Metamath Proof Explorer


Theorem 2itscp

Description: A condition for a quadratic equation with real coefficients (for the intersection points of a line with a circle) to have (exactly) two different real solutions. (Contributed by AV, 5-Mar-2023) (Revised by AV, 16-May-2023)

Ref Expression
Hypotheses 2itscp.a φA
2itscp.b φB
2itscp.x φX
2itscp.y φY
2itscp.d D=XA
2itscp.e E=BY
2itscp.c C=DB+EA
2itscp.r φR
2itscp.l φA2+B2<R2
2itscp.n φBYAX
2itscp.q Q=E2+D2
2itscp.s S=R2QC2
Assertion 2itscp φ0<S

Proof

Step Hyp Ref Expression
1 2itscp.a φA
2 2itscp.b φB
3 2itscp.x φX
4 2itscp.y φY
5 2itscp.d D=XA
6 2itscp.e E=BY
7 2itscp.c C=DB+EA
8 2itscp.r φR
9 2itscp.l φA2+B2<R2
10 2itscp.n φBYAX
11 2itscp.q Q=E2+D2
12 2itscp.s S=R2QC2
13 2 recnd φB
14 13 adantr φBYB
15 4 recnd φY
16 15 adantr φBYY
17 simpr φBYBY
18 14 16 17 subne0d φBYBY0
19 18 ex φBYBY0
20 3 recnd φX
21 20 adantr φAXX
22 1 recnd φA
23 22 adantr φAXA
24 simpr φAXAX
25 24 necomd φAXXA
26 21 23 25 subne0d φAXXA0
27 26 ex φAXXA0
28 6 neeq1i E0BY0
29 5 neeq1i D0XA0
30 28 29 anbi12i E0D0BY0XA0
31 2re 2
32 31 a1i φ2
33 3 1 resubcld φXA
34 5 33 eqeltrid φD
35 34 1 remulcld φDA
36 2 4 resubcld φBY
37 6 36 eqeltrid φE
38 37 2 remulcld φEB
39 35 38 remulcld φDAEB
40 32 39 remulcld φ2DAEB
41 40 adantr φE0D02DAEB
42 37 resqcld φE2
43 2 resqcld φB2
44 42 43 remulcld φE2B2
45 34 resqcld φD2
46 1 resqcld φA2
47 45 46 remulcld φD2A2
48 44 47 readdcld φE2B2+D2A2
49 48 adantr φE0D0E2B2+D2A2
50 8 resqcld φR2
51 50 46 resubcld φR2A2
52 42 51 remulcld φE2R2A2
53 50 43 resubcld φR2B2
54 45 53 remulcld φD2R2B2
55 52 54 readdcld φE2R2A2+D2R2B2
56 55 adantr φE0D0E2R2A2+D2R2B2
57 35 38 resubcld φDAEB
58 57 sqge0d φ0DAEB2
59 1 2 3 4 5 6 2itscplem1 φE2B2+D2A2-2DAEB=DAEB2
60 58 59 breqtrrd φ0E2B2+D2A2-2DAEB
61 48 40 subge0d φ0E2B2+D2A2-2DAEB2DAEBE2B2+D2A2
62 60 61 mpbid φ2DAEBE2B2+D2A2
63 62 adantr φE0D02DAEBE2B2+D2A2
64 44 adantr φE0D0E2B2
65 47 adantr φE0D0D2A2
66 52 adantr φE0D0E2R2A2
67 54 adantr φE0D0D2R2B2
68 43 adantr φE0D0B2
69 51 adantr φE0D0R2A2
70 simpl E0D0E0
71 sqn0rp EE0E2+
72 37 70 71 syl2an φE0D0E2+
73 46 43 50 ltaddsub2d φA2+B2<R2B2<R2A2
74 9 73 mpbid φB2<R2A2
75 74 adantr φE0D0B2<R2A2
76 68 69 72 75 ltmul2dd φE0D0E2B2<E2R2A2
77 46 adantr φE0D0A2
78 53 adantr φE0D0R2B2
79 simpr E0D0D0
80 sqn0rp DD0D2+
81 34 79 80 syl2an φE0D0D2+
82 46 43 50 ltaddsubd φA2+B2<R2A2<R2B2
83 9 82 mpbid φA2<R2B2
84 83 adantr φE0D0A2<R2B2
85 77 78 81 84 ltmul2dd φE0D0D2A2<D2R2B2
86 64 65 66 67 76 85 lt2addd φE0D0E2B2+D2A2<E2R2A2+D2R2B2
87 41 49 56 63 86 lelttrd φE0D02DAEB<E2R2A2+D2R2B2
88 87 ex φE0D02DAEB<E2R2A2+D2R2B2
89 30 88 biimtrrid φBY0XA02DAEB<E2R2A2+D2R2B2
90 19 27 89 syl2and φBYAX2DAEB<E2R2A2+D2R2B2
91 90 imp φBYAX2DAEB<E2R2A2+D2R2B2
92 nne ¬AXA=X
93 eqcom A=XX=A
94 20 22 subeq0ad φXA=0X=A
95 94 biimprd φX=AXA=0
96 93 95 biimtrid φA=XXA=0
97 92 96 biimtrid φ¬AXXA=0
98 5 eqeq1i D=0XA=0
99 28 98 anbi12i E0D=0BY0XA=0
100 0red φE0D=00
101 44 adantr φE0D=0E2B2
102 52 adantr φE0D=0E2R2A2
103 37 sqge0d φ0E2
104 2 sqge0d φ0B2
105 42 43 103 104 mulge0d φ0E2B2
106 105 adantr φE0D=00E2B2
107 43 adantr φE0D=0B2
108 51 adantr φE0D=0R2A2
109 simprl φE0D=0E0
110 37 109 71 syl2an2r φE0D=0E2+
111 74 adantr φE0D=0B2<R2A2
112 107 108 110 111 ltmul2dd φE0D=0E2B2<E2R2A2
113 100 101 102 106 112 lelttrd φE0D=00<E2R2A2
114 oveq1 D=0DA=0A
115 114 adantl E0D=0DA=0A
116 22 mul02d φ0A=0
117 115 116 sylan9eqr φE0D=0DA=0
118 117 oveq1d φE0D=0DAEB=0EB
119 38 recnd φEB
120 119 mul02d φ0EB=0
121 120 adantr φE0D=00EB=0
122 118 121 eqtrd φE0D=0DAEB=0
123 122 oveq2d φE0D=02DAEB=20
124 2t0e0 20=0
125 123 124 eqtrdi φE0D=02DAEB=0
126 sq0i D=0D2=0
127 126 adantl E0D=0D2=0
128 127 adantl φE0D=0D2=0
129 128 oveq1d φE0D=0D2R2B2=0R2B2
130 53 recnd φR2B2
131 130 mul02d φ0R2B2=0
132 131 adantr φE0D=00R2B2=0
133 129 132 eqtrd φE0D=0D2R2B2=0
134 133 oveq2d φE0D=0E2R2A2+D2R2B2=E2R2A2+0
135 52 recnd φE2R2A2
136 135 addridd φE2R2A2+0=E2R2A2
137 136 adantr φE0D=0E2R2A2+0=E2R2A2
138 134 137 eqtrd φE0D=0E2R2A2+D2R2B2=E2R2A2
139 113 125 138 3brtr4d φE0D=02DAEB<E2R2A2+D2R2B2
140 139 ex φE0D=02DAEB<E2R2A2+D2R2B2
141 99 140 biimtrrid φBY0XA=02DAEB<E2R2A2+D2R2B2
142 19 97 141 syl2and φBY¬AX2DAEB<E2R2A2+D2R2B2
143 142 imp φBY¬AX2DAEB<E2R2A2+D2R2B2
144 nne ¬BYB=Y
145 13 15 subeq0ad φBY=0B=Y
146 145 biimprd φB=YBY=0
147 144 146 biimtrid φ¬BYBY=0
148 6 eqeq1i E=0BY=0
149 148 29 anbi12i E=0D0BY=0XA0
150 0red φE=0D00
151 47 adantr φE=0D0D2A2
152 54 adantr φE=0D0D2R2B2
153 34 sqge0d φ0D2
154 1 sqge0d φ0A2
155 45 46 153 154 mulge0d φ0D2A2
156 155 adantr φE=0D00D2A2
157 46 adantr φE=0D0A2
158 53 adantr φE=0D0R2B2
159 simprr φE=0D0D0
160 34 159 80 syl2an2r φE=0D0D2+
161 43 recnd φB2
162 46 recnd φA2
163 161 162 addcomd φB2+A2=A2+B2
164 163 9 eqbrtrd φB2+A2<R2
165 43 46 50 ltaddsub2d φB2+A2<R2A2<R2B2
166 164 165 mpbid φA2<R2B2
167 166 adantr φE=0D0A2<R2B2
168 157 158 160 167 ltmul2dd φE=0D0D2A2<D2R2B2
169 150 151 152 156 168 lelttrd φE=0D00<D2R2B2
170 oveq1 E=0EB=0B
171 170 adantr E=0D0EB=0B
172 13 mul02d φ0B=0
173 171 172 sylan9eqr φE=0D0EB=0
174 173 oveq2d φE=0D0DAEB=DA0
175 34 adantr φE=0D0D
176 175 recnd φE=0D0D
177 22 adantr φE=0D0A
178 176 177 mulcld φE=0D0DA
179 178 mul01d φE=0D0DA0=0
180 174 179 eqtrd φE=0D0DAEB=0
181 180 oveq2d φE=0D02DAEB=20
182 181 124 eqtrdi φE=0D02DAEB=0
183 sq0i E=0E2=0
184 183 adantr E=0D0E2=0
185 184 adantl φE=0D0E2=0
186 185 oveq1d φE=0D0E2R2A2=0R2A2
187 51 recnd φR2A2
188 187 mul02d φ0R2A2=0
189 188 adantr φE=0D00R2A2=0
190 186 189 eqtrd φE=0D0E2R2A2=0
191 190 oveq1d φE=0D0E2R2A2+D2R2B2=0+D2R2B2
192 54 recnd φD2R2B2
193 192 addlidd φ0+D2R2B2=D2R2B2
194 193 adantr φE=0D00+D2R2B2=D2R2B2
195 191 194 eqtrd φE=0D0E2R2A2+D2R2B2=D2R2B2
196 169 182 195 3brtr4d φE=0D02DAEB<E2R2A2+D2R2B2
197 196 ex φE=0D02DAEB<E2R2A2+D2R2B2
198 149 197 biimtrrid φBY=0XA02DAEB<E2R2A2+D2R2B2
199 147 27 198 syl2and φ¬BYAX2DAEB<E2R2A2+D2R2B2
200 199 imp φ¬BYAX2DAEB<E2R2A2+D2R2B2
201 ioran ¬BYAX¬BY¬AX
202 10 pm2.24d φ¬BYAX2DAEB<E2R2A2+D2R2B2
203 201 202 biimtrrid φ¬BY¬AX2DAEB<E2R2A2+D2R2B2
204 203 imp φ¬BY¬AX2DAEB<E2R2A2+D2R2B2
205 91 143 200 204 4casesdan φ2DAEB<E2R2A2+D2R2B2
206 40 55 posdifd φ2DAEB<E2R2A2+D2R2B20<E2R2A2+D2R2B2-2DAEB
207 205 206 mpbid φ0<E2R2A2+D2R2B2-2DAEB
208 1 2 3 4 5 6 7 8 11 12 2itscplem3 φS=E2R2A2+D2R2B2-2DAEB
209 207 208 breqtrrd φ0<S