Metamath Proof Explorer


Theorem 4sqlem14

Description: Lemma for 4sq . (Contributed by Mario Carneiro, 16-Jul-2014) (Revised by AV, 14-Sep-2020)

Ref Expression
Hypotheses 4sq.1 S = n | x y z w n = x 2 + y 2 + z 2 + w 2
4sq.2 φ N
4sq.3 φ P = 2 N + 1
4sq.4 φ P
4sq.5 φ 0 2 N S
4sq.6 T = i | i P S
4sq.7 M = sup T <
4sq.m φ M 2
4sq.a φ A
4sq.b φ B
4sq.c φ C
4sq.d φ D
4sq.e E = A + M 2 mod M M 2
4sq.f F = B + M 2 mod M M 2
4sq.g G = C + M 2 mod M M 2
4sq.h H = D + M 2 mod M M 2
4sq.r R = E 2 + F 2 + G 2 + H 2 M
4sq.p φ M P = A 2 + B 2 + C 2 + D 2
Assertion 4sqlem14 φ R 0

Proof

Step Hyp Ref Expression
1 4sq.1 S = n | x y z w n = x 2 + y 2 + z 2 + w 2
2 4sq.2 φ N
3 4sq.3 φ P = 2 N + 1
4 4sq.4 φ P
5 4sq.5 φ 0 2 N S
6 4sq.6 T = i | i P S
7 4sq.7 M = sup T <
8 4sq.m φ M 2
9 4sq.a φ A
10 4sq.b φ B
11 4sq.c φ C
12 4sq.d φ D
13 4sq.e E = A + M 2 mod M M 2
14 4sq.f F = B + M 2 mod M M 2
15 4sq.g G = C + M 2 mod M M 2
16 4sq.h H = D + M 2 mod M M 2
17 4sq.r R = E 2 + F 2 + G 2 + H 2 M
18 4sq.p φ M P = A 2 + B 2 + C 2 + D 2
19 6 ssrab3 T
20 nnuz = 1
21 19 20 sseqtri T 1
22 1 2 3 4 5 6 7 4sqlem13 φ T M < P
23 22 simpld φ T
24 infssuzcl T 1 T sup T < T
25 21 23 24 sylancr φ sup T < T
26 7 25 eqeltrid φ M T
27 19 26 sseldi φ M
28 27 nnzd φ M
29 prmz P P
30 4 29 syl φ P
31 dvdsmul1 M P M M P
32 28 30 31 syl2anc φ M M P
33 9 27 13 4sqlem8 φ M A 2 E 2
34 10 27 14 4sqlem8 φ M B 2 F 2
35 zsqcl A A 2
36 9 35 syl φ A 2
37 9 27 13 4sqlem5 φ E A E M
38 37 simpld φ E
39 zsqcl2 E E 2 0
40 38 39 syl φ E 2 0
41 40 nn0zd φ E 2
42 36 41 zsubcld φ A 2 E 2
43 zsqcl B B 2
44 10 43 syl φ B 2
45 10 27 14 4sqlem5 φ F B F M
46 45 simpld φ F
47 zsqcl2 F F 2 0
48 46 47 syl φ F 2 0
49 48 nn0zd φ F 2
50 44 49 zsubcld φ B 2 F 2
51 dvds2add M A 2 E 2 B 2 F 2 M A 2 E 2 M B 2 F 2 M A 2 E 2 + B 2 - F 2
52 28 42 50 51 syl3anc φ M A 2 E 2 M B 2 F 2 M A 2 E 2 + B 2 - F 2
53 33 34 52 mp2and φ M A 2 E 2 + B 2 - F 2
54 9 zcnd φ A
55 54 sqcld φ A 2
56 10 zcnd φ B
57 56 sqcld φ B 2
58 38 zcnd φ E
59 58 sqcld φ E 2
60 46 zcnd φ F
61 60 sqcld φ F 2
62 55 57 59 61 addsub4d φ A 2 + B 2 - E 2 + F 2 = A 2 E 2 + B 2 - F 2
63 53 62 breqtrrd φ M A 2 + B 2 - E 2 + F 2
64 11 27 15 4sqlem8 φ M C 2 G 2
65 12 27 16 4sqlem8 φ M D 2 H 2
66 zsqcl C C 2
67 11 66 syl φ C 2
68 11 27 15 4sqlem5 φ G C G M
69 68 simpld φ G
70 zsqcl2 G G 2 0
71 69 70 syl φ G 2 0
72 71 nn0zd φ G 2
73 67 72 zsubcld φ C 2 G 2
74 zsqcl D D 2
75 12 74 syl φ D 2
76 12 27 16 4sqlem5 φ H D H M
77 76 simpld φ H
78 zsqcl2 H H 2 0
79 77 78 syl φ H 2 0
80 79 nn0zd φ H 2
81 75 80 zsubcld φ D 2 H 2
82 dvds2add M C 2 G 2 D 2 H 2 M C 2 G 2 M D 2 H 2 M C 2 G 2 + D 2 - H 2
83 28 73 81 82 syl3anc φ M C 2 G 2 M D 2 H 2 M C 2 G 2 + D 2 - H 2
84 64 65 83 mp2and φ M C 2 G 2 + D 2 - H 2
85 11 zcnd φ C
86 85 sqcld φ C 2
87 12 zcnd φ D
88 87 sqcld φ D 2
89 69 zcnd φ G
90 89 sqcld φ G 2
91 77 zcnd φ H
92 91 sqcld φ H 2
93 86 88 90 92 addsub4d φ C 2 + D 2 - G 2 + H 2 = C 2 G 2 + D 2 - H 2
94 84 93 breqtrrd φ M C 2 + D 2 - G 2 + H 2
95 36 44 zaddcld φ A 2 + B 2
96 40 48 nn0addcld φ E 2 + F 2 0
97 96 nn0zd φ E 2 + F 2
98 95 97 zsubcld φ A 2 + B 2 - E 2 + F 2
99 67 75 zaddcld φ C 2 + D 2
100 71 79 nn0addcld φ G 2 + H 2 0
101 100 nn0zd φ G 2 + H 2
102 99 101 zsubcld φ C 2 + D 2 - G 2 + H 2
103 dvds2add M A 2 + B 2 - E 2 + F 2 C 2 + D 2 - G 2 + H 2 M A 2 + B 2 - E 2 + F 2 M C 2 + D 2 - G 2 + H 2 M A 2 + B 2 - E 2 + F 2 + C 2 + D 2 - G 2 + H 2
104 28 98 102 103 syl3anc φ M A 2 + B 2 - E 2 + F 2 M C 2 + D 2 - G 2 + H 2 M A 2 + B 2 - E 2 + F 2 + C 2 + D 2 - G 2 + H 2
105 63 94 104 mp2and φ M A 2 + B 2 - E 2 + F 2 + C 2 + D 2 - G 2 + H 2
106 18 oveq1d φ M P E 2 + F 2 + G 2 + H 2 = A 2 + B 2 + C 2 + D 2 - E 2 + F 2 + G 2 + H 2
107 55 57 addcld φ A 2 + B 2
108 86 88 addcld φ C 2 + D 2
109 59 61 addcld φ E 2 + F 2
110 90 92 addcld φ G 2 + H 2
111 107 108 109 110 addsub4d φ A 2 + B 2 + C 2 + D 2 - E 2 + F 2 + G 2 + H 2 = A 2 + B 2 - E 2 + F 2 + C 2 + D 2 - G 2 + H 2
112 106 111 eqtrd φ M P E 2 + F 2 + G 2 + H 2 = A 2 + B 2 - E 2 + F 2 + C 2 + D 2 - G 2 + H 2
113 105 112 breqtrrd φ M M P E 2 + F 2 + G 2 + H 2
114 28 30 zmulcld φ M P
115 97 101 zaddcld φ E 2 + F 2 + G 2 + H 2
116 114 115 zsubcld φ M P E 2 + F 2 + G 2 + H 2
117 28 32 113 114 116 dvds2subd φ M M P M P E 2 + F 2 + G 2 + H 2
118 27 nncnd φ M
119 prmnn P P
120 4 119 syl φ P
121 120 nncnd φ P
122 118 121 mulcld φ M P
123 109 110 addcld φ E 2 + F 2 + G 2 + H 2
124 122 123 nncand φ M P M P E 2 + F 2 + G 2 + H 2 = E 2 + F 2 + G 2 + H 2
125 117 124 breqtrd φ M E 2 + F 2 + G 2 + H 2
126 27 nnne0d φ M 0
127 96 100 nn0addcld φ E 2 + F 2 + G 2 + H 2 0
128 127 nn0zd φ E 2 + F 2 + G 2 + H 2
129 dvdsval2 M M 0 E 2 + F 2 + G 2 + H 2 M E 2 + F 2 + G 2 + H 2 E 2 + F 2 + G 2 + H 2 M
130 28 126 128 129 syl3anc φ M E 2 + F 2 + G 2 + H 2 E 2 + F 2 + G 2 + H 2 M
131 125 130 mpbid φ E 2 + F 2 + G 2 + H 2 M
132 127 nn0red φ E 2 + F 2 + G 2 + H 2
133 127 nn0ge0d φ 0 E 2 + F 2 + G 2 + H 2
134 27 nnred φ M
135 27 nngt0d φ 0 < M
136 divge0 E 2 + F 2 + G 2 + H 2 0 E 2 + F 2 + G 2 + H 2 M 0 < M 0 E 2 + F 2 + G 2 + H 2 M
137 132 133 134 135 136 syl22anc φ 0 E 2 + F 2 + G 2 + H 2 M
138 elnn0z E 2 + F 2 + G 2 + H 2 M 0 E 2 + F 2 + G 2 + H 2 M 0 E 2 + F 2 + G 2 + H 2 M
139 131 137 138 sylanbrc φ E 2 + F 2 + G 2 + H 2 M 0
140 17 139 eqeltrid φ R 0