| Step | Hyp | Ref | Expression | 
						
							| 1 |  | acsfiindd.1 |  | 
						
							| 2 |  | acsfiindd.2 |  | 
						
							| 3 |  | acsfiindd.3 |  | 
						
							| 4 |  | acsfiindd.4 |  | 
						
							| 5 | 1 | acsmred |  | 
						
							| 6 | 5 | ad2antrr |  | 
						
							| 7 |  | simplr |  | 
						
							| 8 |  | simpr |  | 
						
							| 9 | 8 | elin1d |  | 
						
							| 10 | 9 | elpwid |  | 
						
							| 11 | 6 2 3 7 10 | mrissmrid |  | 
						
							| 12 | 11 | ralrimiva |  | 
						
							| 13 |  | dfss3 |  | 
						
							| 14 | 12 13 | sylibr |  | 
						
							| 15 | 5 | adantr |  | 
						
							| 16 | 4 | adantr |  | 
						
							| 17 |  | simpr |  | 
						
							| 18 |  | elfpw |  | 
						
							| 19 | 17 18 | sylib |  | 
						
							| 20 | 19 | simpld |  | 
						
							| 21 | 20 | difss2d |  | 
						
							| 22 |  | simplr |  | 
						
							| 23 | 22 | snssd |  | 
						
							| 24 | 21 23 | unssd |  | 
						
							| 25 | 19 | simprd |  | 
						
							| 26 |  | snfi |  | 
						
							| 27 |  | unfi |  | 
						
							| 28 | 25 26 27 | sylancl |  | 
						
							| 29 |  | elfpw |  | 
						
							| 30 | 24 28 29 | sylanbrc |  | 
						
							| 31 | 5 | ad4antr |  | 
						
							| 32 |  | simpr |  | 
						
							| 33 |  | simpllr |  | 
						
							| 34 |  | snidg |  | 
						
							| 35 |  | elun2 |  | 
						
							| 36 | 33 34 35 | 3syl |  | 
						
							| 37 |  | simpr |  | 
						
							| 38 | 36 37 | eleqtrrd |  | 
						
							| 39 | 38 | adantr |  | 
						
							| 40 | 2 3 31 32 39 | ismri2dad |  | 
						
							| 41 | 5 | ad3antrrr |  | 
						
							| 42 | 20 | adantr |  | 
						
							| 43 |  | neldifsnd |  | 
						
							| 44 | 42 43 | ssneldd |  | 
						
							| 45 |  | difsnb |  | 
						
							| 46 | 44 45 | sylib |  | 
						
							| 47 |  | ssun1 |  | 
						
							| 48 | 47 37 | sseqtrrid |  | 
						
							| 49 | 48 | ssdifd |  | 
						
							| 50 | 46 49 | eqsstrrd |  | 
						
							| 51 | 24 | adantr |  | 
						
							| 52 | 4 | ad3antrrr |  | 
						
							| 53 | 51 52 | sstrd |  | 
						
							| 54 | 37 53 | eqsstrd |  | 
						
							| 55 | 54 | ssdifssd |  | 
						
							| 56 | 41 2 50 55 | mrcssd |  | 
						
							| 57 | 56 | sseld |  | 
						
							| 58 | 57 | adantr |  | 
						
							| 59 | 40 58 | mtod |  | 
						
							| 60 | 59 | ex |  | 
						
							| 61 | 30 60 | rspcimdv |  | 
						
							| 62 | 13 61 | biimtrid |  | 
						
							| 63 | 62 | impancom |  | 
						
							| 64 | 63 | ralrimiv |  | 
						
							| 65 | 4 | ssdifssd |  | 
						
							| 66 | 1 2 65 | acsficl2d |  | 
						
							| 67 | 66 | notbid |  | 
						
							| 68 |  | ralnex |  | 
						
							| 69 | 67 68 | bitr4di |  | 
						
							| 70 | 69 | ad2antrr |  | 
						
							| 71 | 64 70 | mpbird |  | 
						
							| 72 | 71 | an32s |  | 
						
							| 73 | 72 | ralrimiva |  | 
						
							| 74 | 2 3 15 16 73 | ismri2dd |  | 
						
							| 75 | 14 74 | impbida |  |