Metamath Proof Explorer


Theorem axpre-sup

Description: A nonempty, bounded-above set of reals has a supremum. Axiom 22 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version with ordering on extended reals is axsup . This construction-dependent theorem should not be referenced directly; instead, use ax-pre-sup . (Contributed by NM, 19-May-1996) (Revised by Mario Carneiro, 16-Jun-2013) (New usage is discouraged.)

Ref Expression
Assertion axpre-sup AAxyAy<xxyA¬x<yyy<xzAy<z

Proof

Step Hyp Ref Expression
1 elreal2 x1stx𝑹x=1stx0𝑹
2 1 simplbi x1stx𝑹
3 2 adantl AAx1stx𝑹
4 fo1st 1st:VontoV
5 fof 1st:VontoV1st:VV
6 ffn 1st:VV1stFnV
7 4 5 6 mp2b 1stFnV
8 ssv AV
9 fvelimab 1stFnVAVw1stAyA1sty=w
10 7 8 9 mp2an w1stAyA1sty=w
11 r19.29 yAy<xyA1sty=wyAy<x1sty=w
12 ssel2 AyAy
13 ltresr2 yxy<x1sty<𝑹1stx
14 breq1 1sty=w1sty<𝑹1stxw<𝑹1stx
15 13 14 sylan9bb yx1sty=wy<xw<𝑹1stx
16 15 biimpd yx1sty=wy<xw<𝑹1stx
17 16 exp31 yx1sty=wy<xw<𝑹1stx
18 12 17 syl AyAx1sty=wy<xw<𝑹1stx
19 18 imp4b AyAx1sty=wy<xw<𝑹1stx
20 19 ancomsd AyAxy<x1sty=ww<𝑹1stx
21 20 an32s AxyAy<x1sty=ww<𝑹1stx
22 21 rexlimdva AxyAy<x1sty=ww<𝑹1stx
23 11 22 syl5 AxyAy<xyA1sty=ww<𝑹1stx
24 23 expd AxyAy<xyA1sty=ww<𝑹1stx
25 10 24 syl7bi AxyAy<xw1stAw<𝑹1stx
26 25 impr AxyAy<xw1stAw<𝑹1stx
27 26 adantlr AAxyAy<xw1stAw<𝑹1stx
28 27 ralrimiv AAxyAy<xw1stAw<𝑹1stx
29 28 expr AAxyAy<xw1stAw<𝑹1stx
30 brralrspcev 1stx𝑹w1stAw<𝑹1stxv𝑹w1stAw<𝑹v
31 3 29 30 syl6an AAxyAy<xv𝑹w1stAw<𝑹v
32 31 rexlimdva AAxyAy<xv𝑹w1stAw<𝑹v
33 n0 AyyA
34 fnfvima 1stFnVAVyA1sty1stA
35 7 8 34 mp3an12 yA1sty1stA
36 35 ne0d yA1stA
37 36 exlimiv yyA1stA
38 33 37 sylbi A1stA
39 supsr 1stAv𝑹w1stAw<𝑹vv𝑹w1stA¬v<𝑹ww𝑹w<𝑹vu1stAw<𝑹u
40 39 ex 1stAv𝑹w1stAw<𝑹vv𝑹w1stA¬v<𝑹ww𝑹w<𝑹vu1stAw<𝑹u
41 38 40 syl Av𝑹w1stAw<𝑹vv𝑹w1stA¬v<𝑹ww𝑹w<𝑹vu1stAw<𝑹u
42 41 adantl AAv𝑹w1stAw<𝑹vv𝑹w1stA¬v<𝑹ww𝑹w<𝑹vu1stAw<𝑹u
43 breq2 w=1styv<𝑹wv<𝑹1sty
44 43 notbid w=1sty¬v<𝑹w¬v<𝑹1sty
45 44 rspccv w1stA¬v<𝑹w1sty1stA¬v<𝑹1sty
46 35 45 syl5com yAw1stA¬v<𝑹w¬v<𝑹1sty
47 46 adantl AyAw1stA¬v<𝑹w¬v<𝑹1sty
48 elreal2 y1sty𝑹y=1sty0𝑹
49 48 simprbi yy=1sty0𝑹
50 49 breq2d yv0𝑹<yv0𝑹<1sty0𝑹
51 ltresr v0𝑹<1sty0𝑹v<𝑹1sty
52 50 51 bitrdi yv0𝑹<yv<𝑹1sty
53 12 52 syl AyAv0𝑹<yv<𝑹1sty
54 53 notbid AyA¬v0𝑹<y¬v<𝑹1sty
55 47 54 sylibrd AyAw1stA¬v<𝑹w¬v0𝑹<y
56 55 ralrimdva Aw1stA¬v<𝑹wyA¬v0𝑹<y
57 56 ad2antrr AAv𝑹w1stA¬v<𝑹wyA¬v0𝑹<y
58 49 breq1d yy<v0𝑹1sty0𝑹<v0𝑹
59 ltresr 1sty0𝑹<v0𝑹1sty<𝑹v
60 58 59 bitrdi yy<v0𝑹1sty<𝑹v
61 48 simplbi y1sty𝑹
62 breq1 w=1styw<𝑹v1sty<𝑹v
63 breq1 w=1styw<𝑹u1sty<𝑹u
64 63 rexbidv w=1styu1stAw<𝑹uu1stA1sty<𝑹u
65 62 64 imbi12d w=1styw<𝑹vu1stAw<𝑹u1sty<𝑹vu1stA1sty<𝑹u
66 65 rspccv w𝑹w<𝑹vu1stAw<𝑹u1sty𝑹1sty<𝑹vu1stA1sty<𝑹u
67 61 66 syl5 w𝑹w<𝑹vu1stAw<𝑹uy1sty<𝑹vu1stA1sty<𝑹u
68 67 com3l y1sty<𝑹vw𝑹w<𝑹vu1stAw<𝑹uu1stA1sty<𝑹u
69 60 68 sylbid yy<v0𝑹w𝑹w<𝑹vu1stAw<𝑹uu1stA1sty<𝑹u
70 69 adantr yAy<v0𝑹w𝑹w<𝑹vu1stAw<𝑹uu1stA1sty<𝑹u
71 fvelimab 1stFnVAVu1stAzA1stz=u
72 7 8 71 mp2an u1stAzA1stz=u
73 ssel2 AzAz
74 ltresr2 yzy<z1sty<𝑹1stz
75 73 74 sylan2 yAzAy<z1sty<𝑹1stz
76 breq2 1stz=u1sty<𝑹1stz1sty<𝑹u
77 75 76 sylan9bb yAzA1stz=uy<z1sty<𝑹u
78 77 exbiri yAzA1stz=u1sty<𝑹uy<z
79 78 expr yAzA1stz=u1sty<𝑹uy<z
80 79 com4r 1sty<𝑹uyAzA1stz=uy<z
81 80 imp 1sty<𝑹uyAzA1stz=uy<z
82 81 reximdvai 1sty<𝑹uyAzA1stz=uzAy<z
83 72 82 biimtrid 1sty<𝑹uyAu1stAzAy<z
84 83 expcom yA1sty<𝑹uu1stAzAy<z
85 84 com23 yAu1stA1sty<𝑹uzAy<z
86 85 rexlimdv yAu1stA1sty<𝑹uzAy<z
87 70 86 syl6d yAy<v0𝑹w𝑹w<𝑹vu1stAw<𝑹uzAy<z
88 87 com23 yAw𝑹w<𝑹vu1stAw<𝑹uy<v0𝑹zAy<z
89 88 ex yAw𝑹w<𝑹vu1stAw<𝑹uy<v0𝑹zAy<z
90 89 com3l Aw𝑹w<𝑹vu1stAw<𝑹uyy<v0𝑹zAy<z
91 90 ad2antrr AAv𝑹w𝑹w<𝑹vu1stAw<𝑹uyy<v0𝑹zAy<z
92 91 ralrimdv AAv𝑹w𝑹w<𝑹vu1stAw<𝑹uyy<v0𝑹zAy<z
93 opelreal v0𝑹v𝑹
94 93 biimpri v𝑹v0𝑹
95 94 adantl AAv𝑹v0𝑹
96 breq1 x=v0𝑹x<yv0𝑹<y
97 96 notbid x=v0𝑹¬x<y¬v0𝑹<y
98 97 ralbidv x=v0𝑹yA¬x<yyA¬v0𝑹<y
99 breq2 x=v0𝑹y<xy<v0𝑹
100 99 imbi1d x=v0𝑹y<xzAy<zy<v0𝑹zAy<z
101 100 ralbidv x=v0𝑹yy<xzAy<zyy<v0𝑹zAy<z
102 98 101 anbi12d x=v0𝑹yA¬x<yyy<xzAy<zyA¬v0𝑹<yyy<v0𝑹zAy<z
103 102 rspcev v0𝑹yA¬v0𝑹<yyy<v0𝑹zAy<zxyA¬x<yyy<xzAy<z
104 103 ex v0𝑹yA¬v0𝑹<yyy<v0𝑹zAy<zxyA¬x<yyy<xzAy<z
105 95 104 syl AAv𝑹yA¬v0𝑹<yyy<v0𝑹zAy<zxyA¬x<yyy<xzAy<z
106 57 92 105 syl2and AAv𝑹w1stA¬v<𝑹ww𝑹w<𝑹vu1stAw<𝑹uxyA¬x<yyy<xzAy<z
107 106 rexlimdva AAv𝑹w1stA¬v<𝑹ww𝑹w<𝑹vu1stAw<𝑹uxyA¬x<yyy<xzAy<z
108 32 42 107 3syld AAxyAy<xxyA¬x<yyy<xzAy<z
109 108 3impia AAxyAy<xxyA¬x<yyy<xzAy<z