Metamath Proof Explorer


Theorem archiabllem1a

Description: Lemma for archiabl : In case an archimedean group W admits a smallest positive element U , then any positive element X of W can be written as ( n .x. U ) with n e. NN . Since the reciprocal holds for negative elements, W is then isomorphic to ZZ . (Contributed by Thierry Arnoux, 12-Apr-2018)

Ref Expression
Hypotheses archiabllem.b B=BaseW
archiabllem.0 0˙=0W
archiabllem.e ˙=W
archiabllem.t <˙=<W
archiabllem.m ·˙=W
archiabllem.g φWoGrp
archiabllem.a φWArchi
archiabllem1.u φUB
archiabllem1.p φ0˙<˙U
archiabllem1.s φxB0˙<˙xU˙x
archiabllem1a.x φXB
archiabllem1a.c φ0˙<˙X
Assertion archiabllem1a φnX=n·˙U

Proof

Step Hyp Ref Expression
1 archiabllem.b B=BaseW
2 archiabllem.0 0˙=0W
3 archiabllem.e ˙=W
4 archiabllem.t <˙=<W
5 archiabllem.m ·˙=W
6 archiabllem.g φWoGrp
7 archiabllem.a φWArchi
8 archiabllem1.u φUB
9 archiabllem1.p φ0˙<˙U
10 archiabllem1.s φxB0˙<˙xU˙x
11 archiabllem1a.x φXB
12 archiabllem1a.c φ0˙<˙X
13 simplr φm0m·˙U<˙XX˙m+1·˙Um0
14 nn0p1nn m0m+1
15 13 14 syl φm0m·˙U<˙XX˙m+1·˙Um+1
16 8 ad2antrr φm0m·˙U<˙XX˙m+1·˙UUB
17 1 5 mulg1 UB1·˙U=U
18 16 17 syl φm0m·˙U<˙XX˙m+1·˙U1·˙U=U
19 18 oveq1d φm0m·˙U<˙XX˙m+1·˙U1·˙U+Wm·˙U=U+Wm·˙U
20 6 ad2antrr φm0m·˙U<˙XX˙m+1·˙UWoGrp
21 ogrpgrp WoGrpWGrp
22 20 21 syl φm0m·˙U<˙XX˙m+1·˙UWGrp
23 1zzd φm0m·˙U<˙XX˙m+1·˙U1
24 13 nn0zd φm0m·˙U<˙XX˙m+1·˙Um
25 eqid +W=+W
26 1 5 25 mulgdir WGrp1mUB1+m·˙U=1·˙U+Wm·˙U
27 22 23 24 16 26 syl13anc φm0m·˙U<˙XX˙m+1·˙U1+m·˙U=1·˙U+Wm·˙U
28 isogrp WoGrpWGrpWoMnd
29 28 simprbi WoGrpWoMnd
30 omndtos WoMndWToset
31 tospos WTosetWPoset
32 29 30 31 3syl WoGrpWPoset
33 20 32 syl φm0m·˙U<˙XX˙m+1·˙UWPoset
34 11 ad2antrr φm0m·˙U<˙XX˙m+1·˙UXB
35 1 5 mulgcl WGrpmUBm·˙UB
36 22 24 16 35 syl3anc φm0m·˙U<˙XX˙m+1·˙Um·˙UB
37 eqid -W=-W
38 1 37 grpsubcl WGrpXBm·˙UBX-Wm·˙UB
39 22 34 36 38 syl3anc φm0m·˙U<˙XX˙m+1·˙UX-Wm·˙UB
40 24 peano2zd φm0m·˙U<˙XX˙m+1·˙Um+1
41 1 5 mulgcl WGrpm+1UBm+1·˙UB
42 22 40 16 41 syl3anc φm0m·˙U<˙XX˙m+1·˙Um+1·˙UB
43 simprr φm0m·˙U<˙XX˙m+1·˙UX˙m+1·˙U
44 1 3 37 ogrpsub WoGrpXBm+1·˙UBm·˙UBX˙m+1·˙UX-Wm·˙U˙m+1·˙U-Wm·˙U
45 20 34 42 36 43 44 syl131anc φm0m·˙U<˙XX˙m+1·˙UX-Wm·˙U˙m+1·˙U-Wm·˙U
46 13 nn0cnd φm0m·˙U<˙XX˙m+1·˙Um
47 1cnd φm0m·˙U<˙XX˙m+1·˙U1
48 46 47 pncan2d φm0m·˙U<˙XX˙m+1·˙Um+1-m=1
49 48 oveq1d φm0m·˙U<˙XX˙m+1·˙Um+1-m·˙U=1·˙U
50 1 5 37 mulgsubdir WGrpm+1mUBm+1-m·˙U=m+1·˙U-Wm·˙U
51 22 40 24 16 50 syl13anc φm0m·˙U<˙XX˙m+1·˙Um+1-m·˙U=m+1·˙U-Wm·˙U
52 49 51 18 3eqtr3d φm0m·˙U<˙XX˙m+1·˙Um+1·˙U-Wm·˙U=U
53 45 52 breqtrd φm0m·˙U<˙XX˙m+1·˙UX-Wm·˙U˙U
54 10 3expia φxB0˙<˙xU˙x
55 54 ralrimiva φxB0˙<˙xU˙x
56 55 ad2antrr φm0m·˙U<˙XX˙m+1·˙UxB0˙<˙xU˙x
57 1 2 37 grpsubid WGrpm·˙UBm·˙U-Wm·˙U=0˙
58 22 36 57 syl2anc φm0m·˙U<˙XX˙m+1·˙Um·˙U-Wm·˙U=0˙
59 simprl φm0m·˙U<˙XX˙m+1·˙Um·˙U<˙X
60 1 4 37 ogrpsublt WoGrpm·˙UBXBm·˙UBm·˙U<˙Xm·˙U-Wm·˙U<˙X-Wm·˙U
61 20 36 34 36 59 60 syl131anc φm0m·˙U<˙XX˙m+1·˙Um·˙U-Wm·˙U<˙X-Wm·˙U
62 58 61 eqbrtrrd φm0m·˙U<˙XX˙m+1·˙U0˙<˙X-Wm·˙U
63 breq2 x=X-Wm·˙U0˙<˙x0˙<˙X-Wm·˙U
64 breq2 x=X-Wm·˙UU˙xU˙X-Wm·˙U
65 63 64 imbi12d x=X-Wm·˙U0˙<˙xU˙x0˙<˙X-Wm·˙UU˙X-Wm·˙U
66 65 rspcv X-Wm·˙UBxB0˙<˙xU˙x0˙<˙X-Wm·˙UU˙X-Wm·˙U
67 39 56 62 66 syl3c φm0m·˙U<˙XX˙m+1·˙UU˙X-Wm·˙U
68 1 3 posasymb WPosetX-Wm·˙UBUBX-Wm·˙U˙UU˙X-Wm·˙UX-Wm·˙U=U
69 68 biimpa WPosetX-Wm·˙UBUBX-Wm·˙U˙UU˙X-Wm·˙UX-Wm·˙U=U
70 33 39 16 53 67 69 syl32anc φm0m·˙U<˙XX˙m+1·˙UX-Wm·˙U=U
71 70 oveq1d φm0m·˙U<˙XX˙m+1·˙UX-Wm·˙U+Wm·˙U=U+Wm·˙U
72 19 27 71 3eqtr4rd φm0m·˙U<˙XX˙m+1·˙UX-Wm·˙U+Wm·˙U=1+m·˙U
73 1 25 37 grpnpcan WGrpXBm·˙UBX-Wm·˙U+Wm·˙U=X
74 22 34 36 73 syl3anc φm0m·˙U<˙XX˙m+1·˙UX-Wm·˙U+Wm·˙U=X
75 47 46 addcomd φm0m·˙U<˙XX˙m+1·˙U1+m=m+1
76 75 oveq1d φm0m·˙U<˙XX˙m+1·˙U1+m·˙U=m+1·˙U
77 72 74 76 3eqtr3d φm0m·˙U<˙XX˙m+1·˙UX=m+1·˙U
78 oveq1 n=m+1n·˙U=m+1·˙U
79 78 rspceeqv m+1X=m+1·˙UnX=n·˙U
80 15 77 79 syl2anc φm0m·˙U<˙XX˙m+1·˙UnX=n·˙U
81 1 2 4 3 5 6 7 8 11 9 12 archirng φm0m·˙U<˙XX˙m+1·˙U
82 80 81 r19.29a φnX=n·˙U