ) ) |
| 201 |
199 200
|
3anbi13d |
|- ( c = ( P ` 2 ) -> ( ( ( P ` 1 ) =/= c /\ ( P ` 1 ) =/= d /\ c =/= d ) <-> ( ( P ` 1 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= d /\ ( P ` 2 ) =/= d ) ) ) |
| 202 |
198 201
|
anbi12d |
|- ( c = ( P ` 2 ) -> ( ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= c /\ ( P ` 0 ) =/= d ) /\ ( ( P ` 1 ) =/= c /\ ( P ` 1 ) =/= d /\ c =/= d ) ) <-> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 0 ) =/= d ) /\ ( ( P ` 1 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= d /\ ( P ` 2 ) =/= d ) ) ) ) |
| 203 |
196 202
|
anbi12d |
|- ( c = ( P ` 2 ) -> ( ( ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , c } e. E ) /\ ( { c , d } e. E /\ { d , ( P ` 0 ) } e. E ) ) /\ ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= c /\ ( P ` 0 ) =/= d ) /\ ( ( P ` 1 ) =/= c /\ ( P ` 1 ) =/= d /\ c =/= d ) ) ) <-> ( ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , d } e. E /\ { d , ( P ` 0 ) } e. E ) ) /\ ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 0 ) =/= d ) /\ ( ( P ` 1 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= d /\ ( P ` 2 ) =/= d ) ) ) ) ) |
| 204 |
|
preq2 |
|- ( d = ( P ` 3 ) -> { ( P ` 2 ) , d } = { ( P ` 2 ) , ( P ` 3 ) } ) |
| 205 |
204
|
eleq1d |
|- ( d = ( P ` 3 ) -> ( { ( P ` 2 ) , d } e. E <-> { ( P ` 2 ) , ( P ` 3 ) } e. E ) ) |
| 206 |
|
preq1 |
|- ( d = ( P ` 3 ) -> { d , ( P ` 0 ) } = { ( P ` 3 ) , ( P ` 0 ) } ) |
| 207 |
206
|
eleq1d |
|- ( d = ( P ` 3 ) -> ( { d , ( P ` 0 ) } e. E <-> { ( P ` 3 ) , ( P ` 0 ) } e. E ) ) |
| 208 |
205 207
|
anbi12d |
|- ( d = ( P ` 3 ) -> ( ( { ( P ` 2 ) , d } e. E /\ { d , ( P ` 0 ) } e. E ) <-> ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 0 ) } e. E ) ) ) |
| 209 |
208
|
anbi2d |
|- ( d = ( P ` 3 ) -> ( ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , d } e. E /\ { d , ( P ` 0 ) } e. E ) ) <-> ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 0 ) } e. E ) ) ) ) |
| 210 |
|
neeq2 |
|- ( d = ( P ` 3 ) -> ( ( P ` 0 ) =/= d <-> ( P ` 0 ) =/= ( P ` 3 ) ) ) |
| 211 |
210
|
3anbi3d |
|- ( d = ( P ` 3 ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 0 ) =/= d ) <-> ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 0 ) =/= ( P ` 3 ) ) ) ) |
| 212 |
|
neeq2 |
|- ( d = ( P ` 3 ) -> ( ( P ` 1 ) =/= d <-> ( P ` 1 ) =/= ( P ` 3 ) ) ) |
| 213 |
|
neeq2 |
|- ( d = ( P ` 3 ) -> ( ( P ` 2 ) =/= d <-> ( P ` 2 ) =/= ( P ` 3 ) ) ) |
| 214 |
212 213
|
3anbi23d |
|- ( d = ( P ` 3 ) -> ( ( ( P ` 1 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= d /\ ( P ` 2 ) =/= d ) <-> ( ( P ` 1 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 3 ) /\ ( P ` 2 ) =/= ( P ` 3 ) ) ) ) |
| 215 |
211 214
|
anbi12d |
|- ( d = ( P ` 3 ) -> ( ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 0 ) =/= d ) /\ ( ( P ` 1 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= d /\ ( P ` 2 ) =/= d ) ) <-> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 0 ) =/= ( P ` 3 ) ) /\ ( ( P ` 1 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 3 ) /\ ( P ` 2 ) =/= ( P ` 3 ) ) ) ) ) |
| 216 |
209 215
|
anbi12d |
|- ( d = ( P ` 3 ) -> ( ( ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , d } e. E /\ { d , ( P ` 0 ) } e. E ) ) /\ ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 0 ) =/= d ) /\ ( ( P ` 1 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= d /\ ( P ` 2 ) =/= d ) ) ) <-> ( ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 0 ) } e. E ) ) /\ ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 0 ) =/= ( P ` 3 ) ) /\ ( ( P ` 1 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 3 ) /\ ( P ` 2 ) =/= ( P ` 3 ) ) ) ) ) ) |
| 217 |
203 216
|
rspc2ev |
|- ( ( ( P ` 2 ) e. V /\ ( P ` 3 ) e. V /\ ( ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 0 ) } e. E ) ) /\ ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 0 ) =/= ( P ` 3 ) ) /\ ( ( P ` 1 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 3 ) /\ ( P ` 2 ) =/= ( P ` 3 ) ) ) ) ) -> E. c e. V E. d e. V ( ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , c } e. E ) /\ ( { c , d } e. E /\ { d , ( P ` 0 ) } e. E ) ) /\ ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= c /\ ( P ` 0 ) =/= d ) /\ ( ( P ` 1 ) =/= c /\ ( P ` 1 ) =/= d /\ c =/= d ) ) ) ) |
| 218 |
87 95 96 189 217
|
syl112anc |
|- ( ( ( ( ( # ` F ) = 4 /\ F ( Paths ` G ) P ) /\ ( 4 e. NN0 /\ P : ( 0 ... 4 ) --> V ) ) /\ ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 0 ) } e. E ) ) ) -> E. c e. V E. d e. V ( ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , c } e. E ) /\ ( { c , d } e. E /\ { d , ( P ` 0 ) } e. E ) ) /\ ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= c /\ ( P ` 0 ) =/= d ) /\ ( ( P ` 1 ) =/= c /\ ( P ` 1 ) =/= d /\ c =/= d ) ) ) ) |
| 219 |
71 79 218
|
3jca |
|- ( ( ( ( ( # ` F ) = 4 /\ F ( Paths ` G ) P ) /\ ( 4 e. NN0 /\ P : ( 0 ... 4 ) --> V ) ) /\ ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 0 ) } e. E ) ) ) -> ( ( P ` 0 ) e. V /\ ( P ` 1 ) e. V /\ E. c e. V E. d e. V ( ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , c } e. E ) /\ ( { c , d } e. E /\ { d , ( P ` 0 ) } e. E ) ) /\ ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= c /\ ( P ` 0 ) =/= d ) /\ ( ( P ` 1 ) =/= c /\ ( P ` 1 ) =/= d /\ c =/= d ) ) ) ) ) |
| 220 |
219
|
exp31 |
|- ( ( ( # ` F ) = 4 /\ F ( Paths ` G ) P ) -> ( ( 4 e. NN0 /\ P : ( 0 ... 4 ) --> V ) -> ( ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 0 ) } e. E ) ) -> ( ( P ` 0 ) e. V /\ ( P ` 1 ) e. V /\ E. c e. V E. d e. V ( ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , c } e. E ) /\ ( { c , d } e. E /\ { d , ( P ` 0 ) } e. E ) ) /\ ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= c /\ ( P ` 0 ) =/= d ) /\ ( ( P ` 1 ) =/= c /\ ( P ` 1 ) =/= d /\ c =/= d ) ) ) ) ) ) ) |
| 221 |
56 62 220
|
mp2and |
|- ( ( ( # ` F ) = 4 /\ F ( Paths ` G ) P ) -> ( ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 0 ) } e. E ) ) -> ( ( P ` 0 ) e. V /\ ( P ` 1 ) e. V /\ E. c e. V E. d e. V ( ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , c } e. E ) /\ ( { c , d } e. E /\ { d , ( P ` 0 ) } e. E ) ) /\ ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= c /\ ( P ` 0 ) =/= d ) /\ ( ( P ` 1 ) =/= c /\ ( P ` 1 ) =/= d /\ c =/= d ) ) ) ) ) ) |
| 222 |
221
|
adantr |
|- ( ( ( ( # ` F ) = 4 /\ F ( Paths ` G ) P ) /\ ( P ` 0 ) = ( P ` 4 ) ) -> ( ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 0 ) } e. E ) ) -> ( ( P ` 0 ) e. V /\ ( P ` 1 ) e. V /\ E. c e. V E. d e. V ( ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , c } e. E ) /\ ( { c , d } e. E /\ { d , ( P ` 0 ) } e. E ) ) /\ ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= c /\ ( P ` 0 ) =/= d ) /\ ( ( P ` 1 ) =/= c /\ ( P ` 1 ) =/= d /\ c =/= d ) ) ) ) ) ) |
| 223 |
54 222
|
sylbid |
|- ( ( ( ( # ` F ) = 4 /\ F ( Paths ` G ) P ) /\ ( P ` 0 ) = ( P ` 4 ) ) -> ( ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 4 ) } e. E ) ) -> ( ( P ` 0 ) e. V /\ ( P ` 1 ) e. V /\ E. c e. V E. d e. V ( ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , c } e. E ) /\ ( { c , d } e. E /\ { d , ( P ` 0 ) } e. E ) ) /\ ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= c /\ ( P ` 0 ) =/= d ) /\ ( ( P ` 1 ) =/= c /\ ( P ` 1 ) =/= d /\ c =/= d ) ) ) ) ) ) |
| 224 |
223
|
exp31 |
|- ( ( # ` F ) = 4 -> ( F ( Paths ` G ) P -> ( ( P ` 0 ) = ( P ` 4 ) -> ( ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 4 ) } e. E ) ) -> ( ( P ` 0 ) e. V /\ ( P ` 1 ) e. V /\ E. c e. V E. d e. V ( ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , c } e. E ) /\ ( { c , d } e. E /\ { d , ( P ` 0 ) } e. E ) ) /\ ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= c /\ ( P ` 0 ) =/= d ) /\ ( ( P ` 1 ) =/= c /\ ( P ` 1 ) =/= d /\ c =/= d ) ) ) ) ) ) ) ) |
| 225 |
224
|
imp4c |
|- ( ( # ` F ) = 4 -> ( ( ( F ( Paths ` G ) P /\ ( P ` 0 ) = ( P ` 4 ) ) /\ ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 4 ) } e. E ) ) ) -> ( ( P ` 0 ) e. V /\ ( P ` 1 ) e. V /\ E. c e. V E. d e. V ( ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , c } e. E ) /\ ( { c , d } e. E /\ { d , ( P ` 0 ) } e. E ) ) /\ ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= c /\ ( P ` 0 ) =/= d ) /\ ( ( P ` 1 ) =/= c /\ ( P ` 1 ) =/= d /\ c =/= d ) ) ) ) ) ) |
| 226 |
|
preq1 |
|- ( a = ( P ` 0 ) -> { a , b } = { ( P ` 0 ) , b } ) |
| 227 |
226
|
eleq1d |
|- ( a = ( P ` 0 ) -> ( { a , b } e. E <-> { ( P ` 0 ) , b } e. E ) ) |
| 228 |
227
|
anbi1d |
|- ( a = ( P ` 0 ) -> ( ( { a , b } e. E /\ { b , c } e. E ) <-> ( { ( P ` 0 ) , b } e. E /\ { b , c } e. E ) ) ) |
| 229 |
|
preq2 |
|- ( a = ( P ` 0 ) -> { d , a } = { d , ( P ` 0 ) } ) |
| 230 |
229
|
eleq1d |
|- ( a = ( P ` 0 ) -> ( { d , a } e. E <-> { d , ( P ` 0 ) } e. E ) ) |
| 231 |
230
|
anbi2d |
|- ( a = ( P ` 0 ) -> ( ( { c , d } e. E /\ { d , a } e. E ) <-> ( { c , d } e. E /\ { d , ( P ` 0 ) } e. E ) ) ) |
| 232 |
228 231
|
anbi12d |
|- ( a = ( P ` 0 ) -> ( ( ( { a , b } e. E /\ { b , c } e. E ) /\ ( { c , d } e. E /\ { d , a } e. E ) ) <-> ( ( { ( P ` 0 ) , b } e. E /\ { b , c } e. E ) /\ ( { c , d } e. E /\ { d , ( P ` 0 ) } e. E ) ) ) ) |
| 233 |
|
neeq1 |
|- ( a = ( P ` 0 ) -> ( a =/= b <-> ( P ` 0 ) =/= b ) ) |
| 234 |
|
neeq1 |
|- ( a = ( P ` 0 ) -> ( a =/= c <-> ( P ` 0 ) =/= c ) ) |
| 235 |
|
neeq1 |
|- ( a = ( P ` 0 ) -> ( a =/= d <-> ( P ` 0 ) =/= d ) ) |
| 236 |
233 234 235
|
3anbi123d |
|- ( a = ( P ` 0 ) -> ( ( a =/= b /\ a =/= c /\ a =/= d ) <-> ( ( P ` 0 ) =/= b /\ ( P ` 0 ) =/= c /\ ( P ` 0 ) =/= d ) ) ) |
| 237 |
236
|
anbi1d |
|- ( a = ( P ` 0 ) -> ( ( ( a =/= b /\ a =/= c /\ a =/= d ) /\ ( b =/= c /\ b =/= d /\ c =/= d ) ) <-> ( ( ( P ` 0 ) =/= b /\ ( P ` 0 ) =/= c /\ ( P ` 0 ) =/= d ) /\ ( b =/= c /\ b =/= d /\ c =/= d ) ) ) ) |
| 238 |
232 237
|
anbi12d |
|- ( a = ( P ` 0 ) -> ( ( ( ( { a , b } e. E /\ { b , c } e. E ) /\ ( { c , d } e. E /\ { d , a } e. E ) ) /\ ( ( a =/= b /\ a =/= c /\ a =/= d ) /\ ( b =/= c /\ b =/= d /\ c =/= d ) ) ) <-> ( ( ( { ( P ` 0 ) , b } e. E /\ { b , c } e. E ) /\ ( { c , d } e. E /\ { d , ( P ` 0 ) } e. E ) ) /\ ( ( ( P ` 0 ) =/= b /\ ( P ` 0 ) =/= c /\ ( P ` 0 ) =/= d ) /\ ( b =/= c /\ b =/= d /\ c =/= d ) ) ) ) ) |
| 239 |
238
|
2rexbidv |
|- ( a = ( P ` 0 ) -> ( E. c e. V E. d e. V ( ( ( { a , b } e. E /\ { b , c } e. E ) /\ ( { c , d } e. E /\ { d , a } e. E ) ) /\ ( ( a =/= b /\ a =/= c /\ a =/= d ) /\ ( b =/= c /\ b =/= d /\ c =/= d ) ) ) <-> E. c e. V E. d e. V ( ( ( { ( P ` 0 ) , b } e. E /\ { b , c } e. E ) /\ ( { c , d } e. E /\ { d , ( P ` 0 ) } e. E ) ) /\ ( ( ( P ` 0 ) =/= b /\ ( P ` 0 ) =/= c /\ ( P ` 0 ) =/= d ) /\ ( b =/= c /\ b =/= d /\ c =/= d ) ) ) ) ) |
| 240 |
|
preq2 |
|- ( b = ( P ` 1 ) -> { ( P ` 0 ) , b } = { ( P ` 0 ) , ( P ` 1 ) } ) |
| 241 |
240
|
eleq1d |
|- ( b = ( P ` 1 ) -> ( { ( P ` 0 ) , b } e. E <-> { ( P ` 0 ) , ( P ` 1 ) } e. E ) ) |
| 242 |
|
preq1 |
|- ( b = ( P ` 1 ) -> { b , c } = { ( P ` 1 ) , c } ) |
| 243 |
242
|
eleq1d |
|- ( b = ( P ` 1 ) -> ( { b , c } e. E <-> { ( P ` 1 ) , c } e. E ) ) |
| 244 |
241 243
|
anbi12d |
|- ( b = ( P ` 1 ) -> ( ( { ( P ` 0 ) , b } e. E /\ { b , c } e. E ) <-> ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , c } e. E ) ) ) |
| 245 |
244
|
anbi1d |
|- ( b = ( P ` 1 ) -> ( ( ( { ( P ` 0 ) , b } e. E /\ { b , c } e. E ) /\ ( { c , d } e. E /\ { d , ( P ` 0 ) } e. E ) ) <-> ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , c } e. E ) /\ ( { c , d } e. E /\ { d , ( P ` 0 ) } e. E ) ) ) ) |
| 246 |
|
neeq2 |
|- ( b = ( P ` 1 ) -> ( ( P ` 0 ) =/= b <-> ( P ` 0 ) =/= ( P ` 1 ) ) ) |
| 247 |
246
|
3anbi1d |
|- ( b = ( P ` 1 ) -> ( ( ( P ` 0 ) =/= b /\ ( P ` 0 ) =/= c /\ ( P ` 0 ) =/= d ) <-> ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= c /\ ( P ` 0 ) =/= d ) ) ) |
| 248 |
|
neeq1 |
|- ( b = ( P ` 1 ) -> ( b =/= c <-> ( P ` 1 ) =/= c ) ) |
| 249 |
|
neeq1 |
|- ( b = ( P ` 1 ) -> ( b =/= d <-> ( P ` 1 ) =/= d ) ) |
| 250 |
248 249
|
3anbi12d |
|- ( b = ( P ` 1 ) -> ( ( b =/= c /\ b =/= d /\ c =/= d ) <-> ( ( P ` 1 ) =/= c /\ ( P ` 1 ) =/= d /\ c =/= d ) ) ) |
| 251 |
247 250
|
anbi12d |
|- ( b = ( P ` 1 ) -> ( ( ( ( P ` 0 ) =/= b /\ ( P ` 0 ) =/= c /\ ( P ` 0 ) =/= d ) /\ ( b =/= c /\ b =/= d /\ c =/= d ) ) <-> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= c /\ ( P ` 0 ) =/= d ) /\ ( ( P ` 1 ) =/= c /\ ( P ` 1 ) =/= d /\ c =/= d ) ) ) ) |
| 252 |
245 251
|
anbi12d |
|- ( b = ( P ` 1 ) -> ( ( ( ( { ( P ` 0 ) , b } e. E /\ { b , c } e. E ) /\ ( { c , d } e. E /\ { d , ( P ` 0 ) } e. E ) ) /\ ( ( ( P ` 0 ) =/= b /\ ( P ` 0 ) =/= c /\ ( P ` 0 ) =/= d ) /\ ( b =/= c /\ b =/= d /\ c =/= d ) ) ) <-> ( ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , c } e. E ) /\ ( { c , d } e. E /\ { d , ( P ` 0 ) } e. E ) ) /\ ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= c /\ ( P ` 0 ) =/= d ) /\ ( ( P ` 1 ) =/= c /\ ( P ` 1 ) =/= d /\ c =/= d ) ) ) ) ) |
| 253 |
252
|
2rexbidv |
|- ( b = ( P ` 1 ) -> ( E. c e. V E. d e. V ( ( ( { ( P ` 0 ) , b } e. E /\ { b , c } e. E ) /\ ( { c , d } e. E /\ { d , ( P ` 0 ) } e. E ) ) /\ ( ( ( P ` 0 ) =/= b /\ ( P ` 0 ) =/= c /\ ( P ` 0 ) =/= d ) /\ ( b =/= c /\ b =/= d /\ c =/= d ) ) ) <-> E. c e. V E. d e. V ( ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , c } e. E ) /\ ( { c , d } e. E /\ { d , ( P ` 0 ) } e. E ) ) /\ ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= c /\ ( P ` 0 ) =/= d ) /\ ( ( P ` 1 ) =/= c /\ ( P ` 1 ) =/= d /\ c =/= d ) ) ) ) ) |
| 254 |
239 253
|
rspc2ev |
|- ( ( ( P ` 0 ) e. V /\ ( P ` 1 ) e. V /\ E. c e. V E. d e. V ( ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , c } e. E ) /\ ( { c , d } e. E /\ { d , ( P ` 0 ) } e. E ) ) /\ ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= c /\ ( P ` 0 ) =/= d ) /\ ( ( P ` 1 ) =/= c /\ ( P ` 1 ) =/= d /\ c =/= d ) ) ) ) -> E. a e. V E. b e. V E. c e. V E. d e. V ( ( ( { a , b } e. E /\ { b , c } e. E ) /\ ( { c , d } e. E /\ { d , a } e. E ) ) /\ ( ( a =/= b /\ a =/= c /\ a =/= d ) /\ ( b =/= c /\ b =/= d /\ c =/= d ) ) ) ) |
| 255 |
225 254
|
syl6 |
|- ( ( # ` F ) = 4 -> ( ( ( F ( Paths ` G ) P /\ ( P ` 0 ) = ( P ` 4 ) ) /\ ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 4 ) } e. E ) ) ) -> E. a e. V E. b e. V E. c e. V E. d e. V ( ( ( { a , b } e. E /\ { b , c } e. E ) /\ ( { c , d } e. E /\ { d , a } e. E ) ) /\ ( ( a =/= b /\ a =/= c /\ a =/= d ) /\ ( b =/= c /\ b =/= d /\ c =/= d ) ) ) ) ) |
| 256 |
48 255
|
sylbid |
|- ( ( # ` F ) = 4 -> ( ( ( F ( Paths ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) /\ A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E ) -> E. a e. V E. b e. V E. c e. V E. d e. V ( ( ( { a , b } e. E /\ { b , c } e. E ) /\ ( { c , d } e. E /\ { d , a } e. E ) ) /\ ( ( a =/= b /\ a =/= c /\ a =/= d ) /\ ( b =/= c /\ b =/= d /\ c =/= d ) ) ) ) ) |
| 257 |
256
|
expd |
|- ( ( # ` F ) = 4 -> ( ( F ( Paths ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E -> E. a e. V E. b e. V E. c e. V E. d e. V ( ( ( { a , b } e. E /\ { b , c } e. E ) /\ ( { c , d } e. E /\ { d , a } e. E ) ) /\ ( ( a =/= b /\ a =/= c /\ a =/= d ) /\ ( b =/= c /\ b =/= d /\ c =/= d ) ) ) ) ) ) |
| 258 |
257
|
com13 |
|- ( A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E -> ( ( F ( Paths ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( # ` F ) = 4 -> E. a e. V E. b e. V E. c e. V E. d e. V ( ( ( { a , b } e. E /\ { b , c } e. E ) /\ ( { c , d } e. E /\ { d , a } e. E ) ) /\ ( ( a =/= b /\ a =/= c /\ a =/= d ) /\ ( b =/= c /\ b =/= d /\ c =/= d ) ) ) ) ) ) |
| 259 |
5 258
|
syl |
|- ( ( G e. UPGraph /\ F ( Walks ` G ) P ) -> ( ( F ( Paths ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( # ` F ) = 4 -> E. a e. V E. b e. V E. c e. V E. d e. V ( ( ( { a , b } e. E /\ { b , c } e. E ) /\ ( { c , d } e. E /\ { d , a } e. E ) ) /\ ( ( a =/= b /\ a =/= c /\ a =/= d ) /\ ( b =/= c /\ b =/= d /\ c =/= d ) ) ) ) ) ) |
| 260 |
259
|
expcom |
|- ( F ( Walks ` G ) P -> ( G e. UPGraph -> ( ( F ( Paths ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( # ` F ) = 4 -> E. a e. V E. b e. V E. c e. V E. d e. V ( ( ( { a , b } e. E /\ { b , c } e. E ) /\ ( { c , d } e. E /\ { d , a } e. E ) ) /\ ( ( a =/= b /\ a =/= c /\ a =/= d ) /\ ( b =/= c /\ b =/= d /\ c =/= d ) ) ) ) ) ) ) |
| 261 |
260
|
com23 |
|- ( F ( Walks ` G ) P -> ( ( F ( Paths ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( G e. UPGraph -> ( ( # ` F ) = 4 -> E. a e. V E. b e. V E. c e. V E. d e. V ( ( ( { a , b } e. E /\ { b , c } e. E ) /\ ( { c , d } e. E /\ { d , a } e. E ) ) /\ ( ( a =/= b /\ a =/= c /\ a =/= d ) /\ ( b =/= c /\ b =/= d /\ c =/= d ) ) ) ) ) ) ) |
| 262 |
261
|
expd |
|- ( F ( Walks ` G ) P -> ( F ( Paths ` G ) P -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ( G e. UPGraph -> ( ( # ` F ) = 4 -> E. a e. V E. b e. V E. c e. V E. d e. V ( ( ( { a , b } e. E /\ { b , c } e. E ) /\ ( { c , d } e. E /\ { d , a } e. E ) ) /\ ( ( a =/= b /\ a =/= c /\ a =/= d ) /\ ( b =/= c /\ b =/= d /\ c =/= d ) ) ) ) ) ) ) ) |
| 263 |
4 262
|
mpcom |
|- ( F ( Paths ` G ) P -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ( G e. UPGraph -> ( ( # ` F ) = 4 -> E. a e. V E. b e. V E. c e. V E. d e. V ( ( ( { a , b } e. E /\ { b , c } e. E ) /\ ( { c , d } e. E /\ { d , a } e. E ) ) /\ ( ( a =/= b /\ a =/= c /\ a =/= d ) /\ ( b =/= c /\ b =/= d /\ c =/= d ) ) ) ) ) ) ) |
| 264 |
263
|
imp |
|- ( ( F ( Paths ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( G e. UPGraph -> ( ( # ` F ) = 4 -> E. a e. V E. b e. V E. c e. V E. d e. V ( ( ( { a , b } e. E /\ { b , c } e. E ) /\ ( { c , d } e. E /\ { d , a } e. E ) ) /\ ( ( a =/= b /\ a =/= c /\ a =/= d ) /\ ( b =/= c /\ b =/= d /\ c =/= d ) ) ) ) ) ) |
| 265 |
3 264
|
syl |
|- ( F ( Cycles ` G ) P -> ( G e. UPGraph -> ( ( # ` F ) = 4 -> E. a e. V E. b e. V E. c e. V E. d e. V ( ( ( { a , b } e. E /\ { b , c } e. E ) /\ ( { c , d } e. E /\ { d , a } e. E ) ) /\ ( ( a =/= b /\ a =/= c /\ a =/= d ) /\ ( b =/= c /\ b =/= d /\ c =/= d ) ) ) ) ) ) |
| 266 |
265
|
3imp21 |
|- ( ( G e. UPGraph /\ F ( Cycles ` G ) P /\ ( # ` F ) = 4 ) -> E. a e. V E. b e. V E. c e. V E. d e. V ( ( ( { a , b } e. E /\ { b , c } e. E ) /\ ( { c , d } e. E /\ { d , a } e. E ) ) /\ ( ( a =/= b /\ a =/= c /\ a =/= d ) /\ ( b =/= c /\ b =/= d /\ c =/= d ) ) ) ) |