Metamath Proof Explorer


Theorem 4sqlem19

Description: Lemma for 4sq . The proof is by strong induction - we show that if all the integers less than k are in S , then k is as well. In this part of the proof we do the induction argument and dispense with all the cases except the odd prime case, which is sent to 4sqlem18 . If k is 0 , 1 , 2 , we show k e. S directly; otherwise if k is composite, k is the product of two numbers less than it (and hence in S by assumption), so by mul4sq k e. S . (Contributed by Mario Carneiro, 14-Jul-2014) (Revised by Mario Carneiro, 20-Jun-2015)

Ref Expression
Hypothesis 4sq.1 S=n|xyzwn=x2+y2+z2+w2
Assertion 4sqlem19 0=S

Proof

Step Hyp Ref Expression
1 4sq.1 S=n|xyzwn=x2+y2+z2+w2
2 elnn0 k0kk=0
3 eleq1 j=1jS1S
4 eleq1 j=mjSmS
5 eleq1 j=ijSiS
6 eleq1 j=mijSmiS
7 eleq1 j=kjSkS
8 abs1 1=1
9 8 oveq1i 12=12
10 sq1 12=1
11 9 10 eqtri 12=1
12 abs0 0=0
13 12 oveq1i 02=02
14 sq0 02=0
15 13 14 eqtri 02=0
16 11 15 oveq12i 12+02=1+0
17 1p0e1 1+0=1
18 16 17 eqtri 12+02=1
19 1z 1
20 zgz 11i
21 19 20 ax-mp 1i
22 0z 0
23 zgz 00i
24 22 23 ax-mp 0i
25 1 4sqlem4a 1i0i12+02S
26 21 24 25 mp2an 12+02S
27 18 26 eqeltrri 1S
28 eleq1 j=2jS2S
29 eldifsn j2jj2
30 oddprm j2j12
31 30 adantr j2m1j1mSj12
32 eldifi j2j
33 32 adantr j2m1j1mSj
34 prmnn jj
35 nncn jj
36 33 34 35 3syl j2m1j1mSj
37 ax-1cn 1
38 subcl j1j1
39 36 37 38 sylancl j2m1j1mSj1
40 2cnd j2m1j1mS2
41 2ne0 20
42 41 a1i j2m1j1mS20
43 39 40 42 divcan2d j2m1j1mS2j12=j1
44 43 oveq1d j2m1j1mS2j12+1=j-1+1
45 npcan j1j-1+1=j
46 36 37 45 sylancl j2m1j1mSj-1+1=j
47 44 46 eqtr2d j2m1j1mSj=2j12+1
48 43 oveq2d j2m1j1mS02j12=0j1
49 nnm1nn0 jj10
50 33 34 49 3syl j2m1j1mSj10
51 elnn0uz j10j10
52 50 51 sylib j2m1j1mSj10
53 eluzfz1 j1000j1
54 fzsplit 00j10j1=000+1j1
55 52 53 54 3syl j2m1j1mS0j1=000+1j1
56 48 55 eqtrd j2m1j1mS02j12=000+1j1
57 fz0sn 00=0
58 15 15 oveq12i 02+02=0+0
59 00id 0+0=0
60 58 59 eqtri 02+02=0
61 1 4sqlem4a 0i0i02+02S
62 24 24 61 mp2an 02+02S
63 60 62 eqeltrri 0S
64 snssi 0S0S
65 63 64 ax-mp 0S
66 57 65 eqsstri 00S
67 66 a1i j2m1j1mS00S
68 0p1e1 0+1=1
69 68 oveq1i 0+1j1=1j1
70 simpr j2m1j1mSm1j1mS
71 dfss3 1j1Sm1j1mS
72 70 71 sylibr j2m1j1mS1j1S
73 69 72 eqsstrid j2m1j1mS0+1j1S
74 67 73 unssd j2m1j1mS000+1j1S
75 56 74 eqsstrd j2m1j1mS02j12S
76 oveq1 k=ikj=ij
77 76 eleq1d k=ikjSijS
78 77 cbvrabv k|kjS=i|ijS
79 eqid supk|kjS<=supk|kjS<
80 1 31 47 33 75 78 79 4sqlem18 j2m1j1mSjS
81 29 80 sylanbr jj2m1j1mSjS
82 81 an32s jm1j1mSj2jS
83 11 11 oveq12i 12+12=1+1
84 df-2 2=1+1
85 83 84 eqtr4i 12+12=2
86 1 4sqlem4a 1i1i12+12S
87 21 21 86 mp2an 12+12S
88 85 87 eqeltrri 2S
89 88 a1i jm1j1mS2S
90 28 82 89 pm2.61ne jm1j1mSjS
91 1 mul4sq mSiSmiS
92 91 a1i m2i2mSiSmiS
93 3 4 5 6 7 27 90 92 prmind2 kkS
94 id k=0k=0
95 94 63 eqeltrdi k=0kS
96 93 95 jaoi kk=0kS
97 2 96 sylbi k0kS
98 97 ssriv 0S
99 1 4sqlem1 S0
100 98 99 eqssi 0=S