Metamath Proof Explorer


Theorem atantayl2

Description: The Taylor series for arctan ( A ) . (Contributed by Mario Carneiro, 1-Apr-2015)

Ref Expression
Hypothesis atantayl2.1 F = n if 2 n 0 1 n 1 2 A n n
Assertion atantayl2 A A < 1 seq 1 + F arctan A

Proof

Step Hyp Ref Expression
1 atantayl2.1 F = n if 2 n 0 1 n 1 2 A n n
2 ax-icn i
3 2 negcli i
4 3 a1i A A < 1 n 2 n i
5 nnnn0 n n 0
6 5 ad2antlr A A < 1 n 2 n n 0
7 4 6 expcld A A < 1 n 2 n i n
8 sqneg i i 2 = i 2
9 2 8 ax-mp i 2 = i 2
10 9 oveq1i i 2 n 2 = i 2 n 2
11 ine0 i 0
12 2 11 negne0i i 0
13 12 a1i A A < 1 n 2 n i 0
14 2z 2
15 14 a1i A A < 1 n 2 n 2
16 2ne0 2 0
17 nnz n n
18 17 adantl A A < 1 n n
19 dvdsval2 2 2 0 n 2 n n 2
20 14 16 18 19 mp3an12i A A < 1 n 2 n n 2
21 20 biimpa A A < 1 n 2 n n 2
22 expmulz i i 0 2 n 2 i 2 n 2 = i 2 n 2
23 4 13 15 21 22 syl22anc A A < 1 n 2 n i 2 n 2 = i 2 n 2
24 2 a1i A A < 1 n 2 n i
25 11 a1i A A < 1 n 2 n i 0
26 expmulz i i 0 2 n 2 i 2 n 2 = i 2 n 2
27 24 25 15 21 26 syl22anc A A < 1 n 2 n i 2 n 2 = i 2 n 2
28 10 23 27 3eqtr4a A A < 1 n 2 n i 2 n 2 = i 2 n 2
29 nncn n n
30 29 ad2antlr A A < 1 n 2 n n
31 2cnd A A < 1 n 2 n 2
32 16 a1i A A < 1 n 2 n 2 0
33 30 31 32 divcan2d A A < 1 n 2 n 2 n 2 = n
34 33 oveq2d A A < 1 n 2 n i 2 n 2 = i n
35 33 oveq2d A A < 1 n 2 n i 2 n 2 = i n
36 28 34 35 3eqtr3d A A < 1 n 2 n i n = i n
37 7 36 subeq0bd A A < 1 n 2 n i n i n = 0
38 37 oveq2d A A < 1 n 2 n i i n i n = i 0
39 it0e0 i 0 = 0
40 38 39 eqtrdi A A < 1 n 2 n i i n i n = 0
41 40 oveq1d A A < 1 n 2 n i i n i n 2 = 0 2
42 2cn 2
43 42 16 div0i 0 2 = 0
44 41 43 eqtrdi A A < 1 n 2 n i i n i n 2 = 0
45 44 oveq1d A A < 1 n 2 n i i n i n 2 A n n = 0 A n n
46 simplll A A < 1 n 2 n A
47 46 6 expcld A A < 1 n 2 n A n
48 nnne0 n n 0
49 48 ad2antlr A A < 1 n 2 n n 0
50 47 30 49 divcld A A < 1 n 2 n A n n
51 50 mul02d A A < 1 n 2 n 0 A n n = 0
52 45 51 eqtr2d A A < 1 n 2 n 0 = i i n i n 2 A n n
53 2cnd A A < 1 n ¬ 2 n 2
54 ax-1cn 1
55 54 negcli 1
56 55 a1i A A < 1 n ¬ 2 n 1
57 neg1ne0 1 0
58 57 a1i A A < 1 n ¬ 2 n 1 0
59 29 ad2antlr A A < 1 n ¬ 2 n n
60 peano2cn n n + 1
61 59 60 syl A A < 1 n ¬ 2 n n + 1
62 16 a1i A A < 1 n ¬ 2 n 2 0
63 61 53 53 62 divsubdird A A < 1 n ¬ 2 n n + 1 - 2 2 = n + 1 2 2 2
64 2div2e1 2 2 = 1
65 64 oveq2i n + 1 2 2 2 = n + 1 2 1
66 63 65 eqtrdi A A < 1 n ¬ 2 n n + 1 - 2 2 = n + 1 2 1
67 df-2 2 = 1 + 1
68 67 oveq2i n + 1 - 2 = n + 1 - 1 + 1
69 54 a1i A A < 1 n ¬ 2 n 1
70 59 69 69 pnpcan2d A A < 1 n ¬ 2 n n + 1 - 1 + 1 = n 1
71 68 70 syl5eq A A < 1 n ¬ 2 n n + 1 - 2 = n 1
72 71 oveq1d A A < 1 n ¬ 2 n n + 1 - 2 2 = n 1 2
73 66 72 eqtr3d A A < 1 n ¬ 2 n n + 1 2 1 = n 1 2
74 20 notbid A A < 1 n ¬ 2 n ¬ n 2
75 zeo n n 2 n + 1 2
76 18 75 syl A A < 1 n n 2 n + 1 2
77 76 ord A A < 1 n ¬ n 2 n + 1 2
78 74 77 sylbid A A < 1 n ¬ 2 n n + 1 2
79 78 imp A A < 1 n ¬ 2 n n + 1 2
80 peano2zm n + 1 2 n + 1 2 1
81 79 80 syl A A < 1 n ¬ 2 n n + 1 2 1
82 73 81 eqeltrrd A A < 1 n ¬ 2 n n 1 2
83 56 58 82 expclzd A A < 1 n ¬ 2 n 1 n 1 2
84 83 2timesd A A < 1 n ¬ 2 n 2 1 n 1 2 = 1 n 1 2 + 1 n 1 2
85 subcl n 1 n 1
86 59 54 85 sylancl A A < 1 n ¬ 2 n n 1
87 86 53 62 divcan2d A A < 1 n ¬ 2 n 2 n 1 2 = n 1
88 87 oveq2d A A < 1 n ¬ 2 n i 2 n 1 2 = i n 1
89 3 a1i A A < 1 n ¬ 2 n i
90 12 a1i A A < 1 n ¬ 2 n i 0
91 17 ad2antlr A A < 1 n ¬ 2 n n
92 89 90 91 expm1d A A < 1 n ¬ 2 n i n 1 = i n i
93 88 92 eqtrd A A < 1 n ¬ 2 n i 2 n 1 2 = i n i
94 14 a1i A A < 1 n ¬ 2 n 2
95 expmulz i i 0 2 n 1 2 i 2 n 1 2 = i 2 n 1 2
96 89 90 94 82 95 syl22anc A A < 1 n ¬ 2 n i 2 n 1 2 = i 2 n 1 2
97 5 ad2antlr A A < 1 n ¬ 2 n n 0
98 expcl i n 0 i n
99 3 97 98 sylancr A A < 1 n ¬ 2 n i n
100 99 89 90 divrec2d A A < 1 n ¬ 2 n i n i = 1 i i n
101 93 96 100 3eqtr3d A A < 1 n ¬ 2 n i 2 n 1 2 = 1 i i n
102 i2 i 2 = 1
103 9 102 eqtri i 2 = 1
104 103 oveq1i i 2 n 1 2 = 1 n 1 2
105 irec 1 i = i
106 105 negeqi 1 i = i
107 divneg2 1 i i 0 1 i = 1 i
108 54 2 11 107 mp3an 1 i = 1 i
109 2 negnegi i = i
110 106 108 109 3eqtr3i 1 i = i
111 110 oveq1i 1 i i n = i i n
112 101 104 111 3eqtr3g A A < 1 n ¬ 2 n 1 n 1 2 = i i n
113 87 oveq2d A A < 1 n ¬ 2 n i 2 n 1 2 = i n 1
114 2 a1i A A < 1 n ¬ 2 n i
115 11 a1i A A < 1 n ¬ 2 n i 0
116 114 115 91 expm1d A A < 1 n ¬ 2 n i n 1 = i n i
117 113 116 eqtrd A A < 1 n ¬ 2 n i 2 n 1 2 = i n i
118 expmulz i i 0 2 n 1 2 i 2 n 1 2 = i 2 n 1 2
119 114 115 94 82 118 syl22anc A A < 1 n ¬ 2 n i 2 n 1 2 = i 2 n 1 2
120 expcl i n 0 i n
121 2 97 120 sylancr A A < 1 n ¬ 2 n i n
122 121 114 115 divrec2d A A < 1 n ¬ 2 n i n i = 1 i i n
123 117 119 122 3eqtr3d A A < 1 n ¬ 2 n i 2 n 1 2 = 1 i i n
124 102 oveq1i i 2 n 1 2 = 1 n 1 2
125 105 oveq1i 1 i i n = i i n
126 123 124 125 3eqtr3g A A < 1 n ¬ 2 n 1 n 1 2 = i i n
127 mulneg1 i i n i i n = i i n
128 2 121 127 sylancr A A < 1 n ¬ 2 n i i n = i i n
129 126 128 eqtrd A A < 1 n ¬ 2 n 1 n 1 2 = i i n
130 112 129 oveq12d A A < 1 n ¬ 2 n 1 n 1 2 + 1 n 1 2 = i i n + i i n
131 mulcl i i n i i n
132 2 99 131 sylancr A A < 1 n ¬ 2 n i i n
133 mulcl i i n i i n
134 2 121 133 sylancr A A < 1 n ¬ 2 n i i n
135 132 134 negsubd A A < 1 n ¬ 2 n i i n + i i n = i i n i i n
136 114 99 121 subdid A A < 1 n ¬ 2 n i i n i n = i i n i i n
137 135 136 eqtr4d A A < 1 n ¬ 2 n i i n + i i n = i i n i n
138 84 130 137 3eqtrd A A < 1 n ¬ 2 n 2 1 n 1 2 = i i n i n
139 53 83 62 138 mvllmuld A A < 1 n ¬ 2 n 1 n 1 2 = i i n i n 2
140 139 oveq1d A A < 1 n ¬ 2 n 1 n 1 2 A n n = i i n i n 2 A n n
141 52 140 ifeqda A A < 1 n if 2 n 0 1 n 1 2 A n n = i i n i n 2 A n n
142 141 mpteq2dva A A < 1 n if 2 n 0 1 n 1 2 A n n = n i i n i n 2 A n n
143 1 142 syl5eq A A < 1 F = n i i n i n 2 A n n
144 143 seqeq3d A A < 1 seq 1 + F = seq 1 + n i i n i n 2 A n n
145 eqid n i i n i n 2 A n n = n i i n i n 2 A n n
146 145 atantayl A A < 1 seq 1 + n i i n i n 2 A n n arctan A
147 144 146 eqbrtrd A A < 1 seq 1 + F arctan A