| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bitsval |
|
| 2 |
|
simp32 |
|
| 3 |
|
nn0uz |
|
| 4 |
2 3
|
eleqtrdi |
|
| 5 |
|
simp1r |
|
| 6 |
5
|
nn0zd |
|
| 7 |
|
2re |
|
| 8 |
7
|
a1i |
|
| 9 |
8 2
|
reexpcld |
|
| 10 |
|
simp1l |
|
| 11 |
10
|
zred |
|
| 12 |
8 5
|
reexpcld |
|
| 13 |
9
|
recnd |
|
| 14 |
13
|
mullidd |
|
| 15 |
|
simp33 |
|
| 16 |
|
2rp |
|
| 17 |
16
|
a1i |
|
| 18 |
2
|
nn0zd |
|
| 19 |
17 18
|
rpexpcld |
|
| 20 |
11 19
|
rerpdivcld |
|
| 21 |
|
1red |
|
| 22 |
20 21
|
ltnled |
|
| 23 |
|
0p1e1 |
|
| 24 |
23
|
breq2i |
|
| 25 |
|
elfzole1 |
|
| 26 |
25
|
3ad2ant2 |
|
| 27 |
11 19 26
|
divge0d |
|
| 28 |
|
0z |
|
| 29 |
|
flbi |
|
| 30 |
20 28 29
|
sylancl |
|
| 31 |
|
z0even |
|
| 32 |
|
id |
|
| 33 |
31 32
|
breqtrrid |
|
| 34 |
30 33
|
biimtrrdi |
|
| 35 |
27 34
|
mpand |
|
| 36 |
24 35
|
biimtrrid |
|
| 37 |
22 36
|
sylbird |
|
| 38 |
15 37
|
mt3d |
|
| 39 |
21 11 19
|
lemuldivd |
|
| 40 |
38 39
|
mpbird |
|
| 41 |
14 40
|
eqbrtrrd |
|
| 42 |
|
elfzolt2 |
|
| 43 |
42
|
3ad2ant2 |
|
| 44 |
9 11 12 41 43
|
lelttrd |
|
| 45 |
|
1lt2 |
|
| 46 |
45
|
a1i |
|
| 47 |
8 18 6 46
|
ltexp2d |
|
| 48 |
44 47
|
mpbird |
|
| 49 |
|
elfzo2 |
|
| 50 |
4 6 48 49
|
syl3anbrc |
|
| 51 |
50
|
3expia |
|
| 52 |
1 51
|
biimtrid |
|
| 53 |
52
|
ssrdv |
|
| 54 |
|
simpr |
|
| 55 |
54
|
nnred |
|
| 56 |
|
simpllr |
|
| 57 |
56
|
nn0red |
|
| 58 |
|
max2 |
|
| 59 |
55 57 58
|
syl2anc |
|
| 60 |
|
simplr |
|
| 61 |
|
n2dvdsm1 |
|
| 62 |
|
simplll |
|
| 63 |
62
|
zred |
|
| 64 |
|
2nn |
|
| 65 |
64
|
a1i |
|
| 66 |
54
|
nnnn0d |
|
| 67 |
56 66
|
ifcld |
|
| 68 |
65 67
|
nnexpcld |
|
| 69 |
63 68
|
nndivred |
|
| 70 |
|
1red |
|
| 71 |
62
|
zcnd |
|
| 72 |
68
|
nncnd |
|
| 73 |
|
2cnd |
|
| 74 |
|
2ne0 |
|
| 75 |
74
|
a1i |
|
| 76 |
67
|
nn0zd |
|
| 77 |
73 75 76
|
expne0d |
|
| 78 |
71 72 77
|
divnegd |
|
| 79 |
67
|
nn0red |
|
| 80 |
68
|
nnred |
|
| 81 |
|
max1 |
|
| 82 |
55 57 81
|
syl2anc |
|
| 83 |
|
2z |
|
| 84 |
|
uzid |
|
| 85 |
83 84
|
ax-mp |
|
| 86 |
|
bernneq3 |
|
| 87 |
85 67 86
|
sylancr |
|
| 88 |
79 80 87
|
ltled |
|
| 89 |
55 79 80 82 88
|
letrd |
|
| 90 |
72
|
mulridd |
|
| 91 |
89 90
|
breqtrrd |
|
| 92 |
68
|
nnrpd |
|
| 93 |
55 70 92
|
ledivmuld |
|
| 94 |
91 93
|
mpbird |
|
| 95 |
78 94
|
eqbrtrd |
|
| 96 |
69 70 95
|
lenegcon1d |
|
| 97 |
54
|
nngt0d |
|
| 98 |
68
|
nngt0d |
|
| 99 |
55 80 97 98
|
divgt0d |
|
| 100 |
99 78
|
breqtrrd |
|
| 101 |
69
|
lt0neg1d |
|
| 102 |
100 101
|
mpbird |
|
| 103 |
|
ax-1cn |
|
| 104 |
|
neg1cn |
|
| 105 |
|
1pneg1e0 |
|
| 106 |
103 104 105
|
addcomli |
|
| 107 |
102 106
|
breqtrrdi |
|
| 108 |
|
neg1z |
|
| 109 |
|
flbi |
|
| 110 |
69 108 109
|
sylancl |
|
| 111 |
96 107 110
|
mpbir2and |
|
| 112 |
111
|
breq2d |
|
| 113 |
61 112
|
mtbiri |
|
| 114 |
|
bitsval2 |
|
| 115 |
62 67 114
|
syl2anc |
|
| 116 |
113 115
|
mpbird |
|
| 117 |
60 116
|
sseldd |
|
| 118 |
|
elfzolt2 |
|
| 119 |
117 118
|
syl |
|
| 120 |
79 57
|
ltnled |
|
| 121 |
119 120
|
mpbid |
|
| 122 |
59 121
|
pm2.65da |
|
| 123 |
122
|
intnand |
|
| 124 |
|
simpll |
|
| 125 |
|
elznn0nn |
|
| 126 |
124 125
|
sylib |
|
| 127 |
126
|
ord |
|
| 128 |
123 127
|
mt3d |
|
| 129 |
|
simplr |
|
| 130 |
|
simpr |
|
| 131 |
|
eqid |
|
| 132 |
128 129 130 131
|
bitsfzolem |
|
| 133 |
53 132
|
impbida |
|