Step |
Hyp |
Ref |
Expression |
1 |
|
archiabllem.b |
|
2 |
|
archiabllem.0 |
|
3 |
|
archiabllem.e |
|
4 |
|
archiabllem.t |
|
5 |
|
archiabllem.m |
|
6 |
|
archiabllem.g |
|
7 |
|
archiabllem.a |
|
8 |
|
archiabllem1.u |
|
9 |
|
archiabllem1.p |
|
10 |
|
archiabllem1.s |
|
11 |
|
archiabllem1a.x |
|
12 |
|
archiabllem1a.c |
|
13 |
|
simplr |
|
14 |
|
nn0p1nn |
|
15 |
13 14
|
syl |
|
16 |
8
|
ad2antrr |
|
17 |
1 5
|
mulg1 |
|
18 |
16 17
|
syl |
|
19 |
18
|
oveq1d |
|
20 |
6
|
ad2antrr |
|
21 |
|
ogrpgrp |
|
22 |
20 21
|
syl |
|
23 |
|
1zzd |
|
24 |
13
|
nn0zd |
|
25 |
|
eqid |
|
26 |
1 5 25
|
mulgdir |
|
27 |
22 23 24 16 26
|
syl13anc |
|
28 |
|
isogrp |
|
29 |
28
|
simprbi |
|
30 |
|
omndtos |
|
31 |
|
tospos |
|
32 |
29 30 31
|
3syl |
|
33 |
20 32
|
syl |
|
34 |
11
|
ad2antrr |
|
35 |
1 5
|
mulgcl |
|
36 |
22 24 16 35
|
syl3anc |
|
37 |
|
eqid |
|
38 |
1 37
|
grpsubcl |
|
39 |
22 34 36 38
|
syl3anc |
|
40 |
24
|
peano2zd |
|
41 |
1 5
|
mulgcl |
|
42 |
22 40 16 41
|
syl3anc |
|
43 |
|
simprr |
|
44 |
1 3 37
|
ogrpsub |
|
45 |
20 34 42 36 43 44
|
syl131anc |
|
46 |
13
|
nn0cnd |
|
47 |
|
1cnd |
|
48 |
46 47
|
pncan2d |
|
49 |
48
|
oveq1d |
|
50 |
1 5 37
|
mulgsubdir |
|
51 |
22 40 24 16 50
|
syl13anc |
|
52 |
49 51 18
|
3eqtr3d |
|
53 |
45 52
|
breqtrd |
|
54 |
10
|
3expia |
|
55 |
54
|
ralrimiva |
|
56 |
55
|
ad2antrr |
|
57 |
1 2 37
|
grpsubid |
|
58 |
22 36 57
|
syl2anc |
|
59 |
|
simprl |
|
60 |
1 4 37
|
ogrpsublt |
|
61 |
20 36 34 36 59 60
|
syl131anc |
|
62 |
58 61
|
eqbrtrrd |
|
63 |
|
breq2 |
|
64 |
|
breq2 |
|
65 |
63 64
|
imbi12d |
|
66 |
65
|
rspcv |
|
67 |
39 56 62 66
|
syl3c |
|
68 |
1 3
|
posasymb |
|
69 |
68
|
biimpa |
|
70 |
33 39 16 53 67 69
|
syl32anc |
|
71 |
70
|
oveq1d |
|
72 |
19 27 71
|
3eqtr4rd |
|
73 |
1 25 37
|
grpnpcan |
|
74 |
22 34 36 73
|
syl3anc |
|
75 |
47 46
|
addcomd |
|
76 |
75
|
oveq1d |
|
77 |
72 74 76
|
3eqtr3d |
|
78 |
|
oveq1 |
|
79 |
78
|
rspceeqv |
|
80 |
15 77 79
|
syl2anc |
|
81 |
1 2 4 3 5 6 7 8 11 9 12
|
archirng |
|
82 |
80 81
|
r19.29a |
|