Metamath Proof Explorer


Theorem 2np3bcnp1

Description: Part of induction step for 2ap1caineq . (Contributed by metakunt, 8-Jun-2024)

Ref Expression
Hypothesis 2np3bcnp1.1 φN0
Assertion 2np3bcnp1 φ(2N+1+1N+1)=(2 N+1N)22 N+3N+2

Proof

Step Hyp Ref Expression
1 2np3bcnp1.1 φN0
2 2cnd φ2
3 1 nn0cnd φN
4 1cnd φ1
5 2 3 4 adddid φ2N+1=2 N+21
6 2t1e2 21=2
7 6 oveq2i 2 N+21=2 N+2
8 5 7 eqtrdi φ2N+1=2 N+2
9 8 oveq1d φ2N+1+1=2 N+2+1
10 2 3 mulcld φ2 N
11 10 2 4 addassd φ2 N+2+1=2 N+2+1
12 9 11 eqtrd φ2N+1+1=2 N+2+1
13 2p1e3 2+1=3
14 13 a1i φ2+1=3
15 14 oveq2d φ2 N+2+1=2 N+3
16 12 15 eqtrd φ2N+1+1=2 N+3
17 16 oveq1d φ(2N+1+1N+1)=(2 N+3N+1)
18 0zd φ0
19 2z 2
20 19 a1i φ2
21 1 nn0zd φN
22 20 21 zmulcld φ2 N
23 3z 3
24 23 a1i φ3
25 22 24 zaddcld φ2 N+3
26 21 peano2zd φN+1
27 1 nn0red φN
28 1red φ1
29 1 nn0ge0d φ0N
30 0le1 01
31 30 a1i φ01
32 27 28 29 31 addge0d φ0N+1
33 2re 2
34 33 a1i φ2
35 34 27 remulcld φ2 N
36 3re 3
37 36 a1i φ3
38 1le2 12
39 38 a1i φ12
40 27 34 29 39 lemulge12d φN2 N
41 1le3 13
42 41 a1i φ13
43 27 28 35 37 40 42 le2addd φN+12 N+3
44 18 25 26 32 43 elfzd φN+102 N+3
45 bcval2 N+102 N+3(2 N+3N+1)=2 N+3!2 N+3-N+1!N+1!
46 44 45 syl φ(2 N+3N+1)=2 N+3!2 N+3-N+1!N+1!
47 37 recnd φ3
48 10 47 3 4 addsub4d φ2 N+3-N+1=2 NN+3-1
49 2txmxeqx N2 NN=N
50 3 49 syl φ2 NN=N
51 3m1e2 31=2
52 51 a1i φ31=2
53 50 52 oveq12d φ2 NN+3-1=N+2
54 48 53 eqtrd φ2 N+3-N+1=N+2
55 54 fveq2d φ2 N+3-N+1!=N+2!
56 55 oveq1d φ2 N+3-N+1!N+1!=N+2!N+1!
57 56 oveq2d φ2 N+3!2 N+3-N+1!N+1!=2 N+3!N+2!N+1!
58 2nn0 20
59 58 a1i φ20
60 1 59 nn0addcld φN+20
61 60 faccld φN+2!
62 61 nncnd φN+2!
63 1nn0 10
64 63 a1i φ10
65 1 64 nn0addcld φN+10
66 65 faccld φN+1!
67 66 nncnd φN+1!
68 62 67 mulcomd φN+2!N+1!=N+1!N+2!
69 68 oveq2d φ2 N+3!N+2!N+1!=2 N+3!N+1!N+2!
70 10 4 2 addassd φ2 N+1+2=2 N+1+2
71 1p2e3 1+2=3
72 71 oveq2i 2 N+1+2=2 N+3
73 70 72 eqtrdi φ2 N+1+2=2 N+3
74 73 fveq2d φ2 N+1+2!=2 N+3!
75 74 eqcomd φ2 N+3!=2 N+1+2!
76 59 1 nn0mulcld φ2 N0
77 76 64 nn0addcld φ2 N+10
78 facp2 2 N+102 N+1+2!=2 N+1!2 N+1+12 N+1+2
79 77 78 syl φ2 N+1+2!=2 N+1!2 N+1+12 N+1+2
80 75 79 eqtrd φ2 N+3!=2 N+1!2 N+1+12 N+1+2
81 10 4 4 addassd φ2 N+1+1=2 N+1+1
82 1p1e2 1+1=2
83 82 a1i φ1+1=2
84 83 oveq2d φ2 N+1+1=2 N+2
85 81 84 eqtrd φ2 N+1+1=2 N+2
86 71 a1i φ1+2=3
87 86 oveq2d φ2 N+1+2=2 N+3
88 70 87 eqtrd φ2 N+1+2=2 N+3
89 85 88 oveq12d φ2 N+1+12 N+1+2=2 N+22 N+3
90 89 oveq2d φ2 N+1!2 N+1+12 N+1+2=2 N+1!2 N+22 N+3
91 80 90 eqtrd φ2 N+3!=2 N+1!2 N+22 N+3
92 91 oveq1d φ2 N+3!N+1!N+2!=2 N+1!2 N+22 N+3N+1!N+2!
93 facp2 N0N+2!=N!N+1N+2
94 1 93 syl φN+2!=N!N+1N+2
95 94 oveq2d φN+1!N+2!=N+1!N!N+1N+2
96 95 oveq2d φ2 N+1!2 N+22 N+3N+1!N+2!=2 N+1!2 N+22 N+3N+1!N!N+1N+2
97 1 faccld φN!
98 97 nncnd φN!
99 3 4 addcld φN+1
100 3 2 addcld φN+2
101 99 100 mulcld φN+1N+2
102 67 98 101 mulassd φN+1!N!N+1N+2=N+1!N!N+1N+2
103 102 eqcomd φN+1!N!N+1N+2=N+1!N!N+1N+2
104 103 oveq2d φ2 N+1!2 N+22 N+3N+1!N!N+1N+2=2 N+1!2 N+22 N+3N+1!N!N+1N+2
105 77 faccld φ2 N+1!
106 105 nncnd φ2 N+1!
107 67 98 mulcld φN+1!N!
108 10 2 addcld φ2 N+2
109 10 47 addcld φ2 N+3
110 108 109 mulcld φ2 N+22 N+3
111 66 nnne0d φN+1!0
112 97 nnne0d φN!0
113 67 98 111 112 mulne0d φN+1!N!0
114 0red φ0
115 27 28 readdcld φN+1
116 27 ltp1d φN<N+1
117 114 27 115 29 116 lelttrd φ0<N+1
118 114 117 ltned φ0N+1
119 118 necomd φN+10
120 27 34 readdcld φN+2
121 2rp 2+
122 121 a1i φ2+
123 27 122 ltaddrpd φN<N+2
124 114 27 120 29 123 lelttrd φ0<N+2
125 114 124 ltned φ0N+2
126 125 necomd φN+20
127 99 100 119 126 mulne0d φN+1N+20
128 106 107 110 101 113 127 divmuldivd φ2 N+1!N+1!N!2 N+22 N+3N+1N+2=2 N+1!2 N+22 N+3N+1!N!N+1N+2
129 128 eqcomd φ2 N+1!2 N+22 N+3N+1!N!N+1N+2=2 N+1!N+1!N!2 N+22 N+3N+1N+2
130 22 peano2zd φ2 N+1
131 35 28 readdcld φ2 N+1
132 35 lep1d φ2 N2 N+1
133 27 35 131 40 132 letrd φN2 N+1
134 18 130 21 29 133 elfzd φN02 N+1
135 bcval2 N02 N+1(2 N+1N)=2 N+1!2 N+1-N!N!
136 134 135 syl φ(2 N+1N)=2 N+1!2 N+1-N!N!
137 10 4 3 addsubd φ2 N+1-N=2 N-N+1
138 50 oveq1d φ2 N-N+1=N+1
139 137 138 eqtrd φ2 N+1-N=N+1
140 139 fveq2d φ2 N+1-N!=N+1!
141 140 oveq1d φ2 N+1-N!N!=N+1!N!
142 141 oveq2d φ2 N+1!2 N+1-N!N!=2 N+1!N+1!N!
143 136 142 eqtrd φ(2 N+1N)=2 N+1!N+1!N!
144 143 eqcomd φ2 N+1!N+1!N!=(2 N+1N)
145 108 99 109 100 119 126 divmuldivd φ2 N+2N+12 N+3N+2=2 N+22 N+3N+1N+2
146 145 eqcomd φ2 N+22 N+3N+1N+2=2 N+2N+12 N+3N+2
147 8 eqcomd φ2 N+2=2N+1
148 147 oveq1d φ2 N+2N+1=2N+1N+1
149 2 99 119 divcan4d φ2N+1N+1=2
150 148 149 eqtrd φ2 N+2N+1=2
151 eqidd φ2 N+3N+2=2 N+3N+2
152 150 151 oveq12d φ2 N+2N+12 N+3N+2=22 N+3N+2
153 146 152 eqtrd φ2 N+22 N+3N+1N+2=22 N+3N+2
154 144 153 oveq12d φ2 N+1!N+1!N!2 N+22 N+3N+1N+2=(2 N+1N)22 N+3N+2
155 129 154 eqtrd φ2 N+1!2 N+22 N+3N+1!N!N+1N+2=(2 N+1N)22 N+3N+2
156 104 155 eqtrd φ2 N+1!2 N+22 N+3N+1!N!N+1N+2=(2 N+1N)22 N+3N+2
157 96 156 eqtrd φ2 N+1!2 N+22 N+3N+1!N+2!=(2 N+1N)22 N+3N+2
158 92 157 eqtrd φ2 N+3!N+1!N+2!=(2 N+1N)22 N+3N+2
159 69 158 eqtrd φ2 N+3!N+2!N+1!=(2 N+1N)22 N+3N+2
160 57 159 eqtrd φ2 N+3!2 N+3-N+1!N+1!=(2 N+1N)22 N+3N+2
161 46 160 eqtrd φ(2 N+3N+1)=(2 N+1N)22 N+3N+2
162 17 161 eqtrd φ(2N+1+1N+1)=(2 N+1N)22 N+3N+2