| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aks6d1c6isolem1.1 |
|
| 2 |
|
aks6d1c6isolem1.2 |
|
| 3 |
|
aks6d1c6isolem1.3 |
|
| 4 |
|
aks6d1c6isolem1.4 |
|
| 5 |
|
aks6d1c6isolem1.5 |
|
| 6 |
|
zringbas |
|
| 7 |
|
eqid |
|
| 8 |
|
zringplusg |
|
| 9 |
|
zex |
|
| 10 |
9
|
mptex |
|
| 11 |
4 10
|
eqeltri |
|
| 12 |
11
|
rnex |
|
| 13 |
|
eqid |
|
| 14 |
|
eqid |
|
| 15 |
13 14
|
ressplusg |
|
| 16 |
12 15
|
ax-mp |
|
| 17 |
|
zringring |
|
| 18 |
17
|
a1i |
|
| 19 |
|
ringgrp |
|
| 20 |
18 19
|
syl |
|
| 21 |
1 2 3 4 5
|
aks6d1c6isolem1 |
|
| 22 |
|
ovexd |
|
| 23 |
22 4
|
fmptd |
|
| 24 |
|
ffn |
|
| 25 |
23 24
|
syl |
|
| 26 |
|
dffn3 |
|
| 27 |
25 26
|
sylib |
|
| 28 |
|
fvelrnb |
|
| 29 |
25 28
|
syl |
|
| 30 |
29
|
biimpd |
|
| 31 |
30
|
imp |
|
| 32 |
|
simpr |
|
| 33 |
32
|
eqcomd |
|
| 34 |
|
simplll |
|
| 35 |
|
simplr |
|
| 36 |
34 35
|
jca |
|
| 37 |
4
|
a1i |
|
| 38 |
|
simpr |
|
| 39 |
38
|
oveq1d |
|
| 40 |
|
simpr |
|
| 41 |
|
ovexd |
|
| 42 |
37 39 40 41
|
fvmptd |
|
| 43 |
|
eqid |
|
| 44 |
|
eqid |
|
| 45 |
1 2 3
|
primrootsunit |
|
| 46 |
45
|
simprd |
|
| 47 |
46
|
ablgrpd |
|
| 48 |
47
|
adantr |
|
| 49 |
45
|
simpld |
|
| 50 |
5 49
|
eleqtrd |
|
| 51 |
46
|
ablcmnd |
|
| 52 |
2
|
nnnn0d |
|
| 53 |
51 52 44
|
isprimroot |
|
| 54 |
53
|
biimpd |
|
| 55 |
50 54
|
mpd |
|
| 56 |
55
|
simp1d |
|
| 57 |
56
|
adantr |
|
| 58 |
43 44 48 40 57
|
mulgcld |
|
| 59 |
42 58
|
eqeltrd |
|
| 60 |
36 59
|
syl |
|
| 61 |
33 60
|
eqeltrd |
|
| 62 |
|
nfv |
|
| 63 |
|
nfv |
|
| 64 |
|
fveqeq2 |
|
| 65 |
62 63 64
|
cbvrexw |
|
| 66 |
65
|
biimpi |
|
| 67 |
66
|
adantl |
|
| 68 |
61 67
|
r19.29a |
|
| 69 |
68
|
ex |
|
| 70 |
69
|
adantr |
|
| 71 |
70
|
imp |
|
| 72 |
31 71
|
mpdan |
|
| 73 |
72
|
ex |
|
| 74 |
73
|
ssrdv |
|
| 75 |
13 43
|
ressbas2 |
|
| 76 |
74 75
|
syl |
|
| 77 |
76
|
feq3d |
|
| 78 |
27 77
|
mpbid |
|
| 79 |
4
|
a1i |
|
| 80 |
|
simpr |
|
| 81 |
80
|
oveq1d |
|
| 82 |
|
simprl |
|
| 83 |
|
simprr |
|
| 84 |
82 83
|
zaddcld |
|
| 85 |
|
ovexd |
|
| 86 |
79 81 84 85
|
fvmptd |
|
| 87 |
47
|
adantr |
|
| 88 |
56
|
adantr |
|
| 89 |
82 83 88
|
3jca |
|
| 90 |
43 44 14
|
mulgdir |
|
| 91 |
87 89 90
|
syl2anc |
|
| 92 |
|
simpr |
|
| 93 |
92
|
oveq1d |
|
| 94 |
|
ovexd |
|
| 95 |
79 93 82 94
|
fvmptd |
|
| 96 |
|
simpr |
|
| 97 |
96
|
oveq1d |
|
| 98 |
|
ovexd |
|
| 99 |
79 97 83 98
|
fvmptd |
|
| 100 |
95 99
|
oveq12d |
|
| 101 |
100
|
eqcomd |
|
| 102 |
91 101
|
eqtrd |
|
| 103 |
86 102
|
eqtrd |
|
| 104 |
6 7 8 16 20 21 78 103
|
isghmd |
|