Metamath Proof Explorer


Theorem caubl

Description: Sufficient condition to ensure a sequence of nested balls is Cauchy. (Contributed by Mario Carneiro, 18-Jan-2014) (Revised by Mario Carneiro, 1-May-2014)

Ref Expression
Hypotheses caubl.2 φD∞MetX
caubl.3 φF:X×+
caubl.4 φnballDFn+1ballDFn
caubl.5 φr+n2ndFn<r
Assertion caubl φ1stFCauD

Proof

Step Hyp Ref Expression
1 caubl.2 φD∞MetX
2 caubl.3 φF:X×+
3 caubl.4 φnballDFn+1ballDFn
4 caubl.5 φr+n2ndFn<r
5 2fveq3 r=nballDFr=ballDFn
6 5 sseq1d r=nballDFrballDFnballDFnballDFn
7 6 imbi2d r=nφnballDFrballDFnφnballDFnballDFn
8 2fveq3 r=kballDFr=ballDFk
9 8 sseq1d r=kballDFrballDFnballDFkballDFn
10 9 imbi2d r=kφnballDFrballDFnφnballDFkballDFn
11 2fveq3 r=k+1ballDFr=ballDFk+1
12 11 sseq1d r=k+1ballDFrballDFnballDFk+1ballDFn
13 12 imbi2d r=k+1φnballDFrballDFnφnballDFk+1ballDFn
14 ssid ballDFnballDFn
15 14 2a1i nφnballDFnballDFn
16 eluznn nknk
17 fvoveq1 n=kFn+1=Fk+1
18 17 fveq2d n=kballDFn+1=ballDFk+1
19 2fveq3 n=kballDFn=ballDFk
20 18 19 sseq12d n=kballDFn+1ballDFnballDFk+1ballDFk
21 20 rspccva nballDFn+1ballDFnkballDFk+1ballDFk
22 3 16 21 syl2an φnknballDFk+1ballDFk
23 22 anassrs φnknballDFk+1ballDFk
24 sstr2 ballDFk+1ballDFkballDFkballDFnballDFk+1ballDFn
25 23 24 syl φnknballDFkballDFnballDFk+1ballDFn
26 25 expcom knφnballDFkballDFnballDFk+1ballDFn
27 26 a2d knφnballDFkballDFnφnballDFk+1ballDFn
28 7 10 13 10 15 27 uzind4 knφnballDFkballDFn
29 28 com12 φnknballDFkballDFn
30 29 ad2ant2r φr+n2ndFn<rknballDFkballDFn
31 relxp RelX×+
32 2 ad3antrrr φr+n2ndFn<rknF:X×+
33 simplrl φr+n2ndFn<rknn
34 32 33 ffvelcdmd φr+n2ndFn<rknFnX×+
35 1st2nd RelX×+FnX×+Fn=1stFn2ndFn
36 31 34 35 sylancr φr+n2ndFn<rknFn=1stFn2ndFn
37 36 fveq2d φr+n2ndFn<rknballDFn=ballD1stFn2ndFn
38 df-ov 1stFnballD2ndFn=ballD1stFn2ndFn
39 37 38 eqtr4di φr+n2ndFn<rknballDFn=1stFnballD2ndFn
40 1 ad3antrrr φr+n2ndFn<rknD∞MetX
41 xp1st FnX×+1stFnX
42 34 41 syl φr+n2ndFn<rkn1stFnX
43 xp2nd FnX×+2ndFn+
44 34 43 syl φr+n2ndFn<rkn2ndFn+
45 44 rpxrd φr+n2ndFn<rkn2ndFn*
46 simpllr φr+n2ndFn<rknr+
47 46 rpxrd φr+n2ndFn<rknr*
48 simplrr φr+n2ndFn<rkn2ndFn<r
49 rpre 2ndFn+2ndFn
50 rpre r+r
51 ltle 2ndFnr2ndFn<r2ndFnr
52 49 50 51 syl2an 2ndFn+r+2ndFn<r2ndFnr
53 44 46 52 syl2anc φr+n2ndFn<rkn2ndFn<r2ndFnr
54 48 53 mpd φr+n2ndFn<rkn2ndFnr
55 ssbl D∞MetX1stFnX2ndFn*r*2ndFnr1stFnballD2ndFn1stFnballDr
56 40 42 45 47 54 55 syl221anc φr+n2ndFn<rkn1stFnballD2ndFn1stFnballDr
57 39 56 eqsstrd φr+n2ndFn<rknballDFn1stFnballDr
58 sstr2 ballDFkballDFnballDFn1stFnballDrballDFk1stFnballDr
59 57 58 syl5com φr+n2ndFn<rknballDFkballDFnballDFk1stFnballDr
60 simprl φr+n2ndFn<rn
61 60 16 sylan φr+n2ndFn<rknk
62 32 61 ffvelcdmd φr+n2ndFn<rknFkX×+
63 xp1st FkX×+1stFkX
64 62 63 syl φr+n2ndFn<rkn1stFkX
65 xp2nd FkX×+2ndFk+
66 62 65 syl φr+n2ndFn<rkn2ndFk+
67 blcntr D∞MetX1stFkX2ndFk+1stFk1stFkballD2ndFk
68 40 64 66 67 syl3anc φr+n2ndFn<rkn1stFk1stFkballD2ndFk
69 1st2nd RelX×+FkX×+Fk=1stFk2ndFk
70 31 62 69 sylancr φr+n2ndFn<rknFk=1stFk2ndFk
71 70 fveq2d φr+n2ndFn<rknballDFk=ballD1stFk2ndFk
72 df-ov 1stFkballD2ndFk=ballD1stFk2ndFk
73 71 72 eqtr4di φr+n2ndFn<rknballDFk=1stFkballD2ndFk
74 68 73 eleqtrrd φr+n2ndFn<rkn1stFkballDFk
75 ssel ballDFk1stFnballDr1stFkballDFk1stFk1stFnballDr
76 59 74 75 syl6ci φr+n2ndFn<rknballDFkballDFn1stFk1stFnballDr
77 elbl2 D∞MetXr*1stFnX1stFkX1stFk1stFnballDr1stFnD1stFk<r
78 40 47 42 64 77 syl22anc φr+n2ndFn<rkn1stFk1stFnballDr1stFnD1stFk<r
79 76 78 sylibd φr+n2ndFn<rknballDFkballDFn1stFnD1stFk<r
80 79 ex φr+n2ndFn<rknballDFkballDFn1stFnD1stFk<r
81 30 80 mpdd φr+n2ndFn<rkn1stFnD1stFk<r
82 81 ralrimiv φr+n2ndFn<rkn1stFnD1stFk<r
83 82 expr φr+n2ndFn<rkn1stFnD1stFk<r
84 83 reximdva φr+n2ndFn<rnkn1stFnD1stFk<r
85 84 ralimdva φr+n2ndFn<rr+nkn1stFnD1stFk<r
86 4 85 mpd φr+nkn1stFnD1stFk<r
87 nnuz =1
88 1zzd φ1
89 fvco3 F:X×+k1stFk=1stFk
90 2 89 sylan φk1stFk=1stFk
91 fvco3 F:X×+n1stFn=1stFn
92 2 91 sylan φn1stFn=1stFn
93 1stcof F:X×+1stF:X
94 2 93 syl φ1stF:X
95 87 1 88 90 92 94 iscauf φ1stFCauDr+nkn1stFnD1stFk<r
96 86 95 mpbird φ1stFCauD