Metamath Proof Explorer


Theorem argregt0

Description: Closure of the argument of a complex number with positive real part. (Contributed by Mario Carneiro, 25-Feb-2015)

Ref Expression
Assertion argregt0 A0<AlogAπ2π2

Proof

Step Hyp Ref Expression
1 recl AA
2 gt0ne0 A0<AA0
3 1 2 sylan A0<AA0
4 fveq2 A=0A=0
5 re0 0=0
6 4 5 eqtrdi A=0A=0
7 6 necon3i A0A0
8 3 7 syl A0<AA0
9 logcl AA0logA
10 8 9 syldan A0<AlogA
11 10 imcld A0<AlogA
12 coshalfpi cosπ2=0
13 simpr A0<A0<A
14 abscl AA
15 14 adantr A0<AA
16 15 recnd A0<AA
17 16 mul01d A0<AA0=0
18 simpl A0<AA
19 absrpcl AA0A+
20 8 19 syldan A0<AA+
21 20 rpne0d A0<AA0
22 18 16 21 divcld A0<AAA
23 15 22 remul2d A0<AAAA=AAA
24 18 16 21 divcan2d A0<AAAA=A
25 24 fveq2d A0<AAAA=A
26 23 25 eqtr3d A0<AAAA=A
27 13 17 26 3brtr4d A0<AA0<AAA
28 0re 0
29 28 a1i A0<A0
30 22 recld A0<AAA
31 29 30 20 ltmul2d A0<A0<AAA0<AAA
32 27 31 mpbird A0<A0<AA
33 efiarg AA0eilogA=AA
34 8 33 syldan A0<AeilogA=AA
35 34 fveq2d A0<AeilogA=AA
36 32 35 breqtrrd A0<A0<eilogA
37 recosval logAcoslogA=eilogA
38 11 37 syl A0<AcoslogA=eilogA
39 36 38 breqtrrd A0<A0<coslogA
40 fveq2 logA=logAcoslogA=coslogA
41 40 a1i A0<AlogA=logAcoslogA=coslogA
42 11 recnd A0<AlogA
43 cosneg logAcoslogA=coslogA
44 42 43 syl A0<AcoslogA=coslogA
45 fveqeq2 logA=logAcoslogA=coslogAcoslogA=coslogA
46 44 45 syl5ibrcom A0<AlogA=logAcoslogA=coslogA
47 11 absord A0<AlogA=logAlogA=logA
48 41 46 47 mpjaod A0<AcoslogA=coslogA
49 39 48 breqtrrd A0<A0<coslogA
50 12 49 eqbrtrid A0<Acosπ2<coslogA
51 42 abscld A0<AlogA
52 42 absge0d A0<A0logA
53 logimcl AA0π<logAlogAπ
54 8 53 syldan A0<Aπ<logAlogAπ
55 54 simpld A0<Aπ<logA
56 pire π
57 56 renegcli π
58 ltle πlogAπ<logAπlogA
59 57 11 58 sylancr A0<Aπ<logAπlogA
60 55 59 mpd A0<AπlogA
61 54 simprd A0<AlogAπ
62 absle logAπlogAππlogAlogAπ
63 11 56 62 sylancl A0<AlogAππlogAlogAπ
64 60 61 63 mpbir2and A0<AlogAπ
65 28 56 elicc2i logA0πlogA0logAlogAπ
66 51 52 64 65 syl3anbrc A0<AlogA0π
67 halfpire π2
68 pirp π+
69 rphalfcl π+π2+
70 rpge0 π2+0π2
71 68 69 70 mp2b 0π2
72 rphalflt π+π2<π
73 68 72 ax-mp π2<π
74 67 56 73 ltleii π2π
75 28 56 elicc2i π20ππ20π2π2π
76 67 71 74 75 mpbir3an π20π
77 cosord logA0ππ20πlogA<π2cosπ2<coslogA
78 66 76 77 sylancl A0<AlogA<π2cosπ2<coslogA
79 50 78 mpbird A0<AlogA<π2
80 abslt logAπ2logA<π2π2<logAlogA<π2
81 11 67 80 sylancl A0<AlogA<π2π2<logAlogA<π2
82 79 81 mpbid A0<Aπ2<logAlogA<π2
83 82 simpld A0<Aπ2<logA
84 82 simprd A0<AlogA<π2
85 67 renegcli π2
86 85 rexri π2*
87 67 rexri π2*
88 elioo2 π2*π2*logAπ2π2logAπ2<logAlogA<π2
89 86 87 88 mp2an logAπ2π2logAπ2<logAlogA<π2
90 11 83 84 89 syl3anbrc A0<AlogAπ2π2